
DeACT: Architecture-Aware Virtual Memory
Support for Fabric Attached Memory Systems

Vamsee Reddy Kommareddy
University of Central Florida

Orlando, Florida, USA
vamseereddy8@knights.ucf.edu

Clayton Hughes
Sandia National Laboratories

Albuquerque, New Mexico, USA
chughes@sandia.gov

Amro Awad
North Carolina State University
Raleigh, North Carolina, USA

ajawad@ncsu.edu

Simon David Hammond
Sandia National Laboratories

Albuquerque, New Mexico, USA
sdhammo@sandia.gov

Abstract—The exponential growth of data has driven technol-
ogy providers to develop new protocols, such as cache coherent
interconnects and memory semantic fabrics, to help users and
facilities leverage advances in memory technologies to satisfy
these growing memory and storage demands. Using these new
protocols, fabric-attached memories (FAM) can be directly at-
tached to a system interconnect and be easily integrated with
a variety of processing elements (PEs). Moreover, systems that
support FAM can be smoothly upgraded and allow multiple PEs
to share the FAM memory pools using well-defined protocols.
The sharing of FAM between PEs allows efficient data sharing,
improves memory utilization, reduces cost by allowing flexible
integration of different PEs and memory modules from several
vendors, and makes it easier to upgrade the system.

One promising use-case for FAMs is in High-Performance
Compute (HPC) systems, where the underutilization of mem-
ory is a major challenge. However, adopting FAMs in HPC
systems brings new challenges. In addition to cost, flexibility,
and efficiency, one particular problem that requires rethinking
is virtual memory support for security and performance. To
address these challenges, this paper presents decoupled access
control and address translation (DeACT), a novel virtual memory
implementation that supports HPC systems equipped with FAM.
Compared to the state-of-the-art two-level translation approach,
DeACT achieves speedup of up to 4.59x (1.8x on average) without
compromising security.

I. INTRODUCTION

With the ever increasing demand for larger memory ca-
pacities, many high-performance computing (HPC) systems
nowadays have their nodes equipped with hundreds of gigabytes
of memories. For instance, Oak Ridge National Lab’s Summit
supercomputer has 512GB of DRAM and 96GB of HBM2 per
compute node. The driver for increased memory capacity per
compute node is the increasing memory needs for current
applications and emerging workloads. Most HPC systems
typically run many different applications from a variety of
domains, each of which will have its own unique resource
requirements; some applications may use the whole memory
in the node while others may only use a few gigabytes.
Nevertheless, most current HPC schedulers allocate resources
at the node granularity and applications with extremely low
memory demands can end up reserving nodes with large

memories. Unfortunately, the current approach is to choose
the size of memory per node based on the maximum footprint
(per node) of the applications of interest, which can lead to
significant under-utilization of the memory system. Moreover,
applications that are not able to fit their memory needs into
one node incur additional communication overhead because
their computation must be split across nodes. Ideally, compute
nodes should have direct access to memories that meet their
demands without the need to incur expensive software stack
overhead due to message passing libraries.

Recent standards, such as Gen-Z [15] and Compute Express
Lanes (CXL) [39], define protocols and interface require-
ments for accessing memory modules attached to the fast
system interconnect. Memory modules that implement memory-
semantic protocols and can be readily integrated with the system
fabric are typically referred to as Fabric-Attached Memories
(FAMs). Protocols defining how to integrate FAMs are being
developed through a consortium of major vendors, such as
Intel, HPE, AMD, IBM, Lenovo, and VMWare [14], [15],
[39]. FAMs promise a new HPC architecture where compute
nodes can potentially access shared physical memory pools
through fast interconnects. In particular, there has been recent
industrial interest in architectures where memory modules
can be disaggregated from compute nodes, and hence allows
node to scale up its memory allocation to the requirements
of the workloads run on the node. Such architectures are
typically referred to as memory-centric architectures. Memory-
centric architectures leverage memory semantic protocols to
communicate with FAM pools over high-speed interconnects.
Memory-centric architectures promise efficiency, flexibility,
and reduced costs. Examples of architectures that resemble
memory-centric systems include Facebook’s Disaggregated
Rack [44], HPE Labs’ The Machine [12], and Intel’s Rack
Scale Architecture [32].

Since memory-centric architectures leverage FAMs as physi-
cally shared memory pools, multiple compute nodes, potentially
running applications from different users, can access pages
in the same FAM memory modules. This access model is

ar
X

iv
:2

00
8.

00
17

1v
1 

 [
cs

.A
R

] 
 1

 A
ug

 2
02

0



different from conventional HPC architectures where each
compute node has its own memory modules and applications’
memory accesses are limited to its own nodes. Therefore, a new
question arises, who is responsible for access control of FAMs?
Without strict access control mechanisms, malicious operating
systems (OSes), applications, and processing elements (e.g.,
accelerators, SoCs, etc.) can potentially compromise the entire
system by accessing the data of other users in the shared
FAMs. Note that in this system architecture, there could be
compute nodes containing processing elements (PEs) from
different vendors. Even if not malicious, these PEs could
contain bugs in their internal virtual memory implementation,
which compromise the whole system. Obviously, with such a
wide attack surface, accesses to shared FAM modules need to
be vetted externally, at the system-level, and not rely solely
on access control within the PEs. Pages in shared FAM pools
can be managed in two different ways. The first approach
is through transparently allocating FAM pages to nodes on-
demand, i.e., each compute node has the illusion that it has a
contiguous large physical space [33]. Such approach is similar
in spirit on how hypervisors give virtual machines (VMs) the
illusion that each VM has a contiguous guest physical address,
which eventually gets translated into the real system physical
address through hypervisor. In our case, a memory broker node
is dedicated to set up such translations for each node at system
level. The second approach is to expose each node to the real
physical addresses (FAM addresses) and modify the kernel
running on each node to communicate with external memory
broker to allocate FAM pages [33], [38].

Transparent management of FAMs’ pages eliminates the need
to modify the kernel and, most importantly, allows system-level
vetting of accesses to FAMs through a second level of memory
translation, from the node guest address to the FAM physical
address. However, while this is similar to two-level translation
in virtualized environments, the flexibility, transparency and
security come at the cost of significant performance overheads
due to the additional level of translation. In conventional x86
systems, each memory access can require up to four memory
accesses for translation, however, when a second level is added,
the number of memory accesses can be up to 24 [8]. We observe
that significant performance overheads can be incurred when
naively implementing state-of-the-art implementations of two-
level translation, using system translation unit (STU) as shown
in Figure 2(b) for memory-centric systems. STU is similar in
spirit to Gen-Z memory management unit (ZMMU) [17]. Hence,
in this paper, we focus on optimizing the implementation of
virtual memory support for memory-centric systems.

To minimize the performance overheads of transparent access
control and management support for shared FAM pools, we
propose decoupled access control and address translation
(DeACT). DeACT leverages the architecture layout of memory-
centric architectures and the ability to decouple access control
from translation. Specifically, DeACT allows unverified caching
of translations in the small local memories within compute
nodes, but enforces access control at the system level. By
decoupling access control and translation and leveraging

part of the local memories in compute nodes as unverified
caches, DeACT exploits high spatial locality of access control
metadata for each node. This architecture-aware decoupling and
unverified caching brings significant performance improvements
and reduces the number of translation requests significantly,
while strictly enforcing access control.

Previous proposals discussed virtual memory support for
remote memory architectures [1], [2], [33], [38]. However,
these techniques significantly modify the OS [38], propose
methods which are non transparent to the applications requiring
programmer intervention [1], limit the use of remote memory
merely as a swap space [33] or invalidate virtual memory
paging for FAM architectures [2]. None of these approaches
consider the performance impact of address translations in
FAM. Also, these methods do not consider security aspects. In
contrast, we provide quantitative analysis of address translation
overheads for FAM systems and propose DeACT, a virtual
memory support mechanism that leverages the architectural
layout of FAM systems to use in-memory caching, that greatly
exceeds the capacity of on-chip caches, without modifying OS.

To evaluate our scheme, we use the Structural Simulation
Toolkit (SST) [37], a publicly available architectural simulator.
We leverage the currently existing disaggregated memory
model and memory manager, Opal [30], to model our system.
We evaluate DeACT for applications using multiple memory-
intensive benchmark suites. DeACT achieves speedups of up
to 4.59x (1.8x on average), compared to the state-of-the-art
two-level translation approach, without compromising security.

The organization of the paper is as follows. First, we discuss
the threat model, memory management in FAM systems and
motivation in Section II. Section III explains how access control
is decoupled from address translations and how unverified
caching operate in local memory. Methodology and applications
are discussed in Section IV. Results and sensitivity analysis
are discussed in Section V. Section VI discusses feasibility of
huge pages and various other factors in FAM systems. Finally,
we walk through the related work in Section VII and conclude
in Section VIII.

II. BACKGROUND

In this section, we discuss our assumed threat model, memory
management concepts in FAM and relevant systems and FAM.

A. Threat Model
In our threat model, we assume that compute nodes them-

selves can have bugs which can be exploited by malicious
applications or OSes. Such threats are common and evidenced
by the recent vulnerabilities in Intel’s processors (e.g., Melt-
down [35] and Spectre [29]). Our threat model assumes that
a malicious application or OS runs on a specific node which
tries to illegitimately access memory pages of other nodes and
users in the shared FAMs. Note that we assume a compute
node, at any point of time, is owned by a single user (i.e., a
user allocated the node to run an application). By exploiting
a bug in virtual memory implementation within a compute
node or a vulnerability in OS, the attackers can directly map
its own virtual space to any physical page in the shared FAM

2



and hence be able to access it freely. Therefore, to minimize
the attack surface, an additional level of access control needs
to vet accesses that come from compute nodes to ensure that
they are for pages belonging to the node. Thus, any pages
in FAM that are considered exclusive to a node, must be
protected from any access by other nodes as long as such
page is allocated. Attacks such as timing side-channel, covert-
channel and physical attacks are beyond the scope of this
paper and can be addressed with many available solutions
based on the system nature. Similar to most HPC systems, we
disallow co-locating resource allocations on the same node,
which minimizes the risk of information leakage (within a node).
In summary, we mainly focus on enforcing access control on
shared FAMs, to limit the impact of vulnerabilities within
compute nodes on other compute nodes’ data. Such protection
is analogous to security guarantees provided by virtual memory
for applications running on a native system, but at node level.
Our threat model trusts the memory and fabric, i.e., memory
provides nodes with the requested data and does not try to
give them data of other locations. Similarly, the fabric will
not change the address in a request after it has been vetted by
access control.

B. Hierarchical Page Tables
Hierarchical (multi-tier) page tables are commonly used in

modern servers due to their performance, dynamic growth, and
scalability. In such settings, a virtual address is provided as
an input to the translation process, then the offsets (derived
from virtual address) are used to index each level to obtain the
address of the next level. Finally, the last level, typically called
Page Table Entry (PTE) level, has the actual translation entry,
i.e., the corresponding physical address and the access per-
missions. However, to reduce translation overheads, hardware-
support for memory management, typically implemented as
the Memory Management Unit (MMU) and maintained by
the OS, is provided. The MMU is responsible of caching the
translations, i.e., PTEs, in TLBs. Moreover, MMU can also
cache the contents of different levels of the page table in what
is called as page table walking (PTW) caches [8]. Finally,
MMU is responsible for walking the page table in case of TLB
miss to complete the translation process.

As shown in Figure 1(a), for every TLB miss, the page
table is walked. In x86-64 systems, a 4-level page is typically
used, and the levels are called PGD, PUD, PMD and PTE,
respectively. Therefore, each memory access needs additional
four memory requests to walk the page table. The root of the
page table of the process currently executing on the core is
loaded in Control Register 3 (CR3) in the core. In each virtual
address, the bits beyond the page offset (typically 12 bits) are
divided into multiple sections (9 bits each) where each section
is used to index a specific level in the page table. Finally, the
last-level page (PTE) has the actual page mapping. Hence, for
every TLB miss, the entire page table is walked which will
incur an additional four memory accesses.

In virtualized systems, hypervisors like Xen [45] are respon-
sible for maintaining multiple guest systems and managing

Virtual Address (VA)

CR3

0111220213839
Page offset

47 2930

Address

1 6 11 16
+ + + +

   

sPGD

sPUD

sPMD
sPTE

PGD
5

PUD
10    PMD

15

sPGD

sPUD

sPMD
sPTE

sPGD

sPUD

sPMD
sPTE

   PTE
20

sPGD

sPUD

sPMD
sPTE

sPGD

sPUD

sPMD
sPTE

+

Physical 

21

24

CR3

Page offset

PGD PTEPMDPUD

1 2 3 4+ + + + +

Address
Physical 

Virtual Address (VA)
011122021383947 2930

(a) 

(b) 

Fig. 1: Page table walking (a) x86 and (b) virtualized systems.

their memory. For such systems, nested paging is one approach
in which two page tables are maintained. One to convert virtual
address to guest address and the other is a nested page table to
converts guest address to system physical address. Each level
of the guest page table has to walk the nested page table which
requires four more memory accesses per guest page table level,
Figure 1(b). Hence, 24 memory accesses are required to fetch
the translation. This leads to huge overhead and [8] proposed
PTW caches, nested TLBs and nested PTW caches to reduce
the number of memory accesses to translate an address. PTW
cache unit caches the intermediate level address translations
and helps in reducing the average number of PTW steps.
C. Fabric Attached Memory (FAM)

Recently, there has been a push towards disaggregating
resources (such as memory modules) [1], [2], [31], [33], [34],
[38] and connecting them through system fabric [11], [14],
[16], [26]. Fabric-attached memories (FAMs) are memory
modules that are attached to system fabric which can be
accessed by multiple nodes through conventional load/store
operations. FAMs allow disaggregating memory pools and make
them accessible to compute nodes through a fabric using well-
defined memory access protocols, such as Gen-Z [15], CXL
[39]. Managing disaggregated FAM uniquely combines the
challenges of managing shared FAM and multi-level memory
(local memory and remote memory). On one hand, nodes
should be prohibited from illegitimately accessing data belong
to other nodes. On the other hand, OSes running on nodes
are agnostic to the actual status of the FAM and thus would
instead manage a hypothetical large node physical memory
which translates into FAM. However, to enforce access control
and permissions, translating nodes’ physical address into FAM
address should occur at the system-level (off-the node), not at
the node-level. By doing so, any malicious OS or node, will
be limited to accessing the data allocated to the node instead
of the whole global memory.

Adding a translation layer at system-level allows running
unmodified OSes on nodes and enforcing access control, but

3



OS
Node

FAM

Memory Broker

MMU

(a) E-FAM

NodeOSMMU OS
Node

FAM

Memory Broker

MMU

(b) I-FAM
Node

STU STU

OSMMU
Node

Fig. 2: Two ways of managing memory in FAM systems.

incurs significant performance overheads. Lim et al. [33]
explored two-stage address translation system for disaggregated
memories. For the rest of the paper, we call such a scheme
Indirect FAM (I-FAM), since FAM is accessed indirectly. In I-
FAM, a simple STU can be implemented in a router connected
directly to the node or in the memory blade, Figure 2(b). STU
is responsible of caching system-level translations, i.e., node
address to FAM address, and access permissions. Moreover,
STU is capable of sending address translation service requests
(similar to PCIe’s [19]) or request physical pages from the
system-level memory broker (in case of unmapped addresses).
Note that STU is similar in spirit to the ZMMU [17]. Exposing
the FAM directly to nodes’ OSes would significantly improve
the performance by removing the additional translation layer,
Figure 2(a). We refer to such a scheme as Exposed FAM (E-
FAM). In E-FAM, OSes need to be patched to communicate
with global memory manager node (e.g., through MPI interface)
to coordinate memory management with other nodes. While
E-FAM provides translation overheads as low as native systems,
it requires modifying OS [38] and enormously enlarges the
attack surface; any malicious node/OS can map its address
space into any location in global memory and hence leaks data
from other nodes.
D. Motivation

 1

 1.5

 2

 2.5

 3

 3.5

 4

mcf
cactus

astar
frqm

canl
bc cc ccsv

sssp
pf dc lu mg sp

11.6x 18.7x 9.1x 20.6x

S
lo

w
d

o
w

n
 o

f 
I-

F
A

M
 

 w
rt

 t
o

 E
-F

A
M

E-FAM I-FAM

Fig. 3: Normalized performance with respect to E-FAM.

 0

 20

 40

 60

 80

 100

 120

mcf
cactus

astar
frqm

canl
bc cc ccsv

sssp
pf dc lu mg sp

E-FAM I-FAM

M
e
m

o
ry

 R
e
q

u
e
s
ts

 (
%

)

Non-AT AT

Fig. 4: Breakdown of percentage of address translation (AT)
and non address translation (Non-AT) requests observed at
FAM in I-FAM and E-FAM systems.

Figure 3 shows slowdown in I-FAM compared to insecure
E-FAM wherein no indirection is needed. We observe a

performance degradation of 20.6x for sssp benchmark1. The
slowdown is attributed to the increased address translation
requests observed at FAM due to indirection at system-level,
Figure 4. For instance, the percentage of address translation
requests for canl benchmark is 44.36% in E-FAM. However,
this increases to 84.13% in I-FAM. Also, we note that
benchmarks which are not sensitive to address translations
become highly sensitive to address translations in I-FAM.
Address translation requests increase from 1.81% to 53.69%
for cactus benchmark. Clearly, I-FAM brings in significant
performance overheads. The goal of DeACT is to design a
FAM architecture with better performance without sacrificing
security and with minimum or no changes to OS. A comparison
of baseline FAMs and our proposed DeACT FAM approach is
shown in Table I.

TABLE I: FAM Architectures Comparison.

Architecture Performance Avoid OS Changes Security
E-FAM X 7 7
I-FAM 7 X X
DeACT X X X

III. DESIGN

In this section, we describe our proposed approach DeACT
to provide virtual memory support in FAM systems.

A. DeACT Overview
When designing support for virtual memory, we aim at

abstracting away the details of the global memory from nodes’
OSes, however, while enforcing isolation and minimizing
translation overheads. To do so, we adopt a two-layer approach
where each node’s OS manages an imaginary flat node physical
memory. The node physical memory range can be thought of
as a range of two different NUMA zones, one zone (low
addresses) corresponds to the local DRAM and the other zone
(high addresses) corresponds to the FAM. With such a design,
each node’s OS manages its memory allocations oblivious to
the actual status of FAM. While such an approach abstracts
away the complexity of managing a shared resource (memory),
it adds significant performance overheads due to two levels of
indirection. Therefore, we need novel mechanisms to improve
the performance of such design.

One major observation we make is that access control can
be decoupled from the translation process. In particular, the
translation from node address to FAM address can be sped up
significantly by caching the translations at node-level memory.
Later, if the translation of a specific node address exists locally
in the node, the global memory request is forwarded to the
FAM, with the obtained/cached FAM addresses. In other words,
the node can provide the final FAM addresses it needs to access.
As the reader can expect, the access control is offloaded to
the off-the node components, e.g., STU units. Since the access
permissions need to be checked for the specific FAM address
provided by the node, we dedicate specific parts in the FAM
to store FAM access control metadata (ACM). Such parts
are known for STUs and the addresses of the ACM of any

1Details about the methodology and the benchmarks are in Section IV.

4



Global Memory

16b16b16b16b

Usable
Memory

Access Control
Metadata

Access Control
Bitmaps

32 pages metadata

512x128 rows

64K bits

512 bits

R/W/ENode  ID
Metadata

2b14b

Fig. 5: Page access control metadata and bitmaps in FAM.
FAM page can be derived merely from the FAM address. For
instance, assume we want to keep a 16-bit ACM for each 4KB
page and assuming the metadata starts at address MTAdd
in FAM. To read ACM of FAM address X, we read the 64-
byte block at address MTAdd+ X

4096×32 . For simplicity, the
metadata of each 4KB page is node ID of the node that owns
that page and read, write and execute permissions. Read, write
and execute fields consumes two bits and the rest of the bits
(14) are allocated for the node ID. FAM pages could also get
shared between the nodes. Thus, we use all the node ID bits
of the page metadata set to 1 to indicate a shared page. Hence,
we can have up to 16383 nodes supported in the system.

Since pages can be shared by a subset of nodes, just
indicating a page is shared is insufficient. Therefore, we use
a bitmap-like scheme to indicate which nodes are allowed to
access a specific page. However, since having a bitmap for
each 4KB can introduce significant overheads, we limit shared
pages to 1GB physical pages. For each 1GB physical page
in global memory, we have a corresponding 64K bits bitmap
(8KB) in the metadata region. Since such overhead is negligible
(less than 0.0001%), and to enable easier indexing of metadata,
we dedicate a bitmap for each 1GB physical region regardless
of being used as a shared page or not. Therefore, when ACM
is accessed, if the node ID bits of the metadata indicates a
shared page, we immediately fetch the corresponding parts of
the bitmap to check if the node has access permissions. In
contrast, if the node ID bits does not indicate a shared page, we
simply compare its value (owner node ID) with the ID of the
requesting node, to verify the legitimacy of the access. Note
that when a shared page is allocated (or becomes shared), all
of its node ID bits in the metadata fields correspond to its 4KB
chunks (sub-pages) are set to shared, i.e., 0xfffd. When the
page is shared the last two bits of the metadata field indicate
read, write and execute permissions assigned to the node. This
enable enforcing mixed access permissions for nodes sharing
a page. For instance specific subset of nodes are allowed to
read and write to the shared page and the rest of them only
read the shared page.

One obvious optimization to reduce the overheads of
obtaining such ACM is to cache them. However, since such
metadata must be enforced by FAM managers, not the node,
such metadata should be only cached outside the nodes and
inaccessible by the nodes or their own OSes. Therefore, we opt
for caching such metadata in STUs. Such STUs can potentially
have a small lookup table, similar to TLBs. As mentioned
earlier, such STUs can be added to the global memory blade

N
-M

M
U

(T
LB

/P
TW

)

FAM translation
cache

FAM ACM
cache

STU

FAM-PTW

LL
C

DRAM

FAM
Translator

2
3

4

FA
M1

5

Memory Controller

Inter-
Connect

FAMA1

FAMA2

acacacac

acacacac

Tag Value

NPA3 FAMA3 NPA4 FAMA4

NPA1 FAMA1 NPA2 FAMA2

Offset

Fig. 6: DeACT FAM schematic.
or simply at the first router/switch that connects a node to the
system fabric. It is also important to note that such metadata
has very high spatial locality, a single 64B block covers 32
4KB pages, i.e., 128KB region for a 16-bit ACM. Therefore,
even a very small TLB-like cache can save significant number
of reads to access control metadata. While beyond the scope of
this paper, in encrypted memories, if each node uses a unique
memory encryption key, we could allow read requests without
checking access control; writes can tamper with data but reads
are useless if the node has different unique key, and thus no
need for enforcing access control for reads.

As we now understand how our decoupled access control
works, we will discuss how we accelerate the translation
process. To speed up the translation process, we (a) propose
node-level unverified caching of system-level translations: We
notice that a very small portion of local memory can be used
to cache system-level translations, which will be later sent for
verification at system-level. (b) efficiently cache ACM in STU.

B. System Overview
Figure 6 shows a schematic overview of our proposed design.

Decoupling the metadata from page mapping qualifies the
system-level translations to be cached in the local memory.
Hence we maintain a FAM translation cache in the DRAM.
We add a FAM translator 1 in the memory controller to
map node addresses to FAM addresses by accessing the FAM
translation cache 2 . Although node addresses are mapped to
FAM addresses by the FAM translator unit it is still a partial
translation since accesses have to be verified. To complete the
mapping, the FAM accesses are verified by the STU 3 . Hence
unlike I-FAM, it requires two steps to translate a node address
and verify the access.

For a translation miss the FAM page table has to be walked.
In our design we let the walking to be done by the STU since
we observe that the overhead of including FAM PTW inside
the node is costlier than the benefits. Firstly, due to security
reasons, we aim at clean separation of address translations
and ACM, if the fabric translations are cached inside the
node. Hence if the intermediate translations are also cached
within the node, the ACM for intermediate page tables should
also be decoupled. However, the two step process required to
complete the mapping, delays address translations significantly,
considering four memory accesses during PTW. That is at every
intermediate level the ACM should also be fetched from the
memory incurring additional memory accesses. Secondly, since
FAM translation cache size in local memory is significantly

5



higher that the STU cache size, we observe a hit rate of
more that 90% in FAM translation cache in the local memory.
Hence walking the FAM page table within the node would
unnecessarily increase the complexity without much benefits.
Also, it would increase the complexity of the memory controller.
Thus we apply DeACT only to the last level of the page
table (PTE). Therefore during a FAM translation miss, FAM
translator forwards the missed request to the STU, which walks
the FAM page table and fetches the entry on behalf of FAM
translator 4 . After receiving the missed translation, FAM
translator maps the pending requests and then updates FAM
translation cache in the local memory 5 .

C. FAM Translator
The idea of FAM translator in the local memory controller is

to translate node addresses to FAM addresses without verifying
memory accesses. Functionalities of FAM translator are: (a)
fetching the translation from the FAM translation cache (b)
matching the tag (c) handling translation hits and misses
(d) handling off-the node responses and (e) updating FAM
translation cache in the local memory.
Accessing DRAM for Translation: To fetch the translation
from the local memory, a in Figure 7, the FAM translator
calculates the local memory address by adding starting address
of FAM translation cache to the offset, Figure 6. Offset is
dependent on the type of the FAM translation cache in the
local memory. For simplicity, we use a four way associative
cache. This is because memory access granularity is 64-bytes
and each mapping entry requires 104 bits; 52 bits for tag (node
page) and 52 bits for value (FAM page), for a page size of
4KB. A single memory access fetches four entries. Thus offset
is obtained by performing a modulus operation on node page
number with the number of FAM translation cache sets.
Tag Matching: After fetching the translations from the
local memory, FAM translator matches address tags using
comparators, b in Figure 7. We add four comparators and
a multiplexer to perform tag matching concurrently. If none
of the tags match, the output of the multiplexer is set to 0.
This takes just one cycle to match the tag but the number of
comparators required are 4x more compared to using just one
comparator when four tags are matched serially in four cycles.
However, these additional comparators adds up minutely to
the overall hardware cost and area.
Handling Translation Hits: When any of the tags, fetched
from the FAM translation cache, match with the required
node page address the multiplexer outputs the respective
FAM address. FAM translator replaces the node address with
the FAM address and forwards the request. However, before
forwarding the request to STU, FAM translator identifies if
the request is expecting any response back from the FAM.
If so the FAM address to node address mapping is stored in
outstanding mapping list, c in Figure 7. This is because, FAM
responses contains data tagged with FAM addresses and the
node only deals with node addresses. Outstanding mapping list
is used to convert FAM address to node address during FAM
response. Since the number of outstanding requests are limited

Multiplexer

FAMA

D
R

A
M

Node Page Address (NPA)

NPA0

FAM Addr0
FAM Addr1
FAM Addr2
FAM Addr3

comp

NPA1

comp

NPA2

comp

NPA3

comp

0

NPA

comp

0

Outstanding 
Mapping List

To STU

'V' bit

Response?

b

a

c
d

NPA NPA NPA NPA

Fig. 7: FAM translator.

(128 requests) the number of entries in outstanding mapping
list are also limited. In I-FAM this list is maintained in STU.
But since the FAM translations are performed within the node
and STU does not understand node addresses in DeACT, this
list is maintained by the node.
Handling Translation Misses: A translation is identified as
a miss if the output of the multiplexer is zero, d in Figure 7.
During a miss FAM translator forwards the missed request to
STU to walk the page table. FAM PTW unit of STU retrieves
the node address from the missed request and walks the page
table. After the page table is walked, STU translates the node
address to the FAM address and then verifies the access to
forward the missed request to the FAM. Also, STU sends the
the page mapping to FAM translator for updating the FAM
translation cache and to register the mapping in the outstanding
mapping list if needed.

STU receives two types of requests from a node, mapped and
not mapped requests. Mapped requests are those whose node
address is translated to FAM address by FAM translator. For
such requests STU verifies FAM access permissions. On the
other hand STU walks the page table for not mapped requests
using the node address from the request address field. To make
STU distinguish between the two types of requests we add a
verification (’V’) flag to the request packet. This flag is set by
FAM translator unit if the mapping is successful and is reset
for a missed translation. Using ’V’ flag STU either forwards
the request to the verification unit or to the PTW unit.
Handling off-the node memory responses FAM translator
segregates responses into two types (a) memory response and
(b) mapping response. Memory responses are forwarded to
the last level cache by fetching the node address from the
outstanding mapping list. Mapping responses are received from
the STU PTW unit. FAM translator updates the FAM translation
cache during mapping response.
Updating FAM Translation Cache Since the granularity of
memory access is 64 bytes each access to FAM translator
operates on four FAM mapping. To update the FAM translation
cache, FAM translator has to write to one of the four
mappings fetched. Hence during a translation cache update,

6



Value

52b 52b 16b

npa0 ac

ac

npa2

npa3

npa1

Value

52b 64b 4b

famp
(0-3)

famp
(8-11)

famp
(4-7)

ac

44b 44b

famp0

famp2

famp3

famp1

(a) STU Cache way in I-FAM  (c) DeACT-N(b) DeACT-W

16b16b

Set 0

Set n

ac

ac

Tag

ac
Tag  VTag

famp4

famp6

famp7

famp5

Way_00 Way_01

famp0

famp1

famp2

famp3

npa: node page
address

famp: FAM page
address

ac: access control
metadata

ac

ac

ac

ac ac

ac

ac

acac ac

famp
(12-15)

ac acac ac

ac acac ac

ac acac ac

V Tag

Fig. 8: ACM organization in STU cache way in (a) I-FAM
and (b,c) DeACT.

FAM translator reads 64 bytes from the local memory, updates
one of the entries and writes back 64 bytes. For simplicity,
we randomly selected one of the four entries to replace. It is
possible to implement different cache replacement policies but
such policies require additional DRAM space; to store mapping
status, and additional writes to the DRAM; to update mapping
status for every FAM access.

D. FAM Access Verification
Memory accesses verification is performed by STU in

DeACT. STU verifies the memory access by a) checking if the
page being accessed is assigned to the node, using node ID
in the metadata and b) checking the read, write and execute
permissions from the metadata. However, the metadata is not
provided by the node since we maintain the page metadata
in the memory off-the node to provide security, Section III-A.
Hence for STU to verify the FAM access it needs to fetch the
page metadata from the memory, Figure 5.

Since STU is off-the node, it can be used to cache ACM. STU
in I-FAM caches both FAM page mapping and ACM together,
Figure 8(a) (52 bits for the tag (node page address) and 52 bits
for FAM page address and 16 bits for ACM). However, STU
in DeACT caches only ACM. Although DeACT reduces the
frequency at which the page table is walked by leveraging local
memory to store FAM mappings, it introduces an additional
memory access for the ACM. Hence to reduce the number of
accesses to FAM for ACM, we explore organizing ACM in
the available space, after decoupling the page mapping from
the STU cache in DeACT.
Way-level contiguous organization (DeACT-W) This is a
simple organization wherein the space available in each cache
way, after removing the address mapping, is used to cache
ACM of contiguous pages, Figure 8(b). Since ACM is 16 bits
and the space available is 52 bits (FAM page address), four
contiguous pages ACM is stored in one cache way. For instance
ACM for pages from 0 to 3 are stored as one cache way and
4 to 7 are stored in a different cache way. Hence caching of
ACM increases by four times.
Non-contiguous organization (DeACT-N) With DeACT-W
we observe ACM hit rate of almost 90% for most of the
benchmarks Figure 9. However, ACM hit rate for benchmarks
like canl, sssp and cactus, which are sensitive to address

 30

 40

 50

 60

 70

 80

 90

 100

 110

mcf
cactus

astar
frqm

canl
bc cc ccsv

sssp
pf dc lu mg sp

A
c

c
e

s
s

 C
o

n
tr

o
l 

 M
e

ta
d

a
ta

 H
it

s
 (

%
)

I-FAM DeACT-W DeACT-N

Fig. 9: Access control metadata hit rate.
translations, is less than 60%. This is because STU in DeACT-
W achieves higher hit rate when spacial locality, while accessing
memory, is higher. However, since FAM is shared by multiple
nodes, memory allocation is random and hence has poor spacial
locality while accessing memory. Thus, instead of organizing
STU to cache contiguous page ACM, we organize STU to
cache ACM of non-contiguous pages i.e., the free space is
used to store tag and ACM pair of another page which is either
contiguous or non-contiguous, Figure 8(c).

Since each tag and ACM pair needs 68 bits; 52 bits for the
tag and 16 bits for the ACM, the available free space, 52 bits,
is not sufficient to store an additional pair. Thus to fit ACM
for two different pages within the same way of a set (within
the available space) we confine the number of tag bit to 44.
With 44 tag bits STU can cover 8 tera page metadata2 and
hence each node can access 32 petabytes of memory unlike
16384 petabytes in DeACT-W. However, 32 petabytes is also
significantly higher for a node. Thus each cache way is sub
divided into two sub-ways (way 00 and way 01 for way 0)
and each sub-way has a tag and ACM. This increases the total
number of ways for a set and matching the tags of sub-ways
is similar to matching the tags of different ways in a cache.
Organizing ACM in STU cache in this manner doubles the
caching of ACM and unlike DeACT-W, DeACT-N stores non
contiguous page ACM.

Non-contiguous organization of ACM in the STU cache
increases the hit rate from 90% to almost 99% for most of
the applications. Also, hit rate for address translation sensitive
benchmark, for instance cactus, increases from less than 55%
to almost 76%. The improvement compared to DeACT-W is
due to random accesses to FAM, see Section V.

IV. METHODOLOGY
To evaluate our design we used a decoupled memory model

implemented in Structural Simulation Toolkit (SST) [30], [37].
SST is an event-based cycle-level simulator which has been
proven to be one of the most reliable simulators for large-
scale systems due to the scalability and modular design of
its components. SST includes multiple simulation modules
for various components. To evaluate FAM architectures a
FAM manager (memory broker), Opal [30], was developed
in SST. We modified SST memory management unit, Samba
[5] and Opal [30] modules to model our design. We modelled
an STU component in SST to translate node addresses to
fabric addresses and to verify FAM accesses. As our approach

2Note that these numbers are based on the tag and data bits assumed in the
STU cache of I-FAM as shown in Figure 8(a)

7



TABLE II: System Configuration

Node
CPU 4 Out-of-Order cores, 2GHz, 2 issues/cycles, 32

max. outstanding requests
TLB 2 levels, L1 size: 32 entries, L2 size: 256 entries
L1 Private, 64B blocks, 32KB, LRU
L2 Private, 64B blocks, 256KB, LRU
L3 Shared, 64B blocks, 1MB, LRU
Local memory DRAM, Size: 1GB

STU
Cache Size: 1024 entries, associativity: 8

Fabric Network
Latency 500ns

Fabric Attached Memory (NVM)
Capacity 16GB
Latnecy Read 60ns, Write 150ns
Banks 32
Outstanding requests 128

focuses on accelerating the address translations, we validate
our approach by calculating the performance of the system
in-terms of instructions per cycle.

Table II shows system simulation parameters. We simulated
4 cores and each core can serve up to two instructions per
cycle with a frequency of 2GHz. Each core is configured
to execute a minimum of 100 million instructions of an
application execution during its HPC-relevant kernels. L1,
L2, and L3, caches are inclusive with sizes 32KB, 256KB
and 1MB respectively. Local memory, is 1GB DRAM [38]
and FAM is 16GB NVM3. We simulated fabric network to
connect to NVM memory with a network latency of 500ns,
modeled after recent research and public projections for a
fabric interconnects [22], [38], [41]. Two levels of TLB’s, each
of which are simulated with 32 and 256 entries within the
node. Since STU is an external hardware per node we have
restrictions over adding additional hardware. Hence to avoid
significant hardware overhead we implemented STU to cache
1024 page table entries with 128 sets and associativity of 8,
similar to Haswell Xeon L2 TLB design [24]. However, we
also evaluate with DeACT by varying STU cache size. For
optimization proposed by [8] we used 32 PTW cache entries.
The proposed FAM translation cache size in DRAM is 1MB.

Since our focus is on HPC applications we evaluated
benchmarks from different benchmark suits, as shown in Table
III. Our selection of benchmarks from these benchmark suits
are based on: (a) the benchmark should have a minimum of 5
misses per kilo instructions (MPKI) (b) should be compatible
to the simulation setup (c) the performance degradation with
I-FAM should be more than 15% compared to E-FAM, since
we observe application which do not get impacted much by
introducing indirection degrades it performance with DeACT,
explained in Section V. Considering this criteria we have
evaluated 29 benchmarks and zeroed in on 14 benchmarks
which are meeting the requirements. Selected benchmarks with
their respective MPKI are shown in Table III. Due to the
limited space we use short forms to represent applications. The
short forms are next to the applications in Table III. Connected

3In reality local memory is in GBs and global memory is in TBs or PBs.
However, given slow simulation speeds, we scale down the memory sizes and
among the total applications memory (average of 309MB during the simulation
period), 20% is allocated from the local memory and 80% is allocated from
the FAM.

TABLE III: Applications

Benchmark Suite Application MPKI

SPEC 2006 [27]
Mcf 73
Cactus 60
Astar 9

PARSEC [9], [10]
Freqmine (frqm) 16
Canneal (canl) 57

Intel GAP [7]
Betweenness Centrality (bc) 113
Connected Components (cc,
ccsv)

56, 130

Single-Source Shortest Paths
(sssp)

144

Mantevo [28] Path Finder (pf) 41

NAS [6]
DC 49
MG 99
SP 141

components graph analytic benchmark has 2 variants cc; which
uses Afforest sub-graph sampling algorithm [42], and ccsv;
which uses Shiloach-Vishkin algorithm [40].

V. RESULTS

The goal of DeACT is to provide security from other
tenants in decoupled FAMs without significantly impacting the
performance. Hence we compare DeACT with two baselines,
E-FAM and I-FAM. E-FAM is not secure but has better
performance. I-FAM is secure but performs poorly (remember
that I-FAM is similar to the optimization proposed by [8]).

A. FAM Address Translation Hit Rate

Figure 10 depicts address translation hit rate while accessing
FAM in I-FAM and DeACT. The hit rate corresponds to the
number of mapping entries that are cached in I-FAM and
DeACT. DeACT has significantly higher hit rate (more than
90%) because the FAM translation cache in local memory
can cache significantly higher number of mapping entries than
limited entries that can be cached in I-FAM using STU cache.
For instance, hit rate for canl benchmark is as low as 46.44%
in I-FAM. However, with DeACT the hit rate is improved
to almost 95.88%. Hence, only 4.12% of the FAM accesses
require page table to be walked.

 30

 40

 50

 60

 70

 80

 90

 100

 110

mcf
cactus

astar
frqm

canl
bc cc ccsv

sssp
pf dc lu mg sp

A
d

d
re

s
s

 t
ra

n
s

la
ti

o
n

 
 h

it
 r

a
te

 (
%

)

I-FAM DeACT

Fig. 10: Address translation hit rate in I-FAM and DeACT

B. Address Translation Requests at FAM

Although the frequency at which PTW is reduced with
DeACT, it introduces an additional memory access for ACM.
ACM is cached at STU cache and address translation is cached
in the local memory. Hence in DeACT address translation and
ACM has different hit rates. As shown in Figure 9, ACM hit
rate in DeACT-W is not improved compared to I-FAM due to
poor spacial locality. Hence the reduced number of address
translation requests observed at FAM in DeACT-W, Figure
11, is only due to reduced frequency of walking the page
table and it also includes additional memory access for ACM.

8



However, ACM hit rate is improved in DeACT-N due to non-
contiguous caching of ACM. We observe address translation
requests sent by the node to the FAM are reduced from 23.97%
to 11.82% with DeACT-W, and this further reduces to 1.77%
with DeACT-N.

 0

 20

 40

 60

 80

 100

mcf
cactus

astar
frqm

canl
bc cc ccsv

sssp
pf dc lu mg sp

A
d

d
re

s
s

 T
ra

n
s

la
ti

o
n

 
 M

e
m

o
ry

 R
e

q
u

e
s

ts
 (

%
)

I-FAM DeACT-W DeACT-N

Fig. 11: Percentage of address translation requests at FAM.
C. Impact of DeACT on Performance

In this section, we show how DeACT performs compared to
E-FAM and I-FAM. E-FAM performs better than I-FAM and
DeACT, hence we show our results with respect to E-FAM
in Figure 12. As mentioned in Section II-D, I-FAM slows
down the system performance significantly. Our experiments
demonstrate that DeACT can potentially bridge the gap between
E-FAM and I-FAM. For instance mcf slows down by 0.39x in
I-FAM compared to E-FAM. DeACT-W performance is 0.7x
wrt E-FAM, improving the performance by 1.79x compared to
I-FAM. Further with DeACT-N the performance is improved
by 2.55x and is just 0.92x times slower than E-FAM. This
improvement is attributed to the increased FAM address
translation hits, using local DRAM and increased ACM hits
in STU, leading to decreased accesses to FAM for page
table requests by the node, as shown in Figure 11. The
inequality between the performance improvement and reduction
in observed percentage of address translation requests at FAM
is because the local memory is accessed for every FAM access
for the translation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

mcf
cactus

astar
frqm

canl
bc cc ccsv

sssp
pf dc lu mg spN

o
rm

a
li

z
e

d
 p

e
rf

o
rm

a
n

c
e

 
 w

rt
 t

o
 E

-F
A

M

E-FAM I-FAM DeACT-W DeACT-N

Fig. 12: Normalized performance with respect to E-FAM.
For canl, ccsv and sssp benchmarks we observe a significant

percentage of FAM address translation misses in I-FAM, and
hence we observe increase in the percentage of address trans-
lation requests to FAM. The performance for such benchmarks
even with DeACT-N is slower compared to E-FAM, 0.14x
for canl. However, compared to I-FAM, DeACT-N achieves a
speed up by 2.7x for these benchmarks.

DeACT-N achieves a maximum performance improvement
of 4.6x for cactus benchmark. However, DeACT either does
not improve or degrades the performance for bc, lu, mg and sp
benchmarks. Because these benchmarks are very less sensitive
to indirection in I-FAM, Figure 11, as they have better address

translation hit rate, Figure 10. However, in DeACT the DRAM
has to be accessed for address translations, which is costlier than
accessing STU cache. Also, the benchmarks have to go through
two serial steps for address translation and access verification,
unlike a single step for the same in I-FAM. Hence DeACT is
better suitable for benchmarks which have a significant impact
on performance with I-FAM. In total we observe an average
performance drop of 69.7% with I-FAM and with our proposed
mechanism the performance degradation is 35.3% compared
to E-FAM. Hence, DeACT improves I-FAM by 80%.
D. Sensitivity Analysis

The impact of performance in FAM systems is dependent on
various factors. In this section, we show how DeACT behaves
under various system configurations. The default system
parameters are as shown in Table II. Note that for sensitivity
results we show geometric mean of the evaluated SPEC,
PARSEC and GAP benchmarks separately. Also, among NPB
benchmarks, we observed dc is the only benchmark which has
significant performance impact in I-FAM even under various
circumstances. Hence going forward we show sensitivity results
only for dc benchmark among NPB benchmarks. Also, since
DeACT-N improves the performance more than DeACT-W, we
focus on DeACT-N scheme.

1) STU Cache Size and Associativity: One of the main
factors which impact the performance of I-FAM is the size of
STU cache. STU is a hardware maintained outside the node to
enforce system access control and page mapping. The number
of entries STU can cache is limited, since we are proposing
STU per node and is implemented in the routers connected to
the nodes. Adding more entries indicates adding more hardware
which increases the hardware budget and complicates routers.
In our experiments STU caches 1024 entries. However, we
study DeACT by varying STU cache size from 256 entries to
4096 entries. Figure 13 shows performance speedup compared
to I-FAM by varying STU cache size. As STU cache size
decrease the speedup with DeACT is significantly high, 4.68x
with 256 entries for dc benchmark. However, as the cache
size increase the performance improvement is confined which
is obvious. The speedup reduces from 3.45x to 1.75x when
STU cache size is varied from 256 entries to 4096 entries
for PARSEC benchmarks. Higher STU cache size has higher
hit rate and hence less address translation requests to FAM,
however, higher cache size leads to more hardware overhead.

 1

 2

 3

 4

 5

 6

256 512 1024 2048 4096

S
p

e
e
d

u
p

 w
rt

 t
o

 I
-F

A
M

STU cache entries

SPEC PARSEC GAP pf dc

Fig. 13: Performance improvement wrt STU cache size.
Although we do not show here, we also evaluated DeACT

by varying STU cache associativity. We observed that as the
associativity increases, the performance improvement with
DeACT decreases and gets saturated. When associativity is

9



four the performance improvement is 3.26x for dc benchmark
and is 2.66x when associativity is 32. The speedup is 2.5x
when associativity is greater than 32 for the same benchmark.
Similarly for PARSEC benchmarks the speedup is 2.18x, 1.83x
and 1.81x when associativity is 4, 32 and greater than 32.

2) Access Control Metadata Size: ACM size is a key design
aspect of DeACT as the number nodes supported by FAM
systems is dependent on metadata size, refer to Section III-A.
With 16-bit metadata size FAM systems hosts a total of 16383
nodes and with 8-bit metadata 8191 nodes are supported. When
ACM is 8 bits STU in DeACT-W can cache metadata of
eight consecutive pages, with 16-bit metadata STU can cache
metadata of four consecutive pages, and with 32-bit metadata
STU can cache metadata of two consecutive pages, increasing
the amount of metadata cached by 8x, 4x and 2x respectively
compared to I-FAM. However, we observe that the performance
improvement is almost same for these three scenarios, Figure
14. This is because, as asserted, although caching of ACM
increases in DeACT-W, it caches only ACM of contiguous
pages and since allocation of FAM is random excess caching
of ACM is not leveraged.

 1

 1.5

 2

 2.5

 3

 3.5

SPEC PARSEC GAP pf dc

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

S
p

e
e

d
u

p
 w

rt
 t

o
 I

-F
A

M

I-FAM DeACT-W DeACT-N

Fig. 14: Metadata size effect on performance.
When ACM size is 8 bits, tag and metadata pair in DeACT-

N requires 52 bits (44 bits for tag and 8 bits for ACM, see
Section III-D). Hence in a single way, STU cache can store
two tag and ACM pairs, similar to when ACM is 16 bits.
However, the amount of memory required to store ACM of
all the pages is reduced to half. As an experimental model we
further reduce the size of the tag to allocate three pairs of tag
and ACM per STU cache way, when ACM is 8 bits. When
ACM is 32 bits STU can cache only one tag and ACM pair in
DeACT-N. We observe that as caching of tag and ACM pairs
in STU cache way increase, from one to three, the performance
improvement with DeACT-N also improves. For instance. the
system performance improves by 2.62x, 2.52x and 1.85x when
one, two and three pairs of tag and ACM are cached in each
STU cache way, for SPEC benchmark. It is interesting to
note that when only one pair of tag and ACM is stored in
STU cache way the performance improvement is less than or
equal to DeACT-W. This is because when only one pair of tag
and ACM is cached in each STU cache way the performance
improvement is only due to increased address translation hits
in FAM translation cache and ACM hit rate is same as I-FAM
in DeACT-N.

3) Fabric Latency: We propose DeACT for FAM architec-
tures specifically and hence one of the crucial parameter to
consider for such architectures is fabric network latency. In

 1

 1.5

 2

 2.5

 3

 3.5

 4

100ns 250ns 500ns 750ns 1us 3us 6us

S
p

e
e
d

u
p

 w
rt

 t
o

 I
-F

A
M

Fabric network latency

SPEC PARSEC GAP pf dc

Fig. 15: The impact of fabric latency on performance.

our approach we considered 500ns as fabric latency. However,
fabric networks are being explored intensively by various fabric
providers [14], [16], [18], [39]. Previous approaches considered
various fabric network latencies [2], [22], [31], [38]. Thus
we evaluated DeACT under the influence of various fabric
latencies, Figure 15. An obvious observation is that when
fabric network latency is less the performance improvement
with DeACT is also less and when the network latency is high
the performance improvement with DeACT is more. This is
because when the fabric network latency is less, performance
degradation of I-FAM itself is less, compared to E-FAM. This
goes inversely when fabric latency is high. We see that even
when fabric network latency is less, 100ns, DeACT achieves
an improvement of 1.79x wrt to I-FAM. In contrast, when the
network latency is 6us DeACT speeds up I-FAM by 3.3x for
pf benchmark.

4) Number of Nodes: The interconnecting fabric connects
multiple PEs to the decoupled FAM modules. A single FAM
module is expected to be part of a single memory pool. FAM
architectures are constructed with multiple such memory pools
and PEs. The performance of FAM architectures depends on the
number of PEs and number of memory pools. We maintained
memory pools directly proportional to the number of nodes
and each node has four PEs. For instance, an eight node system
consists of 32 PEs and eight FAM modules. Each of the PEs
accesses any of the memory pools. Memory pools and the PEs
are connected though a common fabric network. The delay in
accessing FAM depends on the number of nodes sharing the
fabric interface and memory. Although scalability is beyond the
scope of this paper we evaluated our approach when multiple
nodes (up to 8) share the fabric. As the number of PEs sharing
the fabric increase, we observe that the slowdown due to I-FAM
is higher. This is due to more cycles are consumed to fetch FAM
page table entries since fabric network and memory are shared
by the nodes. As a result the performance improvement with
DeACT is more since DeACT avoids accessing FAM for page
table entries, for most of the time. When the fabric network
and memory is allocated to only one node the performance
improvement with DeACT is 2.92x for dc benchmark and it
increases to 3.26x when fabric network and memory are shared
between 8 nodes.

VI. DISCUSSION
We proposed large pages (1GB) in the global memory for

only shared pages to reduce the memory occupied by the shared
pages access control bitmap. Ideally large pages would also
reduce address translation overhead. But for FAM systems this
is not completely true. Hence we shed some light to discuss

10



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8

S
p

e
e

d
u

p
 w

rt
 t

o
 I

-F
A

M

Number of nodes

pf

dc

Fig. 16: Impact of increasing the number of nodes on perfor-
mance.

how large pages for shared memory is achievable and would
not provide benefits for non-shared global memory. Also, we
discuss how to invalidate system-level translations and ACM
to migrate jobs smoothly between the nodes by introducing
logical node numbers for the jobs in FAM systems. We even
discuss the scalability and emerging fabric network aspects for
our approach in FAM systems.
Shared Pages: FAM systems allow for easy sharing of data by
registering to a common memory region in the global memory,
shared pages. The proposed access control bitmap mechanism
for shared pages is also applicable for baseline I-FAM wherein
the address translations are not decoupled from the access
control. Since for baseline I-FAM as well the system-level
access control alone is not sufficient to indicate how many
pages the page is shared with. System-level access control can
only indicate if the page is shared or not. Also, considering the
fact that the modern applications share a lot of data frequently,
large shared pages, as proposed, would lessen the burden of
memory manager to keep a track of the shared pages.
Page Migration: A requirement for hybrid cloud systems is to
migrate jobs between the nodes [20]. With I-FAM it is easy to
move jobs to another system, since host/system data need not
be moved. Only overhead is to invalidate node addresses of
the job in both node (value) and fabric (tag) page tables. With
DeACT method, node-level translations are invalidated similar
to I-FAM. However, system-level translations are invalidated by
a) accessing fabric translation cache at DRAM b) invalidating
access control at STU cache and c) updating access control
of migrating job with the target node at the global memory.
Hence, the overhead of system-level mapping shootdown is
accessing global memory separately to update access control of
migrating jobs and excess DRAM writes to invalidate system-
level mappings at in-memory fabric translation cache.
To allow smooth migration of jobs, logical node IDs per jobs
can be used. Logical node IDs are assigned to a jobs by the
resource managers [13], [25]. For such a scheme migrating jobs
requires only assigning new logical node ID in the destination
node and removing assigned logical node ID in the old node,
apart from invalidating page mappings.
Scalability: As asserted although scalability is beyond the
scope of this paper we show performance improvements for
8 nodes with DeACT approach. We show that as the number
of nodes sharing Gen-Z fabric increase the improvement with
DeACT also increases since most of the system-level address
translations avoid fabric network traffic and contention at
FAM generated by other nodes in our approach. As such our

hypothesis is valid even when more number of nodes share
fabric interconnect.
Large Pages and Memory Regions: While using large pages
improves system performance, since TLB caches page mapping
for larger memory, it has some drawbacks [23], [43]. FAM
systems has separate concerns in addition to the concerns with
large pages in traditional in-node memory systems. To improve
node proximity of data, pages are placed near the computing
units, in local memory. With large pages there are three crucial
concerns to achieve node proximity of data a) As local memory
size is limited it can host less number of large pages which
covers lesser number of applications. b) Applications do not
frequently use the entire large page, but access only specific
portions of the large page frequently. This results in poor
utilization of the DRAM which is critical for disaggregated
memory systems. c) Identifying frequently accessed pages
is tricky as large pages cover a number of small pages and
frequently used small pages can get scattered between multiple
large pages. Shared pages cannot have node proximity as these
pages have to be placed in the FAM to get accessed by various
nodes. Hence large pages for shared pages would not generate
additional concerns unlike pages which are not shared.

VII. RELATED WORK

Recently, disaggregating memory from PEs has been ex-
plored as an alternative memory architecture to overcome
various operational and scalability challenges of in-node
memory architectures [1], [2], [31], [33], [34], [38]. Works such
as [11], [14], [16], [26] discuss and explore fast interconnect
to enable decoupling memory. However, there has been limited
work discussing virtual memory and security for such systems.
Lim et al. [33] discussed two stage address translations for
FAM systems, but their approach is limited to using remote
memory merely as a swap space. Lim et al. [33] also proposed
fine-grained remote memory accesses, which is similar to E-
FAM and is not secure as discussed. Shan et al. [38] proposed
decoupled OS for FAM systems and the address translations
are performed by the FAM modules. However, for such a
scheme to work the caches have to be virtually indexed and
virtually tagged which is not adopted and is not a practical
design. Also it requires significant amount of changes to the
OS. Aguilera et al. [2] invalidated virtual memory paging for
such huge memory designs. Aguilera et al. also proposed fixed
virtual address regions for the nodes [1]. However, this requires
modifications to applications’ binaries. In this paper, we discuss
virtual memory support for FAM architectures with two stage
address translations (I-FAM) and propose DeACT scheme to
accelerate address translations.

Decoupling access control and address mappings have been
explored previously. Alam et al. [4] discussed decoupled
address control from address mapping allowing applications to
perform address translations by itself. Olson et al. [36] proposed
an approach to sandbox accelerators through providing them
with flat address space. DeACT uniquely leverages the archi-
tecture layout of FAM architectures when decoupling access
control from translation; it allows fast caching of translations

11



in local nodes’ main memories, and maintains access control
in the trusted area (i.e., at system-level). Additionally, DeACT
supports data sharing across nodes and leverages system-level
translation units at the fabric.

Although virtual machine guests are different from nodes in
FAM systems, in both the cases virtual addresses are translated
at 2 stages to access memory. A significant amount of work
has been done to improve the performance of virtualized
conventional machines. Bhargava et al. [8] accelerate 2D PTW
by studying reuse of page entry references and extend PTW
caches to temporarily cache nested dimension. Ahn et al. [3]
revisited hardware assisted page walks by speculative shadow
paging mechanism, called speculative inverted shadow paging,
which is backed by non-speculative flat nested page tables.
The speculative mechanism provides a direct translation with a
single memory reference for common cases and eliminates the
page table synchronization overheads. Agile paging is proposed
by Gandhi et al. [21]. Agile paging allows virtualized page
walk to start with the shadow paging for stable upper levels
of the page table and allows switching in the same page walk
to nested paging for lower levels of page table which receive
frequent updates. This way agile paging makes use of both
shadow paging and nested paging. While these approaches
improve the system performance, these are proposed for virtual
machines and our approach is orthogonal to these schemes.

VIII. CONCLUSION

Disaggregated memory systems is a promising future ar-
chitecture which provides a path for future memory systems
by solving current memory concerns in scalability, with the
sharing of huge data sets such as social graphs, as well as
complex scientific data-sets in HPC. The challenges associated
with their design in an HPC context is how to best utilize
the resources of the system and balance these against the ever
increasing demands to achieve better performance. To this
end, we discuss virtual memory management in disaggregated
memory systems and propose solutions to speed up address
translations and provide security for such systems. While
approaches like [3], [21] reduce the number of memory
accesses to fetch address mapping in virtualized systems,
they target native virtualized systems. Due to the hierarchical
nature of the memory, disaggregated memory systems have
its own challenges supporting virtual memory. We show that
exposing global memory to the nodes needs OS alterations and
compromise security from neighbour nodes. Virtual memory
approach for disaggregated memory (indirect memory access)
does not ask for OS modifications and provides security from
neighbour nodes, but performs poorly. Although virtual memory
support is discussed for disaggregated memory systems in [1],
[2], [33], [38], in such approaches remote memory is merely
used as a swap space and required application and OS changes.
We proposed decoupled address translation and access control
metadata approach to improve the performance of I-FAM.
We show that an improved spacial locality of system-level
translations by decoupling the system-level address translations
from system-level access control metadata and caching the

decoupled FAM translations in the local memory. We also
explore access control metadata caching in STU cache to
improve the performance. Overall, we achieved a performance
improvement up to 4.59x (1.8% on average).

IX. ACKNOWLEDGMENTS

This work has been funded through Sandia National Labora-
tories (Contract Number 1844457) Sandia National Laborato-
ries is a multi-mission laboratory managed and operated by Na-
tional Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International,Inc., for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract de-na0003525.

REFERENCES

[1] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. No-
vakovic, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati et al.,
“Remote regions: a simple abstraction for remote memory,” in 2018
{USENIX} Annual Technical Conference ({USENIX} {ATC} 18), 2018,
pp. 775–787.

[2] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, P. Sub-
rahmanyam, L. Suresh, K. Tati, R. Venkatasubramanian, and M. Wei,
“Remote memory in the age of fast networks,” in Proceedings of the
2017 Symposium on Cloud Computing, 2017, pp. 121–127.

[3] J. Ahn, S. Jin, and J. Huh, “Revisiting hardware-assisted page walks for
virtualized systems,” in 2012 39th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2012, pp. 476–487.

[4] H. Alam, T. Zhang, M. Erez, and Y. Etsion, “Do-it-yourself virtual
memory translation,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2017, pp. 457–
468.

[5] A. Awad, G. R. Voskuilen, S. D. Hammond, and R. J. Hoekstra, “Samba:
A detailed memory management unit (mmu) for the sst simulation
framework.” Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), Tech. Rep. SAND2017-0002, 2017.

[6] D. H. Bailey, “Nas parallel benchmarks,” in Encyclopedia of Parallel
Computing. Springer, 2011, pp. 1254–1259.

[7] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[8] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
two-dimensional page walks for virtualized systems,” in ACM SIGOPS
Operating Systems Review, vol. 42, no. 2. ACM, 2008, pp. 26–35.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 72–81.

[10] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, vol. 2011, 2009.

[11] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett,
T. Rimmer, K. D. Underwood, and R. C. Zak, “Intel® omni-path
architecture: Enabling scalable, high performance fabrics,” in 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects. IEEE,
2015, pp. 1–9.

[12] D. Comperchio and J. Stevens, “Emerging computing technologies:
Hewlett-packards the machine project,” in HP Discover 2014 conference
held in Las Vegas June 10-12. Willdan Energy Solutions, 2014, pp.
1–4.

[13] A. Computing and G. Computing, “Torque resource manager,” online]
http://www. adaptivecomputing. com, 2015.

[14] C. Consortium et al., “Cache coherent interconnect for accelerators
(ccix),” Online]. http://www. ccixconsortium. com, 2017.

[15] G.-Z. Consortium et al., “Gen-z overview,” Tech. Rep., 2016.[Online].
Available: http://genzconsortium. org/wp-content , Tech. Rep., 2016.

[16] G.-Z. Consortium et al., “Gen-z dram and persistent memory theory of
operation,” 2017.

[17] G. Consortium, “Gen-z zmmu and memory interleave,” Online].
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-MMU-
and-Memory-Interleave.pdf, July 2017.

12

http://arxiv.org/abs/de-na/0003525


[18] O. Consortium et al., “Opencapi specifications,” 2018.
[19] P. Express, “Address translation services revision 1.1,” Online].

https://composter.com.ua/documents/ats r1.1 26Jan09.pdf, January 2009.
[20] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid

computing 360-degree compared,” arXiv preprint arXiv:0901.0131, 2008.
[21] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile paging: exceeding the

best of nested and shadow paging,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2016,
pp. 707–718.

[22] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), 2016, pp. 249–264.

[23] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and
V. Quéma, “Large pages may be harmful on {NUMA} systems,” in 2014
{USENIX} Annual Technical Conference ({USENIX} {ATC} 14), 2014,
pp. 231–242.

[24] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with {TLB} attacks,”
in 27th {USENIX} Security Symposium ({USENIX} Security 18), 2018,
pp. 955–972.

[25] H. Greenberg, M. Lang, L. Ionkov, and S. Blanchard, “Redfishresilient
dynamic distributed scalable system services for exascale.”

[26] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in 14th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 17), 2017,
pp. 649–667.

[27] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, sep
2006. [Online]. Available: https://doi.org/10.1145/1186736.1186737

[28] M. Heroux and R. Barrett, “Mantevo project,” 2016.
[29] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,

M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 1–19.

[30] V. Kommareddy, C. Hughes, S. D. Hammond, and A. Awad, “Opal: A
centralized memory manager for investigating disaggregated memory
systems.” Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), Tech. Rep. SAND2018-9199, 2018.

[31] V. R. Kommareddy, S. D. Hammond, C. Hughes, A. Samih, and A. Awad,
“Page migration support for disaggregated non-volatile memories,” in
Proceedings of the International Symposium on Memory Systems. ACM,
2019, pp. 417–427.

[32] J. Kyathsandra and E. Dahlen, “Intel rack scale architecture overview,”
Proc. INTEROP, Las Vegas, NV, 2–6 May 2013, 2013.

[33] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade

servers,” in ACM SIGARCH Computer Architecture News, vol. 37, no. 3.
ACM, 2009, pp. 267–278.

[34] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch, “System-level implications of disaggregated memory,”
in High Performance Computer Architecture (HPCA), 2012 IEEE 18th
International Symposium on. IEEE, 2012, pp. 1–12.

[35] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[36] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border control:
Sandboxing accelerators,” in 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2015, pp. 470–481.

[37] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls et al.,
“The structural simulation toolkit,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

[38] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated, dis-
tributed {OS} for hardware resource disaggregation,” in 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
18), 2018, pp. 69–87.

[39] D. Sharma, “Compute express link,” CXL Consortium White
Paper.[Online]. Available: https://docs. wixstatic. com/ugd/0c1418
d9878707bbb7427786b70c3c91d5fbd1. pdf, 2019.

[40] Y. Shiloach and U. Vishkin, “An o (log n) parallel connectivity algorithm,”
Computer Science Department, Technion, Tech. Rep., 1980.

[41] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S. Lee, H. Wang,
R. Agarwal, and H. Weatherspoon, “Shoal: A network architecture for
disaggregated racks,” in 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), 2019, pp. 255–270.

[42] M. Sutton, T. Ben-Nun, and A. Barak, “Optimizing parallel graph connec-
tivity computation via subgraph sampling,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2018,
pp. 12–21.

[43] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson, “Tradeoffs in
supporting two page sizes,” in [1992] Proceedings the 19th Annual
International Symposium on Computer Architecture. IEEE, 1992, pp.
415–424.

[44] J. Taylor, “Facebook’s data center infrastructure: Open compute,
disaggregated rack, and beyond,” in Optical Fiber Communication
Conference. Optical Society of America, 2015, p. W1D.5. [Online].
Available: http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-
W1D.5

[45] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: Towards real-time hypervisor
scheduling in xen,” in Proceedings of the ninth ACM international

conference on Embedded software. ACM, 2011, pp. 39–48.

13

https://doi.org/10.1145/1186736.1186737
http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-W1D.5
http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-W1D.5

	I Introduction
	II Background
	II-A Threat Model
	II-B Hierarchical Page Tables
	II-C Fabric Attached Memory (FAM)
	II-D Motivation

	III Design
	III-A DeACT Overview
	III-B System Overview
	III-C FAM Translator
	III-D FAM Access Verification

	IV Methodology
	V Results
	V-A FAM Address Translation Hit Rate
	V-B Address Translation Requests at FAM
	V-C Impact of DeACT on Performance
	V-D Sensitivity Analysis
	V-D1 STU Cache Size and Associativity
	V-D2 Access Control Metadata Size
	V-D3 Fabric Latency
	V-D4 Number of Nodes


	VI Discussion
	VII Related Work
	VIII Conclusion
	IX Acknowledgments
	References

