
Faster Schrödinger-style simulation of quantum circuits
Aneeqa Fatima

aneeqaf@umich.edu

University of Michigan

Ann Arbor, MI

Igor L. Markov

imarkov@umich.edu

University of Michigan

Ann Arbor, MI

ABSTRACT
Recent demonstrations of superconducting quantum computers

by Google and IBM and trapped-ion computers from IonQ fueled

new research in quantum algorithms, compilation into quantum

circuits, and empirical algorithmics. While online access to quan-

tum hardware remains too limited to meet the demand, simulating

quantum circuits on conventional computers satisfies many needs.

We advance Schrödinger-style simulation of quantum circuits that

is useful standalone and as a building block in layered simulation

algorithms, both cases are illustrated in our results. Our algorith-

mic contributions show how to simulate multiple quantum gates

at once, how to avoid floating-point multiplies, how to best use

data-level and thread-level parallelism as well as CPU cache, and

how to leverage these optimizations by reordering circuit gates.

While not described previously, these techniques implemented by

us supported published high-performance distributed simulations

up to 64 qubits. To show additional impact, we benchmark our

simulator against Microsoft, IBM and Google simulators on hard

circuits from Google.

1 INTRODUCTION
Quantum computation was first developed theoretically to acceler-

ate computational bottlenecks using quantum-mechanical phenom-

ena [1]. Among several promising quantum models of computation,

quantum circuits have been implemented in several technologies,

for which end-to-end programmable computation has been demon-

strated at intermediate scale [2]. In 2019, Google claimed quantum-

computational supremacy [3, 4] by scaling quantum computation

to the point where simulating it becomes exceptionally challeng-

ing even on supercomputers. The significance of quantum design

automation tools has been appreciated for many years, to the point

where IBM and Microsoft have developed extensive toolchains

(QISKit and QDK respectively), which include language support,

compilation, optimization, and a variety of execution back-ends

for physical quantum computers and circuit simulators. Just like in

conventional Electronic Design Automation, such software allows

one to validate prototype designs before building the hardware.

Quantum circuit simulation in general is inherently difficult due

to the exponential growth in the number of internal parameters

and complexity-theoretic reasons [5, 6]. We distinguish several

categories and uses of quantum-circuit simulation:

(1) Polynomial-time simulation of "easy" special-case quantum

circuits — those using Clifford gates [7], many instances of

Grover’s algorithm [8], and circuits with small tree-width

[9]. Such simulation is used (𝑖) to rule out quantum speed-up

in specific algorithms, and (𝑖𝑖) for limited initial testing of

quantum computers in the lab and debugging of failed tests.

(2) Best-effort simulation of unrestricted "small" quantum cir-

cuits up to 40 qubits, as in Section 6, and also error modeling.

Such simulation is used (𝑖) for broad testing and routine

debugging of quantum computers, (𝑖𝑖) to verify local quan-

tum circuit transformations and whole circuits, as well as

(𝑖𝑖𝑖) to evaluate new quantum algorithms, quantum error-

correcting codes and device architectures [10]. In particular,

VQE algorithms common for quantum-chemistry applica-

tions run numerous quantum circuits in a sequence, their

development particularly benefits from fast simulation [29].

(3) Distributed quantum-circuit simulation on clusters and su-

percomputers [11, 12, 14–18], including the world’s largest

[19]. Such expensive and scarce resources are used to ver-

ify quantum computation and set performance baselines

when claiming quantum-computational supremacy [3, 4, 17].

Whereas other uses entail repeated on-demand simulations

on readily available computing hardware, this category tar-

gets a small number of "expensive" one-off simulations.

All three categories of quantum-circuit simulation are in demand

today, but high-performance simulation of unrestricted quantum

circuits in Categories 2 and 3 is challenging and motivates algorith-

mic improvements of the type we propose. Using fast simulation to

evaluate, verify, test and debug larger quantum circuits and algo-

rithms facilitates the development of many applications.

Schrödinger-style simulation is the mainstream technique for

general-case simulation of quantum algorithms, circuits and phys-

ical devices. It represents a quantum state (wave function) by a

vector of complex-valued amplitudes and modifies this vector in

place by applying quantum transformations (quantum gates, laser

pulses, algorithmic modules, etc). Schrödinger simulation

• scales linearly with computation (circuit) depth but expo-

nentially with the number of qubits, or width (Section 6.4);

• is commonly used for small and mid-size quantum-circuit

and device/technology simulations because its unoptimized

variants are relatively straightforward to implement;

• dominates supercomputer-based quantum circuit simula-

tions because it can leverage distributed memory, fast inter-

connect, GPUs, etc [11–16, 18, 19];

• has been extended for better scalability via layered simulation
[18, 20, 21]. For example, combining Schrödinger simulation

with Feynman path summation enables scaling tradeoffs be-

tween circuit depth and width [5] and orders-of-magnitude

resource savings in important cases [21].

Our work accelerates both pure Schrödinger simulation and layered

algorithms that use it, as we illustrate empirically for Schrödinger-

Feynman simulation from [21]. Our algorithmic insights and in-

novations offer both constant-time implementation speed-ups and

algorithmic speed-ups that scale with qubit count:
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• Numerical accuracy improvements and checks to enable a

compact floating-point data type which reduces memory

footprint and bandwidth, and facilitates SIMD instructions.

• Avoiding most floating-point multiplications in favor of

faster additive and bitwise instructions.

• Batched simulation of diagonal quantum gates that signifi-

cantly reduces expensive memory traversals and the overall

runtime while exposing thread-level parallelism.

• Encoding sets of same-type diagonal gates by bitmasks (Fig-

ure 6), simulating them with bitwise and mod-𝑝 CPU instruc-

tions, and speeding up simulation with Gray codes.

• Encoding sets of same-type single-qubit (not necessarily

diagonal) gates by bitmasks (Figure 8) and simulating them

using a recursive FFT-like algorithm that improves cache

locality and exposes thread-level parallelism.

• The insight that some quantum gates (implemented in su-

perconducting quantum computers) are easier to simulate

in pairs because this simplifies matrix elements and benefits

from batched load/store operations.

• Gate clustering by type, contrasted with the common gate
fusion that clusters heterogeneous gates that share qubits.

We develop a reordering-based clustering algorithm that

finds larger homogeneous clusters (Figure 8).

• Alignedmemory read-write operations and gate clustering by
cache line. Here we read entire L1 cache lines from memory

and apply multiple gates to a cache line when possible.

• Implementing our algorithms with extensive use of AVX-2

instructions that improves productivity per instruction.

Our empirical results start with comparisons on smaller circuits

where software from IBM and Microsoft can be used, then study

the scalability of our techniques and show how they boost layered

simulation methods. On a MacBook Pro laptop with 16GiB RAM, we

simulate circuits with a 5 × 5-qubit array to any depth, with 20×
and 12× speedups over simulators from Microsoft QDK and IBM

QISKit / QASM, respectively. Our simulator Rollright uses 3.27×
less memory than QDK and can simulate 6× 5-qubit circuits of any
depth. On a midrange server, we simulate up to 6 × 6-qubit circuits
and illustrate Schrödinger-Feynman simulation [21] that combines

half-sized Schrödinger simulations, benefits from our techniques,

and shows up to 4000× speedups over QDK and earlier versions of

QISKit. Profiling data, ablation experiments, as well as comparisons

to Google Qsim showcase the impact of specific innovations.

In the remaining part of the paper, Section 2 gives minimal

background in quantum circuits and circuit simulation. Section 3

outlines baseline Schrödinger-style simulation. Our algorithmic

framework is presented in Section 4, including design decisions

and some performance optimizations. In Section 5, we leverage the

CPU architecture and hardware resources. Empirical results and

scalability are reported in Section 6, with conclusions in Section 7.

2 BACKGROUND
A quantum circuit on𝑛 qubits is a sequence of quantum gates that act
on quantum states represented by 2𝑛-dimensional complex-valued

vectors [1]. The computation usually starts with the basis vector

(1, 0, . . . , 0), sets each qubit in the |0⟩ state rather than the |1⟩ state.
Quantum gates transform this state into some superposition of 2𝑛

basis vectors (each labeled by some 𝑛-bit binary number 𝑗 and par-

ticipates with the complex amplitude 𝛼 𝑗 ). Quantum measurements

are traditionally performed at the end to stochastically read out non-

quantum bits, while destroying the quantum state. The probabilities

of outcomes depend on 𝛼 𝑗 . In this work, we assume sufficient mem-

ory to represent all 𝛼 𝑗 and seek to find them all (strong simulation).
Simulating measurements is then straightforward.

Industry computers use a handful of one- and two-qubit gate

types, defined by 2 × 2 or 4 × 4 unitary matrices [1]. Qubits are

usually arranged in a planar grid, and two-qubit gates are restricted

to nearest-neighbor qubits. Yet, our methods handle two-qubit gates

acting on any pair of qubits (as in ion-trap computers).

Single-qubit quantum gates include

NOT =

[
0 1
1 0

]
, 𝐻 =

1
√
2

[
1 1
1 −1

]
, and 𝑍 =

[
1 0
0 −1

]
,

where NOT negates the state of the qubit, 𝐻 sets the qubit into a

superposition of |0⟩ and |1⟩, while 𝑍 shifts the phase of the qubit.

Multiple qubits can be coupled using the Controlled-NOT (CNOT
and Controlled-𝑍 (CZ ) gates:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
Example 2.1. Figure 1 illustrates a two-qubit circuit with two

Hadamard gates around a CNOT gate, followed by measurements

on each qubit. The three-gate circuit is equivalent to a CZ gate:

(𝐼 ⊗ 𝐻 ) CNOT (𝐼 ⊗ 𝐻 ) = CZ , (1)

where ⊗ represents the Kronecker product and 𝐼 represents the

identity matrix of appropriate dimension.
1
Given that the CZ gate

is diagonal, it maps |11⟩ into − |11⟩ and the remaining three basis

vectors to themselves. Therefore, if the circuit starts with any basis

vector, the measurement will deterministically produce this vector.

In general, diagonal operators/gates do not create superpositions.

In many circuits, one-qubit gates create separable superpositions,
which diagonal gates then turn into entangled superpositions.

Quantum circuits with gates shown above (along with 𝑃 = 𝑍
1/2

)

can be simulated in polynomial time by a compact algorithm, hence

offer no quantum computational advantage [7]. Google Bristlecone

and Sycamore chips [3, 4, 25] also support the following gates

𝑋
1/2 =

1

2

[
1 + 𝑖 1 − 𝑖

1 − 𝑖 1 + 𝑖

]
, 𝑌

1/2 =
1

2

[
1 + 𝑖 1 + 𝑖

−1 − 𝑖 1 + 𝑖

]
, 𝑇 =

[
1 0

0 𝑒𝜋𝑖/4

]
,

Here 𝑋
1/2 = 𝐻𝑃𝐻 and 𝑌

1/2 = 𝐻𝑍 , but 𝑇 gates cannot be expressed

this way. Adding𝑇 gates hampers polynomial-time simulation [7]
2

and enables universal quantum computation [22, 23]. Unlike generic

gates, this gate library supports quantum error correction [1].

Circuit depth is defined as maximum length of a monotonic path

of unitary gates through the circuit. Figure 8 shows two equivalent

circuits of depth 1+4+1 (1+ and +1 represent the initial and final

rounds of Hadamards).

1
A similar equation expresses CNOT via CZ and two 𝐻 gates.

2
The runtime of our simulation algorithms is not undermined by𝑇 gates.
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|𝑞0⟩

|𝑞1⟩ 𝑍

=

|𝑞0⟩

|𝑞1⟩ 𝐻 𝐻

Figure 1: Quantum circuit diagrams for equivalent circuits

3 BASELINE SIMULATION ALGORITHMS
Equation 1 illustrates how quantum circuits can be evaluated. First,

order the gates left to right (parallel gates can be ordered arbitrarily),

pad each gate with an identity matrix of an appropriate dimension

via Kronecker products to obtain a 2𝑛 × 2𝑛 matrix, and then multi-

ply all those matrices in order. The resulting operator represents

the entire circuit and can be multiplied by input state vectors to

find output vectors. While mathematically simple, this method is

enormously wasteful and usually infeasible in practice. Instead, one

applies each gate to the state vector, to avoid matrix-matrix multipli-

cations. A key insight in high-performance Schrödinger simulation

is how not to pad gates with identity matrices [11–16, 18, 19].
Fast Schrödinger simulation. For a 𝑞-bit gate defined by its 2𝑞 ×
2𝑞 matrix and circuit qubits 𝑖0, . . . , 𝑖𝑞−1 to which it is applied, a

typical simulation algorithm modifies the 2𝑛-dimensional state-

vector in-place. It traverses the state-vector and enumerates all

2𝑛−𝑞 disjoint sets of 2𝑞 amplitudes, to which the gate should be

applied in-place. To specify these sets, we turn to the binary (𝑛-

bit) representations of amplitude indices. Each set exhibits all 2𝑞

combinations of bits indexed 𝑖0, . . . , 𝑖𝑞−1, whereas the remaining

𝑛 − 𝑞 bits are common and form a set id. Each set can be produced

by shifting the set containing 00 . . . 0 by an appropriate amount. In

using idx_size = unsigned long long;

template<typename function>

void Apply1QGate(cmplx* w, // wave function

int num_qubits, int target, function& gate_func)

{

const idx_size w_size = 1ull << num_qubits,

block_size = 1ull << (num_qubuts - target)

num_iters_per_block = block_size / 2,

gate_bitmask = (1ull << ((num_qubits - 1) - target)),

offset_idx = 1ull << ((num_qubits - 1) - target);

idx_size idx[2] = {0, 0};

while (block_idx < w_size)

{ if (block_idx != 0 && block_idx % (2 * block_size) == 0)

block_idx += block_size

if ((block_idx & gate_bitmask) == 0)

{ idx[0] = block_idx; idx[1] = offset_idx +

block_idx;

cmplx* new_w[2] = gate_func(w[idx[0]], w[idx[1]]);

w[idx[0]] = new_w[0]; w[idx[1]] = new_w[1];

++block_idx; }

else block_idx += (block_idx & gate_bitmask); }

}

Figure 2: Simulating a one-qubit gate on a wave function.
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Figure 3: Fast Schrödinger simulation of one- and two-qubit
gates on a three-qubit state with 0-indexing (simplified).
Consecutive address sets are shown in color.

general, the sets are not equally spaced, so linear loops illustrated

in Figure 3 would not be sufficient. To set up efficient iteration,

one finds (1) a minimal step size, (2) a maximum block size within

which all sets are equally spaced, and (3) an update rule to find

the next block. For generic gates, is common to implement such

an iteration separately for 1-qubit and 2-qubit gates, based on the

indices of qubits involved (Figure 2). However, some specific gates

(e.g., diagonal) admit more efficient implementations. For gates that

leave many index sets unchanged, such sets can be skipped.

Example 3.1. CZ gates are commonly used in circuit design and

favored because they are qubit-symmetric and because a CNOT
can be expressed via CZ and 𝐻 gates. To simulate a single CZ gate

acting on qubits 𝑖0 and 𝑖1, note that it flips the sign of amplitude 𝛼 𝑗
when 𝑗 has 1s at binary positions 𝑖0 and 𝑖1, but otherwise leaves 𝛼 𝑗

unchanged.
3
Hence, the simulation traverses all amplitudes, and

for each 𝛼 𝑗 decides whether to flip the sign based on the bits of 𝑗 .

Such simple linear memory passes are common for diagonal gates

and benefit from standard CPU caching and prefetching policies.

Universal fault-tolerant quantum gate libraries often comple-

ment the CZ gate with one-qubit gates [22, 23]. Therefore, a min-

imal circuit-simulation framework can be completed with an al-

gorithm to simulate an arbitrary one-qubit gate acting on qubit 𝑖0
(simulating measurements is straightforward from the definition

when all amplitudes are available). Diagonal one-qubit gates, such

as Z and T can be simulated similarly to how we simulate CZ , but

only one bit of the amplitude index 𝑗 is considered.

Example 3.2. NOT gates are not diagonal and swap pairs of

amplitudes whose indices differ at bit 𝑖0. One simulates a NOT
gate in one pass over the state vector as follows: for each 𝑗 , if bit 𝑖0
is zero, swap 𝛼 𝑗 with 𝛼 𝑗 ′ , where 𝑗 ′ differs from 𝑗 at bit 𝑖0 only.

Example 3.3. A generic one-qubit gate can be simulated by iso-

lating the gate action to pairs of amplitudes whose indices differ

in one bit only, such as 46=b101110 and 38=b100110. Rather than
swap these amplitudes (as for NOT gates), it applies the 2 × 2
gate matrix. Figure 2 illustrates this with our C++ code, which uses

bitwise instructions for efficiency. To scale this code beyond 64

qubits, our simulator redefines idx_size.

3
This test can be implemented using bitmasks by first defining mask = 1ull « 𝑖0 |

1ull « 𝑖1 and then checking j & mask == mask.
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/* Writes to idxs the 1st set of N=2^num_gate_qubits

indices of amplitudes on which the gate can be

applied.*/

void GetFirstSetOfIndicesInWToApplyGate(

int num_qubits // qubits in wave function,

idx_size* idxs, // starting idxs are written here

idx_size gate_bitmask)

{

const idx_size num_gate_qubits =

__builtin_popcountll(gate_bitmask);

idx_size num_idxs = 1,

stride = 1ull << (num_gate_qubits - 1);

idx_size prev_stride = stride;

for (idx_size i = idxs[0]; i < num_gate_qubits; ++i)

{

idx_size q = __builtin_ctzl(gate_bitmask),

shift = (num_circuit_qubits - 1) - q;

for (idx_size n = 0; num_idxs < (1ull << (i +

1)); n += prev_stride) {

idxs[n + stride] = idxs[n] + (1ull << shift);

++num_idxs;

}

gate_bitmask ^= 1ull << q;

prev_stride = stride;

stride /= 2;

}

}

Figure 4: Our algorithm for extracting the first set of in-
dices of the wave function to apply a generic 𝑘-qubit gate
on qubits specified by the bitmask. Other sets of indices are
obtained by shifting the first set, as shown in Figure 5. See
Table 1 for compiler intrinsics.

4 OUR ALGORITHMIC FRAMEWORK
We now introduce key techniques and optimizations for advanced

Schrödinger-style simulation. First, we show how to achieve suffi-

cient numerical accuracy with the 32-bit float type and outline

the benefits this brings. Second, we introduce a new gate-clustering

approach that forms clusters of gates of a kind. Then we focus on

optimizations for each gate type, and point out that clustering can

be improved by circuit reordering. We use the gate library from

Section 2, but other common gates can be supported too.

4.1 Data type selection and numerical accuracy
Given that state vectors consist of complex-valued amplitudes, we

use a complex-valued type and need to choose a floating-point type

to implement it. The two basic alternatives are the 32-bit float and
the 64-bit double. Higher-precision types are also available and

have been used for quantum simulation, but significantly increase

computational load. Our choice of the 32-bit float type improves

memory footprint and throughput which happens to be a bottleneck

for optimized simulation algorithms. Simulators that rely on the

double type are handicapped in memory and runtime (Section 6).

template<typename function>

void Apply2QGates(cmplx* __restrict w, //wave function

idx_size gate_qubits, int num_qubits,

function& gate_func, idx_size collected_amps /* = 4

when gate_func is in AVX-256 */)

{

const idx_size num_idxs = 4, w_size = 1ull <<

num_qubits,

gate_bitmask = (1ull << ((num_qubits - 1) -

__builtin_ctzl(gate_qubits))) |

(1ull << ((num_qubits - 1) - (63 -

__builtin_clzl(gate_qubits))));

array<idx_size, num_idxs> starting_idxs;

/* Get starting indices into the wave function to

start applying the gates on */

GetFirstSetOfIndicesInWToApplyGate(num_qubits,

starting_idxs.data(), gate_qubits);

w = (cmplx*)__builtin_assume_aligned(w, 64);

idx_size iters = 0, idx = 0;

array<idx_size, num_idxs> temp_idxs;

const idx_size num_iters = w_size / num_idxs;

while (iters < num_iters) {

/* Skip block where the gate has already been

applied. This is where the bits in the wave

function index are 1 at the position of the

qubit value. */

if (!(idx & gate_bitmask)) {

iters += collected_amps;

/* Increase the starting indices by idx to

progress through the wave function */

for (idx_size i = 0; i < num_idxs; ++i)

temp_idxs[i] = starting_idxs[i] + idx;

gate_func(w, temp_idxs.data());

idx += collected_amps;

}

else idx += (idx & gate_bitmask);

}

}

Figure 5: Simulating a 2-qubit gate on a q. state using index
extraction (Figure 4) and compiler intrinsics (Table 1).

To facilitate the use of the float type, we maintain numerical

accuracy during simulation in the face of potential underflows.

Among our gates, NOT , Z , CZ , and even T gates do not sig-

nificantly change the magnitudes of 𝛼 𝑗 values, but H , X
1/2

and

Y
1/2

include 1/
√
2 or 1/2 factors which, after hundreds of gates are

applied, can lead to numerous underflows. To avoid underflows,

we maintain a global power of 1/
√
2 to accumulate contributions

from individual gates. Specifically, we store a single integer value

(starting with 0) and increment it whenever we encounter a factor

of 1/
√
2 (increment twice for 1/2). This value is accounted for when
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reading off 𝛼 𝑗 values at the end of the simulation, but that some-

times leads to very large values. Therefore, we “flush” accumulated

(1/
√
2)𝑝 when 𝑝 > 100, back into 𝛼 𝑗 . We use a similar counter 𝑠

for global phase 𝑖𝑠 , but it cycles through only four possible values.

By inspecting gate matrices in Section 2, one can see that, after fac-

toring out 1/
√
2, all gates can be simulated without floating-point

multiplies to improve speed and accuracy.

Example 4.1. To simulate a 𝑇 gate without floating-point multi-

plies, note that the only nontrivial multiplication involves exp(𝜋𝑖/4) =
(𝑖 +1)/

√
2. This multiplication can be realized by first incrementing

the 𝑝 count and then using (𝑖 + 1)𝑧 = 𝑖𝑧 + 𝑧 = (Re(𝑧) − Im(𝑧)) +
𝑖 (Re(𝑧) + Im(𝑧)). In other words, add a complex number 𝑧 to its

product by 𝑖 , the latter computed by swapping the real and imagi-

nary parts and negating the real part. Also see Example 5.1.

As per Section 4.2, our simulator rarely deals with 𝑇 gates one

by one, but rather clusters them and simulates entire clusters, elim-

inating not only floating-point multiplies, but also most floating-

point additions and subtractions by using integer arithmetic and

bit-parallel instructions instead.

When relying on the compact float type, it is important to

explicitly check for accuracy loss. Since quantum states are repre-

sented by norm-one vectors, we compute the norm before measure-

ment and check how close it is to 1. A careless norm computation

can introduce greater errors than our simulation when small con-

tributions of individual amplitudes 𝛼 𝑗 are accumulated in a much

larger running sum. Indeed, small contributions of individual ampli-

tudes 𝛼 𝑗 are accumulated in a much larger running sum. Adding a

tiny number to a much larger number exposes mantissa limitations.

This problem can be mitigated by representing the running sum by

the higher-precision double type and/or by using a redundant sum-

of-two-values representation, a common numerical technique for

robust arithmetics [26]. The norm computation can be additionally

optimized using methods of Section 5. In particular, using compact

float values to represent amplitudes 𝛼 = Re + 𝑖 Im offers an addi-

tional benefit: four pairs of complex numbers can be quickly read

from and written to memory, multiplied and added using AVX-2

instruction.

4.2 Gate clustering and bitmask encoding
Simulating gates one at a time is slow because it requires separate

memory traversals. Therefore, it is common to simulate gate clusters

in batches.We develop a technique that clustersmore gates, respects

our avoidance of floating-point multiplies, and enables efficient

representations with bitmasks and downstream optimizations.

Prior quantum simulators typically cluster adjacent gates acting

on the same qubits (when this is possible). Google QSim merges

each one-qubit gate to some nearby two-qubit gate, whereas the

simulator in [14] clusters gates up to five qubits, multiplies out

gate matrices up to 32 × 32, and optimizes matrix-vector products

with SIMD multiply-accumulate instructions [14]. These clusters

are 𝑂 (1) in size, and their matrices lose the structure that helps us

eliminate most floating-point multiplies. In contrast, our approach

• creates clusters that grow as 𝑂 (𝑞2) with 𝑞 qubits,
4

4
In Google supremacy benchmarks, we find clusters with𝑂 (𝑞) CZ gates, but circuits

with larger clusters can be shown.

• considerably reduces memory traversals,

• avoids floating-point multiplies and MAC instructions.

The main insight is to cluster adjacent gates of a kind — diagonal

gates (T and CZ ) separately from one-qubit non-diagonal gates

(𝐻 , X
1/2

, Y
1/2

) as illustrated in Figure 8. In simulating diagonal

gates, we rely on the fact that they act on individual 𝛼 𝑗 amplitudes

without permuting or mixing them. In particular, the order in which

diagonal gates are applied (within the cluster) does not matter.

Nor does the order of one-qubit gates acting on different qubits.
5

For each type of one-qubit gate (𝑇 , etc), we encode circuit gates

in each cluster using bitmasks. The bitmasks power downstream

optimizations with profound impact on simulation performance, as

we show later.

Example 4.2. In Figure 8, the four-qubit circuit on the right con-

tains a cluster of 𝑇 gates on qubits 0-3. This cluster can be rep-

resented by the bitmask 15=b1111, neglecting the order in which

these gates were listed in the circuit. The same encoding is used

for 𝑋
1/2

gates (7=b0111) and 𝑌
1/2

gates (14=b1110).

A single bitmask cannot encode multiple 𝑇 gates on one qubit,

but such gates can be separated into adjacent layers (cycles) and

captured using one bitmask per layer.
6
Bitmask encodings of CZ

gates are more involved and discussed in Section 4.3.

So far, we explained which gates we cluster and outlined the

logic behind the approach. As will be seen in Section 4.3, our use

of bitmasks significantly reduces the number of floating-point op-

erations by (𝑖) consolidating the phases contributed by CZ and

𝑇 gates to each amplitude index 𝑗 , and (𝑖𝑖) applying the resulting

phases to the amplitudes 𝛼 𝑗 , when the phases are ≠ 1. Additionally,
simulating all diagonal gates in one memory pass over amplitudes

𝛼 𝑗 reduces memory traffic that is often the main limiting factor

when large amounts of memory are used.

Optimizations for non-diagonal gates are covered in Section 4.4.

For algorithmic details on gate clustering see Section 4.5.

4.3 Optimizations for diagonal gates
Our use of gate clustering before simulation (Section 4.2) creates

opportunities to optimize algorithms for each gate type and develop

batched simulation. Here we focus on diagonal gates and clusters,

whose distinctive property is that they modify individual ampli-

tudes 𝛼 𝑗 without mixing or permuting them. After discussing their

prevalence in quantum circuits, we outline the handling of generic

diagonal gates and then focus on diagonal gates that are commonly

used and available on recent Google chips. Here we gain efficiency

through bit-parallel operations.

Clusters of diagonal gates appear in quantum combinatorial

algorithms (Shor’s and Grover’s) and Hamiltonian simulations [1,

27]. A particularly ubiquitous example is the Quantum Fourier

Transform implemented with controlled 𝑅𝑧 rotations that finds

uses in arithmetic circuits [28], phase estimation, and Hamiltonian

simulation. Diagonal clusters can be simulated by traversing the

entire state vector only once if contributions of all gates in the

cluster are aggregated for each amplitude 𝛼 𝑗 . When a cluster spans

5
Clustering gates of a kind helps find hidden gate cancellations. Such gate cancellations

sometimes appear in compiled circuits, but not inwell-designed simulation benchmarks

we use [3, 24]. Thus, our experiments showcase other benefits of such clustering.

6
The benchmarks used in this work [3, 24] do not include repeated gates.
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0 |0⟩

1 |0⟩

2 |0⟩ 𝑍

↦−→

CZ_bitmasks

0 : 000 (skip)

1 : 100

2 : 010

000

001

010

011

100

101

110

111

Graycodes

000

001

011

010

110

111

101

100

parity(Binary Idx & CZ_bitmasks[flipped 
Graycode bit])

parity (000 & CZ_bitmasks[0]) = 0

parity (001 & CZ_bitmasks[0]) = 0

parity (011 & CZ_bitmasks[1]) = 0

parity (010 & CZ_bitmasks[0]) = 0

parity (110 & CZ_bitmasks[2]) = 1

parity (111 & CZ_bitmasks[0]) = 0

parity (101 & CZ_bitmasks[1]) = 1

parity (100 & CZ_bitmasks[0]) = 0

negate_amp = 
0

0

0

0

0

1

1

0

0

if (parity) {
negate_amp = 
!negate_amp }

i ^ (i >> 1)

Figure 6: Encoding CZ gates on three qubits using bitmasks
and simulating them in one pass using Gray codes. For each
address, we decide whether the respective amplitude should
be negated. Gray codes support incremental computation
over adjacent addresses based on which bit flips.

< 20 qubits, the gates can be multiplied out into an array, and

each array element multiplies bit-compatible amplitudes. Below,

we optimize the simulation of T and CZ gates.

For each gate in the cluster, the task is simple. For example, a

T gate acting on qubit 𝑖0 leaves unchanged those 𝛼 𝑗 values where

the binary form of 𝑗 has 0 at bit position 𝑖0, and multiplies the

remaining 𝛼 𝑗 by exp(𝜋𝑖/4). A CZ gate acting on qubits 𝑖0 and 𝑖1
negates 𝛼 𝑗 when 𝑗 has bits 1 at positions 𝑖0 and 𝑖1.

The handling of diagonal clusters can be optimized further. We

form 𝑛-qubit layers of T gates, where each layer has at most one

gate on any given qubit and can thus be encoded by a bitmask𝑚,

where each gate location is represented by a 1 bit. Bitmasks are

formed before the memory pass. For each amplitude 𝛼 𝑗 , each bit

of each bitmask may contribute a factor of exp(𝜋𝑖/4) or a factor
of 1. The nontrivial contribution occurs when a 1-bit in bitmask𝑚

matches a 1-bit in index 𝑗 .

Example 4.3. To count pairs of matching 1-bits between an am-

plitude index 𝑗 and a 𝑇 -gate bitmask𝑚, two single-cycle CPU in-

structions suffice: popcount(m & j). See Table 1 for more details.

Since 𝑇 8
=I, the number of matching bits above can be taken

mod-8. Applied as a power to exp(𝜋𝑖/4), this integer can give

eight values: ±1, ±𝑖 and (±1 ± 𝑖)/
√
2. To multiply by these values,

we use increments of the 𝑝 counter, floating-point negations, swaps

of real and imaginary parts, and additions (Section 4.1).

To leverage fast bit-based CPU instructions, bitmasks are stored

in 64-bit integers when simulating ≤ 64 qubits. Processing dozens

of𝑇 gates in a cluster by several bit-based operations per amplitude

is much more efficient than simulating gates one by one.

For simulation, each CZ gate can be encoded by a bitmask𝑚

with two nonzeros, then such bitmasks are stored in a list (as long

as the number of CZ gates). For each 𝛼 𝑗 and each CZ gate, we

can check if m & j == m bitwise, in which case we increment a

counter of contributions. Since each CZ gate contributes only a ±1
factor, contributions are aggregated and then we either apply the

resulting -1 or do nothing (saving a memory write).

/* Returns the 8 phases effected by a set of CZ gates

on 8 consecutive amplitudes */

unsigned char GetCZPhaseInBlockUsingGrayCodesAndBitmask(

idx_size num_qubits,

// one bitmask per qubit

idx_size* __restrict CZ_bitmasks,

idx_size block_idx /* block of 8 floats */)

{

// gc : gray codes

idx_size prev_gc = (block_idx - 1) ^ ((block_idx -

1) >> 1), gc0 = prev_gc, gc4 = (block_idx + 4)

^ ((block_idx + 4) >> 1);

const idx_size gc[8] = {gc0, gc0 ^ 1, gc0 ^ 3, gc0 ^

2, gc4, gc4 ^ 1, gc4 ^ 3, gc4 ^ 2};

unsigned char z_phase_result = 0u;

/* In blocks of 4, indices 0,1,0 capture the

application of CZ on the least-sig qubit. */

const idx_size bit_idx[8] = {__builtin_ctzl(gc[0] ^

prev_gc), 0, 1 , 0, __builtin_ctzl(gc[4] ^

gc[3]), 0 , 1, 0};

// Get CZ parity for the prev. set of 1-bit indices

idx_size gate_count = 0;

for (idx_size i = 0; i < num_qubits; ++i)

if (((prev_gc & (1ull << i)) == (1ull << i))

&& (prev_gc & CZ_bitmasks[i]))

gate_count += __builtin_popcountll((prev_gc

& CZ_bitmasks[i]));

if (gate_count & 2) z_phase_result |= 1 ;

/* Update CZ gate state by calculating

the new parity in the current block */

for (int i = 0; i < 8; ++i)

if (__builtin_parityl(CZ_bitmasks[bit_idx[i]] &

gc[i]) == 1)

z_phase_result |= z_phase_result & (1 << i)

? 0: 1 << i;

return z_phase_result

}

Figure 7: Our optimized algorithm for simulating a bitmask-
encoded cluster of𝐶𝑍 gates on a block of consecutive ampli-
tudes. It performs a loop-unrolled Gray-code traversal on a
block of 8 consecutive indices. The 8 returned phase values
determine whether or not to negate each amplitude in the
wave function. Compiler intrinsics are explained in Table 1.

When dealing with large clusters of CZ gates on 𝑛 qubits, a

more efficient approach is to use (up to 𝑛) bitmasks that capture

multiple gates each. For qubit 𝑘 ≥ 0, the bitmask𝑚𝑘 represents

(qubits 𝑙 ≠ 𝑘 of) CZ gates that also act on qubit 𝑘 . To each 𝛼 𝑗 ,

these gates can cumulatively contribute phase 1 or -1, which we

determine by aggregating parityll(𝑚𝑘 & j) over all 𝑘 such that

j & (1ull << k) ≠ 0.

Example 4.4. Consider a cluster of six CZ gates that couple

all pairs of four qubits. This cluster is encoded by the following

set of bitmasks (one per qubit):𝑚0 =1110𝑚1 =1101,𝑚2 =1011,
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𝑚3 =0111. Note that there are exactly twelve nonzero bits total

across these bitmasks.

Further optimizations use Gray codes. Specifically, we traverse𝛼 𝑗
in a Gray code order, so that 𝑗 changes one bit at a time to minimize

necessary updates. In this work, we use the more-common reflected
Gray code that can be produced from a regular counting sequence

𝑘 = 0, 1, 2, 3, . . . with bit operations j = k ⊕ ( k » 1 ).

Example 4.5. The three-bit reflected Gray code uses codewords
000-001-011-010-110-111-101-100 or 0-1-3-2-6-7-5-4. Note that
this code is cyclic — the first and the last values differ in one bit. It

can be obtained by first reflecting the first half and then by setting

the most significant bit to 1.

Given a pattern of CZ gates in a bitmask-encoded cluster, we

precompute whichCZ gates become active (-1) or inactive (1) when

each bit switches. When processing blocks of indices, instead of

index calculations from scratch, we incrementally update the “state”

from the previous block. This technique, shown in Figure 6, reduces

the complexity of amplitude updates from 𝑂 (𝑛) to 𝑂 (1) time, after

initialization.

Figure 7 implements the ideas above, using advanced CPU in-

structions via compiler intrinsics (Table 1). The code works with

bitmask-encoded CZ gates and finds the implied Z phase changes

for a block of 8 amplitude indices. Returned as a byte, these 8 bits

determine if respective amplitudes must be negated. The function

can be used in a thread-parallel traversal of the wave function in

conjunction with aligned memory reads (Section 5).

Other common diagonal gates can be simulated natively or by

expressing them via supported gates, e.g., 𝑃 = 𝑇 2
and 𝑍 = 𝑇 4

.

4.4 Optimizations for non-diagonal gates
We start with gate-specific optimizations to reduce computation,

and then in Section 5 present more general optimizations that

reduce memory accesses and work with arbitrary gates. Recall that

all non-diagonal gates in our gate library are one-qubit gates. If one

wanted to simulate a CNOT gate, it can be re-expressed using a

CZ gate and twoH gates on the sides. Thus, we are now simulating

the following gates (leading factors extracted):

𝐻 ′ =
[
1 1
1 −1

]
, 𝑋

1/2′ =
[
1 + 𝑖 1 − 𝑖

1 − 𝑖 1 + 𝑖

]
, 𝑌

1/2′ =
[

1 + 𝑖 1 + 𝑖
−1 − 𝑖 1 + 𝑖

]
When different non-diagonal gate types are applied on the same

qubit, their ordermatters. However, gates applied on different qubits

can be reordered. Thus, we cluster gates of each kind into layers,

and represent each layer by a bitmask𝑚. Since applying gates one

at a time is inefficient, we apply them two at a time. While this

requires fetching more data at a time, the resulting matrices

𝐻 ′⊗𝐻 ′ =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , 𝑌
1/2′⊗𝑌 1/2′ = 𝑖


1 1 1 1

−1 1 −1 1
−1 −1 1 1
1 −1 −1 1

 ,

𝑋
1/2′ ⊗ 𝑋

1/2′ =


𝑖 1 1 −𝑖
1 𝑖 −𝑖 1
1 −𝑖 𝑖 1
−𝑖 1 1 𝑖



use mostly ±1 and ±𝑖 as their entries and can be multiplied by

without floating-point multiply and MAC instructions. For exam-

ple, multiplying a complex value 𝛼𝑘 by the imaginary 𝑖 entails a

swap of the real and imaginary parts and one negation. Using such

observations, we have developed several algorithms in the spirit

of Figure 2. A common pattern in these algorithms is that the two-

qubit gate combination acts each time on four amplitudes whose

indices differ by two bits. To extract such indices, we find the first

set using the code in Figure 4 and obtain the remaining sets by

shifting the indices as shown in Figure 5.

Our first implementation uses a generic gate_func as in Figure 2,
but is not limited to one-qubit gates. As shown in Figure 5, it extracts

sets of amplitude indices, then for each set loads the amplitudes

from the wave function, applies gate_func to them and saves the

result back into the wave function. Our second implementation in

Section 5.3 uses the same index-extractionmechanism, but increases

data-level parallelism via custom code for each pair of one-qubit

gates (hence, no generic gate function is passed). A small number

of unpaired one-qubit gates are simulated individually.

4.5 Gate clustering by reordering
To perform clustering outlined in Section 4.2, we assume a quantum

circuit specified by a list of gates (Section 2) ordered so that every

gate 𝑔𝑎 whose output qubit acts as input to gate 𝑔𝑏 appears before

𝑔𝑏 (parallel gates are ordered arbitrarily). Such topologically sorted
orders are generally not unique. Moreover, diagonal gates can al-

ways be reordered without affecting circuit functionality. Google

benchmarks [3, 24] additionally pack parallel gates into numbered

“cycles”, but we ignore this additional structure.

When gates of a kind are adjacent in the given gate ordering,

they form a natural cluster. However, non-adjacent gates of a kind

that can be reordered to form larger clusters. The search proceeds

from the beginning of the circuit in a topological order. Start with

a gate 𝑔𝑘 that cannot be in a cluster formed before (such as the first

gate in the circuit) and assume that no gates after it can be in a

cluster formed before (or else they would have been reordered). The

inner loop of the algorithm (for a fixed 𝑔𝑘 ) finds gates that cluster

with 𝑔𝑘 and reorders them accordingly. The outer loop goes over

all yet-unclustered gates 𝑔𝑘 . The state of the inner loop designates

each qubit as unobstructed (initially) or obstructed. An obstructed
qubit prevents a same-type gates from being moved next to 𝑔𝑘 .

The inner loop scans (traverses) gates after𝑔𝑘 , classifies each gate

𝑔𝑙 in one of three categories and performs the following actions:

(1) a gate of the same kind as 𝑔𝑘 — if all of the gate’s qubits

are unobstructed, then reorder the gate toward 𝑔𝑘 to form a

larger cluster, else mark all of the gate’s qubits obstructed;
(2) a gate 𝑔𝑙 of a different kind that can be reordered with 𝑔𝑘 —

do not change qubit designations because gates of the same

kind as 𝑔𝑘 can be reordered past 𝑔𝑙 towards 𝑔𝑘 ;

(3) a gate that cannot be reordered with a 𝑔𝑘 — mark all of the

gate’s qubits as obstructed.

The scan from 𝑔𝑘 continues until all qubits are marked as obstructed
or all gates have been scanned. Upon the completion of the scan,

all qubits are reset to unobstructed, and the next iteration of the

outer loop focuses on to the next gate not in a cluster. Each gate is

guaranteed to be in a cluster (single-gate clusters are allowed).
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0 |0⟩

1 |0⟩

2 |0⟩

3 |0⟩

𝐻 𝑇 𝑋 𝐻

𝐻 𝑍 𝑇 𝑋 𝑌 𝐻

𝐻 𝑇 𝑋 𝑌 𝐻

𝐻 𝑍 𝑇 𝑌 𝐻

↦−→

|0⟩

|0⟩

|0⟩

|0⟩

𝐻 𝑇 𝑋 𝐻

𝐻 𝑍 𝑇 𝑋 𝑌 𝐻

𝐻 𝑇 𝑋 𝑌 𝐻

𝐻 𝑍 𝑇 𝑌 𝐻

Figure 8: Clustering gates of a kind by reordering, with the algorithm from Section 4.5. In the figure, gates are ordered top
down and left to right, tomake clusters contiguous. The𝑋 and𝑌 boxes above representX 1/2andY

1/2gates, respectively. Circuit
depth is 1+4+1, and the circuit (not including the initial and finalHadamard gates) can be encoded using the following bitmasks
as follows. CZ gates:𝑚1=b0001,𝑚3=b0100; 𝑇 gates: b1111; X 1/2gates: b0111; Y 1/2gates: b1110.

Example 4.6. The circuit in Figure 8 starts and ends with a cluster
of Hadamards, unchanged during reordering.

7
When the outer loop

focuses on the CZ gate on qubits 0-1, it reorders the other CZ gate

to be adjacent. Here we recall thatCZ and𝑇 gates are diagonal and

so can always be swapped. The second iteration clusters 𝑇 gates.

Subsequent iterations cluster X
1/2

and Y
1/2

gates.

The example in Figure 8 suggests additional optimizations for

adjacent clusters of one-qubit gates. In particular, separate memory

passes for a Y
1/2⊗Y 1/2

pair and a 𝐻 ⊗ 𝐻 pair acting on the same

qubits can be coalesced into a single pass as follows.

(𝑌 1/2 ⊗ 𝑌
1/2) (𝐻 ⊗ 𝐻 ) = (𝑌 1/2𝐻 ⊗ 𝑌

1/2𝐻 ) (2)

Such coalesced matrices inherit simple structure from Kronecker-

product matrices shown in Section 4.4. Moreover, 𝑌
1/2𝐻 ⊗ 𝑌

1/2𝐻 is

diagonal, which further simplifies simulation. One can also merge

unpaired one-qubit gates, e.g., the X
1/2

and 𝐻 gates at the top qubit

line in Figure 8. These efficiency improvements require more dedi-

cated simulation kernels like the one illustrated in Figures 12 and 9.

In Section 5.3, we introduce the use of aligned memory read-write

instructions, which make it possible to apply these kernels on entire

L1 cache lines. This effectively clusters one-qubit gates so that they

can be applied on the same L1 cache line.

Clustering by reordering is performed once, before simulation

starts. To get larger clusters, we note that multiplying by𝑋
1/2⊗𝑌 1/2

is as simple as for other Kronecker products in Section 4.4. Thus, we

blend 𝑋
1/2

and 𝑌
1/2

clusters. This circuit preprocessing produces

a simulation plan that defines and schedules individual gate sets

handled directly by our algorithms. Then this plan is executed. Our

work leaves significant room for simulation plan optimization.

5 LEVERAGING THE CPU ARCHITECTURE
Section 4 dramatically reduces computation versus the baseline

Schrödinger framework in Section 3 and also reduces memory

accesses for diagonal gates to one linear pass per cluster. New effi-

ciencies for non-diagonal gates are unlocked by enhancing memory

locality, optimizing algorithms for the CPU cache size (“blocking”),

leveraging data-level parallelism, and using multiple CPU threads.

7
Starting Hadamards are applied to the initial state |0 . . . 0⟩, so can be replaced by

initializing the state into a full superposition.

Section 6.2 shows that these optimizations greatly improve perfor-

mance. Most of them can be used with arbitrary one-qubit gates.

5.1 Memory locality and CPU cache blocking
Given that we have eliminated most floating-point multiplies and

simulate large groups of diagonal gates with fast CPU instructions,

performance bottlenecks shift towards memory operations. Per-

formance is impacted by cache misses, especially when applying

non-diagonal one-qubit gates (diagonal gates require a small num-

ber of linear memory passes). To improve memory locality, we take

special care when forming pairs of one-qubit gates. First, the gates

of each kind in a layer are sorted by the qubits they act upon. Then,

we form pairs in order, so that paired up gates act on as close qubits

as possible. This reduces memory strides when simulating gate

pairs acting on less significant bits.

A more sophisticated optimization is cache blocking. Rather than
apply pairs of one-qubit gates in separate passes, such pairs acting

on different qubits can be reordered and even applied partially in

different orders. Simulating gates that act on more significant bits

still suffers from long memory strides and frequent cache misses.

To also address those gates, we developed a recursive FFT-like

algorithm for simulating layers of one-qubit (non-diagonal) gates

of a kind. Shown in in Figure 10, this algorithm starts with the most

significant qubits and simulates gates acting on those qubits (if they

exist), after which it partitions the state vector into equal-sized

chunks and recurses to individual chunks. Chunks are chosen to

have the smallest size such that the most significant one-qubit gate

left can be applied within a chunk. Upon recursion, the algorithm

applies multiple non-overlapping pairs of one-qubit gates and an

occasional unpaired gate to each chunk, then moves to the next

chunk. When each chunk fits in L2 cache, cache misses are reduced

and performance is improved.

5.2 Thread-level parallelism
When simulating diagonal gates, memory traversals expose signifi-

cant data-level parallelism exploited by multiple CPU threads. For

non-diagonal gates, the recursive FFT-like algorithm also exposes

parallelism after simulating gates on the most significant qubits —

branches of recursion can be processed by different CPU threads
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//-0.0f is needed to switch real and imaginary signs in the

xor operations due to multiplication by - i .

const __m256 kneg1 = {-0.0f, 0.0f, -0.0f, 0.0f, -0.0f,

0.0f, -0.0f, 0.0f};

void ApplyXX12GateAVX(cmplx* __restrict w, // wave function

idx_size target[4])

{

// temp wave function

float* __restrict t_w =

(float*)__builtin_assume_aligned(w, 64);

__m256 a0 = _mm256_load_ps (t_w + 2*target[0]),

a1 = _mm256_load_ps (t_w + 2*target[1]),

a2 = _mm256_load_ps (t_w + 2*target[2]),

a3 = _mm256_load_ps (t_w + 2*target[3]);

const __m256 t0 = _mm256_add_ps(a0, a3);

const __m256 t1 = _mm256_add_ps(a1, a2);

__m256 t2 = _mm256_sub_ps(a0, a3);

__m256 t3 = _mm256_sub_ps(a1, a2);

// Permute real and imaginary numbers

t2 = _mm256_permute_ps(t2, 0b10110001);

t2 = _mm256_xor_ps(t2, kneg1);

t3 = _mm256_permute_ps(t3, 0b10110001);

t3 = _mm256_xor_ps(t3, kneg1);

a0 = _mm256_add_ps(t1, t2); a1 = _mm256_add_ps(t0, t3);

a2 = _mm256_sub_ps(t0, t3); a3 = _mm256_sub_ps(t1, t2);

_mm256_store_ps(t_w + 2*target[0], a0);

_mm256_store_ps(t_w + 2*target[1], a1);

_mm256_store_ps(t_w + 2*target[2], a2);

_mm256_store_ps(t_w + 2*target[3], a3);

}

Figure 9: Optimized AVX-2 code to apply the𝑋 1/2 ⊗𝑋
1/2 gate

on four amplitudes loaded onto CPU registers. Code for the
𝑌

1/2 ⊗ 𝑌
1/2 gate is simpler due to its simpler matrix, as seen

in Section 4.4. Compiler intrinsics are explained in Table 1.

(Figure 11). This brings a 3-4× speedup with 8 threads, but for cir-

cuits with > 15 qubits the most significant one-qubit gates become

a bottleneck due to large memory strides. To simulate those gates

in larger circuits, we use a direct algorithm that partitions the state

vector into regions processed by parallel threads. To reduce CPU

cache misses, we use cache blocking and aligned-memory read-

s/writes described in Section 5.3. The boundary between the more-

and the less-significant qubits (used to choose between the FFT-like

algorithm and direct gate application) has only a small impact on

the overall runtime, so we keep these two groups as equal in size

as possible. In C++ code, we invoke parallel threads using OpenMP

pragmas, which can be disabled for sequential execution.

5.3 Data-level parallelism
We achieve major performance gains with aligned memory reads
and writes that fetch 256 bits of data (four complex numbers). These

Instruction Compiler Use in

type intrinsics simulation

Aligned read/write
mm256_load_ps

mm256_store_ps

For all gates, loads/-

stores amplitudes be-

tween RAM& registers.

Packed 32-bit

float arithmetics

mm256_add_ps

mm256_sub_ps

mm256_mul_ps

mm256_fmadd_ps

mm256_fmsub_ps

Can be used with

generic simulation

of arbitrary gates. In

RR, used with X
1/2

,

Y
1/2

, and 𝐻 gates.

AVX multiplication is

optionally used with 𝑇

gates.

Bitwise ops on

packed 32-bit

floats

mm256_xor_ps

mm256_or_ps
With 𝑋

1/2
, 𝑌

1/2
, 𝐻

gates.

Packed 32-bit

floats swizzle

mm256_shuffle_ps

mm256_permute_ps
Used to rearrange re

and im parts of complex

amplitudes for arith-

metic optimizations.

Assume aligned
builtin_

assume_aligned
In most kernels lets the

compiler optimize for

aligned vectors.

Count trailing,

leading 0-bits

builtin_ctzl

builtin_clzl
Used to extract indices

and apply bitmasks.Can

be used to apply arbi-

trary 1q gates in parallel

using bitmasks.

Count 1-bits
builtin_

popcountll
Used with 𝐶𝑍 and 𝑇

gates, also to extract

data from bitmasks.

Parity of 1-bit

count

builtin_

parityll
Used with 𝑍 and 𝐶𝑍

gates, with Gray codes.

Table 1: Compiler intrinsics used to accelerate simulation.

optimizations forced us to replace C++ STL vector classes with C-

style arrays whose memory positioning can be controlled precisely.

Fortunately, all large arrays in quantum circuit simulation are sized

at large powers of two, and can therefore be perfectly aligned using

a small amount of address arithmetic. When simulating diagonal

gates, each pass becomes faster with fewer reads and writes (here

we use Gray codes onlywithin each 256-bit block).When simulating

pairs of one-qubit gates, our memory traversal pattern is enhanced

by cache blocking via the recursive FFT-like algorithm in Figure

10. Cache blocking, shown in Figure 11, also improves temporal

locality by allowing us to apply all gates that act on qubits lower

than log2 (𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒) when the block is first read for diagonal gates
application - i.e., several traversals of the block are made in a short

time-span. Recall that pairs of one-qubit gates are applied to four

amplitudes at a time, but those four amplitudes are not contiguous

in general. Therefore, we load an entire L1 cache line for each, so



, , Aneeqa Fatima and Igor L. Markov

const int kRT = 8 * sizeof(idx_size) + 1;

inline int GetNextUsedQubitIndex (const idx_size bitmask) {

return bitmask ? __builtin_ctzl(bitmask) : kRT;

}

/* XX, XY, YX gates modify global phase. We accumulate

these phases in an i-counter to avoid multiplies.*/

idx_size XYFastTransform (

cmplx* __restrict w, //wave function

idx_size X_bitmask, idx_size Y_bitmask,

int num_qubits, int num_threads)

{

const int idx_increment = 4; idx_size i_phase = 0;

if (X_bitmask & 1 || Y_bitmask & 1)

{

idx_size gates_bitmask = 0;

/* Move the bitmask so the next two qubits are the

least significant and find whether to apply XX,

XY, YX, YY.*/

int gate_type = UpdateXYBitmask(

X_bitmask, Y_bitmask, gates_bitmask, i_phase);

Apply2QGates(w, gate_type, gates_bitmask,

num_qubits, idx_increment);

}

const int k = min(GetNextUsedQubitIndex(Y_bitmask),

GetNextUsedQubitIndex(X_bitmask));

// Base condition : end-case when qubit index == 65.

// RT only supported for up to 64 bits indices here.

if (k != kRT) {

const idx_size iters = 1ull << k,

stride = 1ull << (num_qubits - k);

X_bitmask >>= k; Y_bitmask >>= k;

idx_size temp_i = 0;

for (idx_size i = 0; i < iters ; ++i)

temp_i += XYFastTransform( w + (i * stride),

X_bitmask, Y_bitmask, num_qubits - k,

num_threads);

i_phase += temp_i / iters;

}

return i_phase % 4;

}

Figure 10: Our recursive transform (RT) algorithm illus-
trated by applying combinations of X 1/2and Y

1/2gates.

that four aligned reads provide data for applying two gates to four

sets of amplitudes. Moreover, Section 4.5 clusters one-qubit gates

that act on the same qubit(s), and we can now apply those gates

on the same L1 cache line loaded into an AVX-2 register to reduce

unnecessary memory transfers. Compared to prior work, we do not

multiply out clusters of gates as matrices but instead store them in

a factored form.

With entire cache lines loaded to AVX-2 registers, we made a

concerted effort to leverage wide arithmetic operations from the

AVX-2 instruction set. Relevant CPU instructions accessed through
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Figure 11: When 𝐻 gates are simulated on qubits 1, 2 an 3,
different amounts of parallelism are available to threads due
to different memory strides.

Final

Initial

reg 1 1 2i 3 4i

reg 2 10 11i 12 13i

reg 3 1 2i 3 4i

reg 4 14 15i 16 17i

reg 1 + 4 15 17i 19 21i

reg 2 + 3 11 13i 15 17i

reg 1 - 4 -13 -13i -13 -13i

reg 2 - 3 9 9i 9 9i

reg 1 -17 15i -21 19i

reg 2 -13 11i -17 15i

reg 3 13 -13i 13 -13i

reg 4 -9 9i -9 9i

permute_ps(reg, 0b10110001)
xor_ps(reg1, [-0.0f, 0.0f, -0.0f, 0.0f])

reg 2 + 3 0 -2i -4 2i

reg 1 + 4 -26 24i -30 28i

reg 1 - 4 -8 6i -12 10i

reg 2 - 3 -26 24i -30 28i

add_ps

add_ps

sub_ps

sub_ps

Figure 12: Applying the doubled 𝑋 ⊗ 𝑋 gate to two sets of
four amplitudes stored in 256-bit registers, using SIMD in-
structions: additions, subtractions and bit swizzles. To imple-
ment multiplication by i, the permute instruction switches
real and imaginary components, then the XOR instruction
negates the sign of the real component. Compiler intrinsics
are explained in Table 1.

compiler intrinsics are listed in Table 1. To prepare registers for AVX-

2 arithmetics, 32-bit values may need to be shuffled using several

types of bit permutations. CPU cycles can be reduced by optimizing

data shuffles and by reducing the number of arithmetic operations.

The latter is facilitated by common sub-expression elimination and

matrix factorizations.

Example 5.1. Our AVX-2 kernel to simulate the X
1/2⊗ X

1/2
gate

(Section 4.4) is illustrated in Figure 12 and 9. It operates on four AVX-

2 registers, each holding two amplitudes (data supplied by aligned

memory reads). Multiplications by ±𝑖 are performed in parallel by

swapping the real and imaginary parts of two amplitudes and then

negating their real parts via bitwise XOR with the -0.0f constant.

The instructions _mm256_permute_ps and _mm256_xor_ps exe-

cute in a single cycle on Intel CPUs, whereas multiplication takes

3-5 cycles depending on the CPU. Our approach saves at least
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twelve CPU cycles for a pair of X
1/2

gates. The add and subtract

AVX-2 instructions in Figure 12 complete in 24 cycles. Simulating

unpaired single X
1/2

gates requires multiplying by 1 ± 𝑖 which we

reduce to additions, subtractions, permutations and XOR opera-

tions.

Customizing such permutations, arithmetic and other instruc-

tions to each gate type is a laborious process with careful testing.

To reduce CPU cycles, we investigated assembly code generated

for compiler intrinsics, and these efforts were rewarded by per-

formance benefits. Here we emphasize the significance of aligned

memory reads/writes, which enable AVX-2 arithmetics and also

improve bandwidth, keeping more CPU threads supplied with data.

6 SIMULATION COMPARISONS
This work targets circuits that run on NISQ computers [2] and

are therefore limited in the number of qubits. Among such cir-

cuits, many well-known examples are fairly easy to simulate by

specialized methods [8]. Therefore, we focus on recent quantum-

supremacy circuits from Google [24] that were designed to en-

sure difficulty of simulation while using gates that support error

correction [25]. The average-case difficulty of their simulation is

proven analytically [6], and the benchmarks have been revised [21,

arxiv:1807.10749] to remove unintended simulation shortcuts. Table

3 shows characteristics of the benchmarks, including their large

T-gate counts, which defeat stabilizer-based simulation techniques.

Our methods are not limited to Google benchmarks, and our

Schrödinger simulator does not exploit some of their well-known

features that simplify simulation, such as their planar-grid qubit

layoutwith nearest-neighbor qubit couplings. Therefore, one can ex-

pect comparable performance for, e.g., VQE circuits from quantum

chemistry [10, 29]. In addition to pure Schrödinger simulation, our

techniques can be used to accelerate layered simulation algorithms

[18, 20, 21] that handle a greater variety of circuits. For example,

divide-and-conquer algorithms leverage Schrödinger simulation of

𝑛 = 32-qubit blocks to simulate 2𝑛 = 64-qubit circuits [21]. Tables 3
and 4 show results for pure Schrödinger and Schrödinger-Feynman

simulation [21] with our optimizations included.

6.1 Validation and runtime profile data
We implemented our algorithms in C++17 with OpenMP in a pack-

age called Rollright, compiled with Clang v11.0.3. As seen in Section

Gate simulation RR with opt RR w/o opt

passes % runtime % runtime

Initial H (32) 7.05 0.49

Unmatched final H (12) 5.46 2.23

CZ & T (300), Low 19.1 75.6
X & Y (94) & H (14)

Single X (5) & Y (1) 8.46 1.54

High X & Y (96) & H (6) 57.3 19.7

Rescaling passes (2) 2.58 0.49

Total (560) 72s 2050s

Table 2: Rollright (RR) runtime profiling data for a 32-qubit
circuit, with and without our optimizations. For each gate
category, we show the number of gates simulated.

5.3 we use AVX-2 instructions available on commodity and server

CPUs. To validate simulation results up to 25 qubits, we saved all

amplitudes of final states and checked them using several industry

and academic simulators. For circuits with 30-36 qubits, we checked

a few amplitudes with the authors of Google benchmarks.

Our experiments started on a MacBook Pro 2017 laptop with 16

GiB RAM, where our baseline Schrödinger simulation completes a

30-qubit circuit with depth 1+26+1 in 72 s using a little over 8 GiB

of RAM (1+ and +1 denote initial and final layers of Hadamard gates

as in Figure 8). Runtimes are consistent among different circuits of

similar size. On the laptop, we use a single CPU process with eight

threads. For simulations on a midrange server with ample memory

(Tables 3 and 4) we use multiple CPU processes (with eight threads

each) to leverage available hardware threads.

Based on profiling data, I/O and circuit pre-processing take neg-

ligible time. The bottlenecks are in simulating clusters of diagonal

and non-diagonal gates. We further distinguish non-diagonal gates

acting on the more and the less significant qubits. To illustrate, for

a 5×6-qubit Google circuit of depth 1+26+1, simulating 𝑋
1/2

and

𝑌
1/2

gates on the more significant qubits took > 75% of runtime.

But CZ ,T gates and remaining 𝑋
1/2

, 𝑌
1/2

, H gates took 14.4%
runtime.

Table 2 breaks down the runtimes of a fully optimized (with opt)

and an unoptimized (w/o opt) versions of Rollright on a 32-qubit

Google circuit. Initial H gates are a separate category because they

are simulated by initializing all amplitudes to the same value (1) and

setting the carried over power of

√
2 accordingly. Being diagonal,

CZ and T gates are simulated in one pass by the optimized version.

Low-qubit X, Y and H gates are simulated during the same pass,

so as to reduce memory transfers. On each L1 cache line loaded

into an AVX-2 register by aligned memory read (and later stored

by aligmed memory write), we simulate all applicable gates.

We see that for the unoptimized version, runtime is dominated

by this joint pass (75.6%) and the next category includes high-qubit

X, Y and H gates (19.7%). The optimized version is 28.5 times faster

and significantly reduces the time taken by diagonal and low-qubit

gates (19.1%), but runtime is dominated by high-qubit X, Y and H

gates (57.3%). This is not surprising since our simulation of diagonal

gates uses asymptotically fewer memory passes and exposes abun-

dant thread-parallelism, whereas high-qubit non-diagonal gates

entail multiple memory passes with large strides and limited thread

parallelism. Note that we have similar numbers of low- and high-

qubit X,Y gates, but high-qubit gates take much longer to simulate.

Among the remaining gate categories are unpaired (single) X and

Y gates, as well as a handful of unmatched trailing H gates, which

take single-percent fractions of total runtime.

The apparent dominance of memory accesses over computation

during optimized simulation suggests limits to further optimization.

Memory throughput is also likely to become an issue when porting

our algorithms to GPUs or FPGAs.

6.2 Ablation experiments
In order to demonstrate the impact of individual optimizations on

Rollright’s performance, we turn them off one by one and plot the

resulting runtimes in Figure 14. In these experiments, the full con-

figuration of Rollright uses eight threads. Separate lines are shown
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Circuit Gates Microsoft QDK QISkit-Aer QASM Rollright Ratios QDK/RR Ratios QISkit/RR

depth all 2-q T time mem time mem mode time mem time mem time mem

1+26+1 s MiB s MiB s MiB

MacBook Pro 2017 — MacOS High Sierra: 16 GiB, Intel Core i7-7700HQ (2.80GHz) 4 cores 8 threads

16q 274 78 68 2.34 — < 0.1 — S < 0.1 — — — — —

24q 417 123 99 16.64 463 3.76 128.45 S 0.88 128 18.91 3.63 4.27 1.00

25q 435 130 105 28.72 972 8.02 256.32 S 1.45 256 19.81 3.80 5.53 1.00

30q 524 161 119 — OOM 346.13 8023.39 S 58.8 8192 — — 5.88 1.00

Server — Ubuntu Linux: 144 GiB, Intel Xeon Platinum 8124M (3.00GHz) 18 cores, 72 threads

30q 524 161 119 1213.16 23959 18.13 8023.39 S 17.6 8192 52.29 2.92 1.03 1.00

30q 524 161 119 1213.16 23959 18.13 8023.39 S-F 4.23 27 4030.43 887.38 4.28 297.16

32q 560 168 168 — OOM 75.68 32022.62 S 72.0 32000 — — 1.05 1.00

32q 560 168 168 — OOM 75.68 32022.62 S-F 0.492 48 — — 153.82 667.13

36q 633 195 144 — OOM — OOM S-F 90.03 192 — — — —

Table 3: Comparisons of our simulator Rollright to the simulator fromMicrosoft QDK v0.11.2006.403 and IBMQISkit Aer v0.6.1
on benchmarks from Google (v2) [3, 24] with up to 36 qubits, performed on a laptop and a midrange server.
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Figure 13: Scalability simulations: Microsoft QDK (solid green line), IBM QISkit Aer (black dashed line), as well as our
simulator Rollright in Schrödinger (red dot-dashed line) and Schrödinger-Feynman (solid blue line) modes. We plot
runtime and memory usage against qubit count and circuit depth. Circuit depth was varied for 30-qubit circuits.

for runtime without optimizations for diagonal gates, without one-

qubit gates clustered by L1 cache lines and the FFT-like algorithm,

without AVX-2 instructions, and without aligned read-write op-

erations. Note that without aligned read-writes, clustering by L1

cache lines makes no sense, and data for AVX-2 instructions are not

readily available in AVX-2 registers. We also show runtime with all

optimizations turned off — a baselime Schrödinger simulation that

applies gates one by one.

Figure 14 suggests that aligned read-write and AVX instructions

impact runtime by more than other individual optimizations, es-

pecially for circuits with over 30 qubits (in addition to the more

efficient memory transfer, aligned read-write ops appear to im-

prove CPU cache utilization). However, the cumulative impact of

all optimizations far exceeds the impact of any one optimization.

6.3 Comparisons to Microsoft, IBM and Google
We compared our simulator to the Microsoft Quantum Develop-

ment Kit (QDK) v0.2.1806.3001 and IBM QISKit Aer v0.6.1. Among

simulations in IBM QISkit, we found QASM to be the fastest on

quantum-supremacy circuits [3, 24]. Table 3 reports comparisons

on circuits of depth 1 + 26 + 1 with up to 36 qubits. To exclude

code segments from memory comparisons, we first measured max

resident memory for each simulator on the 16-qubit benchmark and

then used those measurements as baselines. Memory differences

among Schrödinger simulations, when present, are mostly due to

our use of single-precision floats. Rollright’s advantage in runtime

is greater and grows with the number of qubits.

For 30-qubit circuits, the Microsoft simulator required > 16 GiB

memory (Rollright used a little over 8 GiB), so we also used a mul-

ticore Linux server with sufficient memory and observed that the

Microsoft and IBM simulators used all available threads. The op-

timizations proposed in this work apply to both Schrödinger and

Schrödinger-Feynman simulation, therefore we evaluated Rollright

in both modes. Clearly, the Schrödinger-Feynman simulation of-

fers a much greater advantage in both runtime and memory on

circuits of depth 1+26+1. The 32-qubit circuit uses the oblong 4 × 8
qubit array, and the Schrödinger-Feynman mode of our simulator

is able to exploit this shape. Therefore, we also show results for

Schrödinger-Feynman simulation on an even-sided 6×6 qubit array.
Our comparisons to software from IBM and Microsoft have been

presented in person at these companies and helped IBM find a bug,

bringing QISKit Aer memory usage down to match ours.

We also compared our simulator to the Qsim simulator under de-

velopment at Google (https://github.com/quantumlib/qsim).
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Figure 14: Runtime of Rollright (RR) with key features
turned off one by one. The line "RR w/o all opt" shows per-
formance without optimizations.

According to the authors, Qsim clusters one-qubit gates to nearby

two-qubit gates and uses AVX-2 instructions to simulate resulting

generic two-qubit gates one by one. Qsim lacks our optimizations

for diagonal and one-qubit gates, as well as the FFT-like algorithm

that optimizes memory access. Following our prior collaboration

with Google [21], Qsim supports the same simulation modes as Roll-

right — Schrödinger and Schrödinger-Feynman, — which facilitates

more detailed apples-to-apples comparisons. Runtimes in Table

4 (shared with Qsim authors) were collected on the same server

as for the lower half of Table 3. While Google Qsim outperforms

IBM QISkit and Microsoft QDK on Google benchmarks, Rollright

remains ahead, confirming the impact of our proposed methods.

6.4 Scalability studies and use models
Table 15 shows simulator performance for varying numbers of

CPU threads. Different simulators exhibit similar scaling, with Roll-

right remaining ahead in all cases. The results in Table 3 show

massive advantage of Schrödinger-Feynman simulation, but pure

Scrödinger simulation remains attractive for deep quantum circuits,

e.g., in quantum chemistry applications [10, 29] and/or when su-

percomputing resources are available [11–16, 18, 19]. 2num_qubits

and runtime as depth × 2num_qubits
. Simulating 40-qubit circuits

this way would require servers with >8 TiB (now available from

Microsoft Azure and Amazon AWS). In the Schrödinger-Feynman

mode, memory usage can be kept low (see details in [21]) by serializ-

ing the computation, but if massive parallel resources are available,

using greater peak memory can decrease the latency of simulation.

In the meantime, runtime grows as 2num_qubits/2+depth/𝐶
for a

large 𝐶 > 0. Figure 13 uses larger supremacy benchmarks from

5 × 5 q 6 × 5 q 8 × 4 q 6 × 6 q

S S-F S S-F S S-F S-F

Qsim 1.1 1.64 24.25 0.47 152 0.75 194.12

RR 0.77 1.26 17.60 4.23 72.40 0.49 94.48

ratio 1.43 1.30 1.38 0.11 2.09 1.53 2.05

Table 4: Server runtimes (s) of the Google QSim simulator
on Google v2 benchmarks [3, 24] used in Table 3, compared
to runtimes of our simulator Rollright (RR). RR runtimes
for 30-36 qubits match those in the lower half of Table 3.

Google to illustrate these differences between Schrödinger and

Schrödinger-Feynman simulation by plotting memory usage and

runtime for varied qubit counts and circuit depth. The linear run-

time of Schrödinger simulation vs. circuit depth (regardless of gate

typess) improves upon the semi-exponential scaling of Schrödinger-

Feynman simulation.

Distributed Schrödinger-Feynman simulations with Rollright in

Google Cloud [21] show that ourmethods are relevant to boundeded-

depth 56- and 64-qubit circuits. Our methods also fit in unbounded-

depth Schrödinger simulations on supercomputers [19]. Results in

[20] cast the simulation of shallow wide circuits to that of deep

narrow circuits, where pure Schrödinger simulation does well.

7 CONCLUSIONS
Near-term intermediate-scale quantum (NISQ) computers [2] are

operating with <64 qubits in 2020. Quantum circuits running on

such computers support many science experiments [10] and moti-

vate circuit optimization tasks, which often require simulation on

conventional computers. Recent advances in quantum chemistry

offer synthesis methods for NISQ circuits that model molecular con-

figurations and compute their energy levels. Here quantum-circuit

simulation is needed to develop and validate advanced quantum

technologies, such as quantum-on-quantum simulators [10].

Among the many simulation algorithms, this work focuses on

Schrödinger simulation that can be used independently or in layered

simulation algorithms [18, 20, 21] that handle a greater variety of

circuits. Our algorithmic optimizations collectively provide hefty

speed-ups over quantum simulators from Microsoft and IBM on

hard circuits from Google. These speedups are not limited by a

constant factor, but grow with the number of qubits. Our high-level

and some low-level optimizations — gate clustering by type, aligned

memory reads/writes, gate clustering by cache line, fast simulation

of diagonal gates, the recursive FFT-like algorithm, — are generic.

Low-level optimizations are tuned to gates that support quantum

errror correction, are available on Google chips and are used in

Google benchmarks [3, 24]. Additional gates can be supported

natively or by expressing them in terms of native gates.

For evaluation, we use medium-size circuits which most industry

simulators can handle today, but our contributions help with many

more qubits as shown in [20, 21] and directly benefit supercomput-

ing simulations [19]. Pure Schrödinger simulation is well-suited for

deep circuits for VQE algorithms in quantum chemistry [10, 29].
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