2011.05497v1 [cs. AR] 11 Nov 2020

arxXiv

Understanding Training Efficiency of Deep
Learning Recommendation Models at Scale

Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, Kim Hazelwood

Facebook
acun@fb.com

Abstract—The use of GPUs has proliferated for machine
learning workflows and is now considered mainstream for many
deep learning models. Meanwhile, when training state-of-the-art
personal recommendation models, which consume the highest
number of compute cycles at our large-scale datacenters, the
use of GPUs came with various challenges due to having
both compute-intensive and memory-intensive components. GPU
performance and efficiency of these recommendation models are
largely affected by model architecture configurations such as
dense and sparse features, MLP dimensions. Furthermore, these
models often contain large embedding tables that do not fit into
limited GPU memory. The goal of this paper is to explain the
intricacies of using GPUs for training recommendation models,
factors affecting hardware efficiency at scale, and learnings from
a new scale-up GPU server design, Zion.

I. INTRODUCTION

Deep learning recommendation algorithms have recently
gained significant adoption to power a wide variety of prod-
ucts. For example, Google utilizes deep candidate genera-
tion and ranking models to produce video suggestions in
YouTube [9]], and designs deep learning recommendation
models to personalize mobile app suggestions for Google
Play [8]. Microsoft leverages deep learning recommendation
models for news suggestions [[16]], Netflix for personalized en-
tertainment [47], Alibaba for product recommendations [59].
At Facebook, personalization and ranking use cases are pow-
ered by deep learning recommendation models: Instagram
stories are ranked with multi-stage deep neural networks
(DNNs) [40]; Newsfeed Ranking and Search tasks are also
built upon DNNs [20]-[22]], [42], [S0]. Over the last 18-
month period, we have witnessed the compute capacity for
recommendation model training quadrupling at Facebook’s
datacenter fleet [41]. Among the total Al training cycles at
Facebook, more than 50% has been devoted to training deep
learning recommendation models.

As described in a recent work [22]], while language and
vision models are trained on 8-GPU systems, the majority of
deep learning recommendation models are trained on CPU
servers. This is because of the large memory capacity and
bandwidth requirement of embedding tables in these models.
The memory capacity of embedding tables have increased
dramatically from tens of GBs to TBs throughout the indus-
try [36]], [56], [58[]-[60]. At the same time, memory bandwidth

* To appear in HPCA 2021.

e Mlprod u EMBs on !
GPU
szrod
EMBs on
+ M3prog cPU

102+ ;
+| EMBs on
remote CPU
EMBs on
remote CPU
1014 K

Dual Sbcket
CPU Server

Throughput

Zién
GPU Server

Big Basin
GPU Server

Hardware Type

Fig. 1: Throughput of three production models with different
hardware and embedding table (EMB) placement strategies.

usage also increased quickly with the increasing number of
embedding tables and the associated lookups.

In order to leverage data and model-level parallelism in
GPU training [18]], [43], we have devoted significant de-
velopment efforts at Facebook to enable production-scale
recommendation models to train on existing 8-GPU training
systems (Big Basin). At the same time, we started to proto-
type Facebook’s next generation training systems (Zion) [32].
We enabled high performance training on these systems by
designing and implementing different placement strategies for
embedding tables. We then characterized the interplay between
model parameter configurations and the underlying training
system architectures to develop a better understanding of GPU-
training performance.

Figure [I] depicts the relative throughput of three differ-
ent production recommendation models (M 1,04, M2y,,04,
M3,,0q) trained on Facebook’s systems. Overall, the training
throughput increases as we go from dual-socket CPU servers
to Big Basin GPU server to Zion GPU server. The degree
of throughput improvement varies depending on the specific
model parameters. For example, M3,,,q shows weaker perfor-
mance scaling as compared to M1pq and M2;,,4 because of
the significantly higher memory requirement of its embedding
tables. Furthermore, placement strategies for embedding tables
can influence the model training throughput significantly. For
example, on the Big Basin GPU server, Ml,oq and M254
training achieves the highest throughput when embedding

tables are hosted on the GPU memory. Whereas for M3;04,
the optimal embedding placement strategy shifts to the remote
CPU, as tables do not fit on the GPU memory of a single
Big Basin server. On Zion GPU server, optimal embedding
placement is on system memory due to its large memory
capacity and high memory bandwidth.

Despite having similar overall structure and components,
recommendation models can have diverse characteristics based
on model architecture and input configurations. This can
cause large variations in system resource utilization across
training runs with different configurations. By analyzing over
five hundred training runs, we show that there is a large
variety of recommendation models being trained in Facebook
datacenters, leading to different levels of utilization in CPUs,
memory capacity, memory bandwidth and network bandwidth.
Moreover, the most efficient choice of a hardware system
depends on the model parameters such as number of dense
and sparse features, embedding table sizes, feature interaction
types, dimensions of the multi-layer perceptron (MLP) stack.

To select the optimal hardware system in a heterogeneous
data-center with a mix of CPU and GPU servers, there
are methods to predict the performance of code, such as
predicting GPU performance using CPU code [5], using a
roofline model [52]], or using a binary predictor approach [7].
However, such methods may not be directly applicable to
recommendation models, since the large memory capacity
requirement of embedding tables requires different software
infrastructure to handle the placement of the embedding tables
due to the limited memory of GPUs.

Performance characterization results presented in this paper
sheds light on the effects of model architecture configurations
of deep learning recommendation models on training effi-
ciency at scale, pinpointing system performance optimization
opportunities. Key contributions of this paper are as follows:

« We present the massive parameter design space for train-
ing production-scale deep learning recommendation models.
The large variety of training experiments in the production
environment contributes to a wide range of CPU, memory,
and networking utilization levels, exposing ample perfor-
mance optimization opportunities.

« We pinpoint the development and system design challenges
faced when training embedding tables using the CPU, Big
Basin, and Zion training platforms.

« In addition to the large memory capacity demand for embed-
ding tables, training throughput can become limited by the
often irregular vector accesses. This is the first time detailed
embedding table characterization results on industry-scale
recommendation model training is presented.

o Training efficiency, i.e. throughput per watt, on Big Basin
improves by 4.3x, 2.8x for M1;0g and M2,,,4 respectively as
compared to the baseline production CPU systems. Mean-
while, embedding-dominant recommendation models such
as M3,,q (with large embedding tables and more frequent
embedding vector lookups) scales poorly on Facebook’s Big
Basin training systems.

« When embedding tables do not fit onto a single Big Basin,
training efficiency scaling of Facebook’s Zion shines — with
its 2 TB of system memory and 1 TB/s memory bandwidth
— for embedding acceleration. As model sizes continue
to grow into multiple TBs, it calls for novel solutions in
order to achieve better performance and efficiency scaling
across the entire system and infrastructure stack — compute,
networking, and storage.

II. BACKGROUND ON ML TRAINING AT FACEBOOK

A. Machine Learning Training at Facebook

There are three primary execution phases for Facebook’s
machine learning (ML) pipeline: First, in the data pre-
processing phase, we take unstructured data from persistent
storage and manipulate it, in order to feed into a machine
learning model. Second is the training phase, where we use
important features from the data manipulation phase to build
and train models. As the third and final step, the trained model
is deployed for making real-time predictions in the inference
phase [22].

Not All Training Workflows Are Equal. Depending on
the workload, model training duration and training frequencies
vary. Figure [2| depicts the training duration and frequency
characteristics for various workloads: News Feed, Search, Lan-
guage Translation, and Facer (for face detection). Among the
use cases, deep learning recommendation models, i.e. News
Feed and Search ranking [22], [50], are the most frequently-
trained models while language translation uses recurrent neural
network (RNN) variants [14]], [28]], [45], and image classifi-
cation and object detection/tracking use convolutional neural
network (CNN) variants [23[], [27], [35]], [53]]. Furthermore,
over the past eighteen months, the number of training work-
flow runs for deep learning recommendation models have
increased by 7 times. It is evident that deep learning recom-
mendation is one of the fastest growing training workloads at
Facebook, demanding custom-built training systems to deliver
high computation performance and optimized performance-
cost efficiency.

> weeks Translation

News Feed

days
Search

hours

Training Time

Facer
minutes

minutes hours days months

Training Frequency

Fig. 2: Frequency and duration of various machine learning
training workloads at Facebook.

Training Personalized Recommendation Model

Recommendation Inputs 1. Forward Pass 2. Backward Pass 3. Optimizer
(e.g. SGD, Adagrad, Adam)
Batch Size aDepthe) Embedding | | Embedding
N Weight Lookup - Embedding
Dense Co_ntmuous | Dense = Gradients Grad Weight | — = Embedding
Features inputs Feature | & ¥ Gradients Weigths
MLP Stack
Training ‘ F":ealfu"e
Mini- - | Number of i ooing - _——
Batch || Trainers = szirse <+—Depth—» MLP Weight Grad MLP Weight | __ MLP
" g] pzz I?Jﬂre Feature T Gradients f Gradients Weigths
k- & | Embedding (e 9 Interaction TooMLP =
Categorical \ | |4 Table I COrli?:;t o teg, | "SPt . & MLP-Grad Trainer Syncronization Method

Features s 138 Lookup * Coneat, ac T (e.g. full-sync, easgd, hogwild)
=] 0 — Sum, |
c A : Sum)
@ oy

% Number of Tables, RNN)
Parameter Servers,
Hash size Prediction
Compute Loss Compute Loss Gradients

Fig. 3: General architecture of training personalized recommendation models. Red components highlight

configurations that affect efficiency.
B. Training Systems for Deep Learning Recommendation

Recommendation Model Architectures. Figure 3| illus-
trates the high-level architecture of training deep learning
recommendation models. The two primary components are
the Multi Layer Perceptron (MLP) layer modules and the
Embedding Tables (EMB), which are used to learn latent space
representations of dense and sparse information, respectively.
The MLP layers are used to process continuous features while
the EMBs process categorical features by transforming sparse,
high-dimensional inputs to dense vectors. The configurations
of these model components highly affect training throughput
and efficiency. We further elaborate on the components of
model training in Section [T & [[V]

Distributed Training System Overview. Ever-increasing
sizes of deep learning recommendation models, particularly
embedding tables, introduce significant system design chal-
lenges. This large memory capacity requirement, coupled with
high throughput training performance demand, motivate at-
scale distributed training system solutions. Figure [] gives an
overview for the distributed training system used for deep
learning recommendation models in Facebook’s production
environment on CPU servers.

Training recommendation models exhibit both data paral-
lelism and model parallelism. To exploit data parallelism, in
production, each trainer server holds a copy of the MLP model
parameters, read its own mini-batches from reader servers
and perform Elastic-Averaging SGD (EASGD) update
with the center, dense parameter server. Within a trainer,
HogWild! threads perform asynchronous updates on the
model parameters. As aforementioned, the large memory ca-
pacity requirement of embedding tables prevents direct model
parameter replication. Thus, for embedding table training, we
exploit model parallelism by partitioning embedding tables
across multiple nodes, referred as sparse parameter servers.

While training deep learning recommendation models on
CPUs offer memory capacity advantage, a large degree of
parallelism in the training process, which could be unlocked
by utilizing accelerators, is left unexploited. An alternative

different model

Sparse PS

Sparse PS

Data Parallel Training
Model Parallel Training

Trainers

Dense Parameters

Distributed Storage
Sharded Sparse Parameters

Sparse PS

Fig. 4: Facebook’s ML training pipeline for deep learning
recommendation models.

is to train recommendation models on Facebook’s Big Basin
GPU servers, originally designed for non-recommendation Al
workloads [31]]. Big Basin architecture features eight NVIDIA
Tesla GPUs, similar to NVIDIA’s DGX-1 system [3]]. As pre-
sented in Section[[V] training Facebook-scale recommendation
models on the Big Basin system is not straightforward — opfi-
mization techniques tailored for the placement of embedding
tables are needed to overcome the capacity requirement while
addressing the potential increase in the embedding vector
access latency.

III. OVERVIEW OF TRAINING RECOMMENDATION MODEL
ARCHITECTURES AND PARAMETERS

Diverse configurations of recommendation models affect the
hardware resource utilization at scale. Utilization distribution
of the CPU, memory and network resources resemble a
wide Gaussian distribution which we may partly attribute to
different model configurations. Figure[5]shows this distribution
when running different instances of a particular model training
over a week period at Facebook datacenters. In this figure,
we only include workflows that have the same model type
and system configurations i.e. same number of servers and
hardware type. Overall, trainer servers have high CPU and
memory bandwidth utilization with relatively small variation.
On the other hand, utilization distribution is wider for param-
eter servers with a lower mean value and a longer tail. This

=
I~

MNetwork Rx Bandwidth Memory Bandwidth
MNetwork Tx Bandwidth Memaory Footprint
cru
0.3 -
=
=
c 0.2
o
=
o
01 -
0.0 - ol A_Ml Lt

20 40 60 80
Resource Utilization [%]

(a) Trainer Servers

0.25 ;
MNetwork Rx Bandwidth Memory Bandwidth
MNetwork Tx Bandwidth Memaory Footprint
0.20 - crU
£ 015
o
8
2 010 -
o
0.05
0.00 - : : : - !
0 20 40 60 80 100

Resource Utilization [%]

(b) Parameter Servers

Fig. 5: Utilization distribution of a ranking model on a fixed scale (same number of trainer and parameter servers). Figure
shows there is significant resource utilization variability from run to run training of a model type. The variability could be due
to different model configurations and due to other system level variability.

variability could be partly due to system or hardware level
variability [11]], however wider distribution of the parameter
servers implies that the model architecture configuration does
have a significant effect on the hardware resource utilization.

ML engineers set up and tune different configurations of a
model through an internal recommendation model framework
built for ease of experimentation. In this section, we give
an overview commonly configured model architecture compo-
nents that affect hardware efficiency. Some hyper-parameters,
such as learning-rate, number of warm-up iterations and
optimizer algorithm have significant effect on model quality
while having minor or no effect on performance. Therefore,
we exclude those parameters in this paper.

A. Model Architecture Configurations

1) Feature Selection: Feature selection is the process of
selecting a subset of the most useful features to use in a
specific ranking model. There are thousands of features to
choose from as an input, which are categorized into two
distinct types: dense and sparse. Dense features are scalar
inputs, whereas sparse features often encode categorical traits
or relevant IDs.

Dense Features. In a typical recommendation model, pre-
processed dense features are concatenated to a dense feature
vector and passed through a dense architecture, such as a
sequence of linear layers and activations. Computational cost
of each dense feature is roughly the same.

Sparse Features. For each sparse feature X;, we map all
possible indices of X; to a randomly-initialized embedding of
dimension d. Since the cardinality of any sparse feature’s set of
indices, Sx,, may be arbitrarily large, we apply a hash function
hm; + Sx, = {0,1,...m — 1} over sparse feature indices.
Consequently, the total parameters learned for all embedding
for such a sparse feature is in the order of d x m;. It’s worth
noting that while we use a fixed embedding size d for all sparse
features, the hash size m; can vary for each sparse feature.

2) Embedding Tables: Categorical input features, i.e.
sparse features, determine how many embedding tables there
will be. Given the large size and sparsity of these tables, sparse
features can be configured to share embedding tables to reduce
the overall size of the model. Since this requires a shared
hash sizing for sharing the same embedding lookup table, this
is generally useful for semantically similar sparse features.
We expect similar sparse features should have similar dense
representations (e.g. current item ID, and last n interacted item
IDs).

Embedding Table Hash Size. Various methods can be used
to limit the size of large embedding tables [17]], and hashing
is a common method for this. Hash size is a customizable pa-
rameter per sparse feature. The hash size m; varies depending
on the semantics of X;. For example, we would set a small
m; if X; is indexed on towns within a given county, but set a
much larger m; if X, is indexed on all known plant species.
Figure [6] shows the hash sizes of the three different production
models at Facebook. Hash sizes for these models range from
30 being smallest, to 20 million the largest. Average hash size
for these models are 5.7 million, 7.3 million and 3.7 million
respectively.

Due to collisions hashing algorithms create, lower hash
sizes might cause accuracy degradation, while providing the
benefit of reducing the embedding table sizes. In an earlier
work, no hashing mechanism was used in order to avoid any
model quality regression that was caused by compressing the
embedding tables [58]]. This results in tables in the order
of terabytes. Therefore, hash sizes of the features effect the
embedding table placement strategy, which we elaborate later.

Embedding Table Access and Number of Look-ups
per Table. For a given input example in the training set,
every sparse feature is a one-hot or multi-hot vector that has
some arbitrary n number of activated indices with non-zero
values. For each activated index, we perform an embedding
table lookup, resulting in fetching of n embedding vectors.

Mean Feature Length

Hash Size

50 100 150
Mean Feature Length

100 150 200 200

Fig. 6: Hash size vs mean feature length of embedding tables in M1,2,3,,0q (from left to right).

1le7 1le7
20 = 2.0]
15 15
@ @
N N
D10ls s . . 210 e
4 .e 4 -
I I
0.5 0.5
Te o * % N o
0.0 0.0 *
0 50 100 150 200 0 50
Mean Feature Length
wi T wvi ™\
gy M1, Mean =28 @10 Y
2 \ 2 \
i i
g 67 g 67
(=% (=%
wi wi
S 4 S 4
T . T
g 2 N ---.\ g 2
= L T = A

o

100 150 200
Mean Feature Length

50 50

Mean Feature Length

A

- M2p4, Mean =17

"
1=

IS

’,/ ‘

- M3prg, Mean =49

@
=i

-~ o

Number of Sparse Features
N

- .\\\

150

e

o

100 150 200
Mean Feature Length

100 200 50

Fig. 7: Mean sparse feature length distributions of M1,2,3,,0q (from left to right) with lines showing the kernel density estimates

(KDE) that represents continuous probability density curve.

The n embedding vectors are aggregated or pooled for the
example’s embedding representation for the specific sparse
feature. While the average cost of the embedding operations
increase linearly with the average number of activated indices
for each sparse feature, we may bound this operation with an
optional truncation size to limit the outliers.

We characterize feature length distributions (mean lookup
operations per feature) of three production models in Figure [7]
Furthermore, we illustrate the correlation between feature
length distributions and embedding table hash sizes in Fig-
ure [6] Feature length distribution resembles a power-law dis-
tribution for each of the three models, i.e. there exists a small
number of tables that are accessed much more frequently than
others. Differences in access ratios might create imbalances
among servers if not carefully partitioned. Furthermore, the
access frequency does not always correlate with the embedding
table size — some of the most accessed tables are relatively
small. The characterization results on the embedding tables
open up new optimization opportunities as well, such as
caching [58]] and compression for these large embedding tables
using quantization [|17].

3) Feature Interaction: Outputs of dense and sparse fea-
ture embedding operations are combined using functions, such
as, concatenation or pairwise dot product. In the case of
concatenation, pooled embeddings of each sparse feature is
concatenated to the output of the dense MLP layer. Alter-
natively, a pairwise dot product combiner helps in capturing
feature interactions between dense and sparse features, and
also among sparse features. Here, we can project the dense
MLP output layer to a set of embeddings of dimension d and
compute the dot product between pairs of dense projections

and sparse embeddings to enable sparse-dense interactions. We
can also compute the dot product between pairs of sparse em-
beddings to capture sparse-sparse interactions. These resulting
dot products may be concatenated with the original dense MLP
output layer and used as the input for the top MLP stack of
the recommendation model.

4) MLP Dimensions: There are two major MLP stacks
in deep learning recommendation models: the dense feature
MLP stack at the bottom of the recommendation model and
the top MLP stack at the end. The dense feature MLP stack
is applied on top of the dense input in order to reduce the
thousands of input features into a much denser vector (e.g.
64 or 128 elements). The top MLP stack is applied after the
feature interaction. Both depth and width of the MLP stacks
can be tuned across different model training runs.

5) Batch Size: Batch size is a critical hyper-parameter that
affects training performance and model quality [[I19]. We usu-
ally scale the batch size as a function of the training system’s
capacity for parallelization. Typically, distributed training on
CPUs uses a much smaller batch size per CPU, i.e. mini-
batch size, relative to GPUs. On the other hand, GPUs require
higher mini-batch sizes to fully utilize the GPU compute
capacity. Training throughput increases roughly linearly with
the increasing batch size, up to a limit. We discuss the batch-
size throughput scaling further in Section

6) Gradient Synchronization Method: For distributed
training, model parameters need to be synchronized across
trainers and/or parameter servers. Gradient synchronization
method is an important factor affecting both the model quality
as well as scaling the performance. There are two main
approaches for synchronizing gradients: synchronous [4],
[19], [25], [33] and asynchronous [12], [26], [34]]. Most

CPU System

Big Basin GPU System

Prototype Zion GPU System

Accelerators - 8 NVIDIA V100 8 NVIDIA V100
Accelerator Memory - 16/32 GB 32 GB

System Memory 256 GB 256 GB ~2 TB

CPU 2 sockets 2 socket, 20 cores 8 socket CPU
Interconnect 25 Gbps Ethernet 100 Gbps Ethernet 4X Infiniband 100 Gbps

TABLE I: Hardware platform details.

commonly-used asynchronous algorithms in deep learning rec-
ommendation model training include Elastic-Averaging SGD
(EASGD) [57]], Hogwild! [48]] and Facebook’s ShadowSync
algorithm [?].

IV. HARDWARE AND SYSTEM CONFIGURATIONS

After model input and architecture configurations are made,
next step is to decide on hardware and system configurations.
There is often a de-facto hardware type to go for each work-
flow. However, as model configurations change, most efficient
hardware choice and system configurations could also change
over time. Here we give details on some of the hardware
platforms in our heterogeneous datacenters and explain the
major system configurations.

A. Hardware Platforms

Training workflows at Facebook leverage a large fleet of
CPU and GPU platforms to serve necessary training frequen-
cies at required service latency. Three of these platforms,
which are used in this paper, are summarized in Table [l De-
signs for each of these platforms have been publicly released
through the Open Compute Project.

Dual-Socket CPU platforms house two Intel Skylake CPUs
with 256 GB of DRAM [22].

Big Basin GPU platform has two Intel CPUs (various gen-
erations) and eight NVIDIA GPUs [31]]. The Tesla V100 GPU
accelerators are connected using NVIDIA NVLink to form
an eight-GPU hybrid cube mesh. The V100 platform enables
15.7 teraflops of single precision floating-point arithmetic per
GPU. It also has high-bandwidth memory (HBM2) providing
900GB/s bandwidth. The GPUs are equipped with either 16
or 32 GB of memory where as the CPUs are with 256 GB
DRAM and are connected via 100 Gbps Ethernet.

Zion GPU platform has 8 CPU sockets interconnecting
with the 8 GPU accelerators to provide the high compute
and memory capacity [32], [41]. Compared with the Big
Basin GPU platform, accelerators are the same but the system
memory capacity, bandwidth and CPU compute capacity of
Zion is much larger, with ~2 TB system memory and ~1
TB/s memory bandwidth.

B. System Configurations

Each hardware requires different system configurations and
these configurations affect the underlying software framework.
Two of the major configurations we discuss in this section are
embedding table placement and selection of number of servers.
Other system configuration options include tuning number of
worker threads, data loading threads.

1.GPU Memory 2.System 3. System Memory 4. Hybrid
Memory of the of Remote System & GPU
GPU Server CPU Servers Memory

H B B
% % W% W%

D =CPU D =GPU D: Host © = Embedding Table

Fig. 8: Embedding table placement options.

1) Embedding Table Placement: For training on CPU-only
servers, embedding tables can be simply placed on system
memory. For accelerated systems, the optimal embedding
placement strategy might differ given the hardware properties.
We discuss four strategies for storing embedding tables for
GPU platforms: GPU memory, system memory of the GPU
server, system memory of remote CPU servers, hybrid system
and GPU memory. These are visualized in Figure [§] Other
alternative placement options studied in the literature include
storing the embedding tables in non-volatile memory [[15] and
SSDs [158].

On the GPU memory. Embedding tables are distributed
among GPUs, different partitioning strategies can be used
such as table-wise or row-wise partitioning. For GPU servers
that have high-bandwidth inter-GPU communication, like Big
Basin, storing embedding tables on the GPUs enables offload-
ing all model operations to be done on the GPU, minimizing
the CPU usage and CPU-GPU copy operations. Big Basin
design includes eight NVIDIA GPUs connected using high-
speed interconnect NVLink and contains 128/256 GB total
available GPU memory per node to store the embedding
tables. For models that do not fit on a single server, inter-
node communication (i.e. interconnect) becomes an important
factor affecting performance.

System memory of the GPU server. Storing the embedding
tables on the system memory of the CPUs of the GPU server
would be a good option for servers with large system memory
and high memory bandwidth. For example, a training platform
like Zion contains, 8 socket CPUs, 2 TB memory with 1 TB/s
memory bandwidth as shown in Table [} In contrast, a platform
like Big Basin contains 2 socket CPUs for 8 accelerators with
256 GB system memory. For this setup, CPUs are likely to
become a bottleneck. This option also makes it more difficult
to use the GPUs effectively for all operators since the data is

T T T
—A Trainer Servers

40+ Parameter Servers

30+

20+

10+ 1

Percentage of Occurance (%)

20 30 40
Number of Servers

0_, | T -
50 p95

Fig. 9: Histogram of number of trainer and parameter servers
used for training ranking models over a month period.

not located on the GPU memory.

System memory of remote CPU servers. On a platform
like Big Basin, storing the embedding tables in the remote
CPU system memory enables scaling out the number of CPUs
used for embedding table storage and might remove the CPU
bottleneck mentioned in option 2. However, this increases the
latency of the sparse lookup operations since they have to go
through the network. This setup also creates additional work
for the CPUs on the GPU server to do the remote send/receive
operations and CPU to GPU data movement.

Mixed system and GPU memory. This is a hybrid place-
ment strategy where some of the embedding tables are stored
on the GPUs and some are stored on the system memory. This
can be an alternative strategy when the embedding tables do
not fit on the GPU, placing as much as tables as it can fit
could reduce the pressure on the CPU.

2) Number of Servers: Numbers of three types of servers
need to be configured for each workflow: number of trainer
servers, number of parameter servers (if used) and number of
reader servers. Selection of number of servers is made based
on the throughput requirement for training and the memory
capacity requirement of the embedding tables. Further the
numbers can vary significantly from run-to-run.

Trainer Servers. Trainer servers dictate the data parallelism
with which we train. Generally, we see an approximately linear
increase in training speedup when we increase the number of
trainer servers, up to a certain degree. However extra trainers
can introduce model quality loss during model parameter
synchronization in training. Figure [9] shows the distribution
of number of trainers used in the datacenter over a month
long period for the CPU training workflows. As the training
throughput requirement does not change very often, this leads
to over 40% of the workflows using same number of trainers.

Parameter Servers. Parameter servers hold the model pa-
rameters in memory. These are partitioned between dense and
sparse servers, wherein MLP layers are stored on dense servers
and embedding tables for sparse feature are stored on sparse
servers. Distribution of number of parameter servers used for

the training workflows that run on CPUs is shown in Figure [0
In contrast to number of trainers, number of parameter servers
vary greatly. As the ML engineers experiment with different
features, memory capacity requirement changes frequently
which results in a wide-range of number of parameter servers.

Reader Servers. Readers access model training data in
parallel from remote storage Hive, Facebook’s exabyte-scale
data warehouse [51]. Reader servers are decoupled from
trainers to be scaled-up independently and not to stall training.
We typically scale up reader servers such that data reading is
not a bottleneck. Consequently, for more performant training
hardware, we may utilize more readers.

V. EFFICIENCY OF MODEL SETUP CONFIGURATIONS

The parameter space of all the possible model and system
architecture combinations is exponential and therefore chal-
lenging to study. We study a subset of the most important
model configurations in a parameterized manner to understand
their effects on throughput and to compare their behavior on
CPU and GPU systems. With this goal, we created a test
suite where we can customize major model configurations in
a systematic way.

Design Space Exploration: To explore the design space of
training model configurations, we created a model containing
basic components of recommendation models as shown earlier
in Figure 3] We configure our test suite setups to train over a
variety of numbers of dense features between 64 and 4096.
Like dense features, we configure sparse features in our
model training setups by testing counts of sparse features
ranging between 4 and 128, which is representative of the
typical bounds of the total number of sparse features used in
recommendation models at Facebook. We fix a constant hash
size for all sparse features in our model to remove potential
noise added by training over sparse features with varying
indexing. We truncate number of look-ups per table to 32,
to limit outliers in our study.

A. Number of Sparse and Dense Features: As the number
of dense and sparse features increase, training throughput
reduces because of the increasing memory overhead from
embedding operations. Big Basin provides higher training
throughput despite, in a few cases, with lower performance-
per-watt energy efficiency.

The number of features used in production models may
vary heavily. This degree of variability can lead to very large
discrepancies in model complexity, size, and time to train over
some fixed set of examples. Increasing the number of dense
features leads to increases in the computational complexity
of the first layer within the model’s dense architecture. On
the other hand, increasing sparse features leads to additional
embedding lookup operations, pooling and interactions among
large embeddings, all of which are computationally expen-
sive and can lead to significant model size increases due to
additional embedding tables. Not only does this increase the
computational cost, but can also strain system memory.

Normalized Throughput
Normalized Throughput

GPU/CPU Throughput
4 16

64 128
64 1.92| 2.42| 3.58| 2.53
0 256 35| 3.42 3.5] 3.06
= 1024 353| 3.03
B 4096 3.64
hd
o GPU/CPU Power Efficiency
S 4 16 64 128
o 64 0.79| 0.99| 1.47| 1.04
* 256 | 1.44 14| 144 1.26
1024| 1.8| 2.31| 1.45| 1.25
4096 1.85| 2.24| 1.49] 1.83

Sparse Features

Fig. 10: Varying the number of sparse/dense features on CPU (left), GPU (middle) and system efficiency comparison (right).
Fixed MLP dimensions of 5123, hash size of 100000 and batch sizes of 200 (for CPU), 1600 (for GPU) are used.

20

15 j 64-128

Normalized Throughput
=
o

200 400
CPU Batch Size

w
18]

64-4
64-16
64-64
64-128
256-4
256-16
256-64
256-128
1024-4
1024-16
1024-64
1024-12
4096-4
4096-16
4096-64
4096-128

= = NN W
o wu o v o

Normalized Throughput

[S,]

BLESRRR

800 1600

GPU Batch Size

400 3200

Fig. 11: Batch size scaling on CPU (left) and GPU (right). Fixed MLP dimensions of 5122 and hash size of 100000 are used.

Figure [T0] shows the throughput under CPU and GPU with
varying dense and sparse feature combinations. In the CPU
setup, we use a single trainer, dense and sparse parameter
server. In the GPU setup, we use a single Big Basin GPU
server where sparse and dense features are placed in GPU
Memory. Power capacity requirement of a Big Basin server is
7.3 times higher than the dual-socket CPU server. We see that
the throughput of the GPU setup is higher than the CPU setup
in all configurations. However, in terms of power efficiency
GPU does not always provide the best results. GPU efficiency
is the highest for models with more dense features. Note that
in this setup, we use fixed batch sizes of 200 (for CPU), 1600
(for GPU), a hash size of 100000 (which is smaller compared
to the average hash size of the production models) and MLP
dimensions of 5123. Later in this section, we show the effect
of scaling each of these parameters on throughput.

B. Batch size: There exists a different throughput-optimal
batch sizes for CPU and GPU training. The optimal batch
size varies based on the sparse and dense configurations of
the model.

The batch size of the model dictates the number of examples
processed through a forward/backward pass during model
training. Increasing the batch size can lead to a better training
stability due to more accurate estimates of the loss gradient.

However, it can also lead to worse model generalization.
Increasing batch size can have varying effects on training
throughput too. Higher batch sizes can be detrimental to the
training speed over CPU hardware. In contrast, GPU hardware
with significantly greater parallel compute capacity can better
leverage greater batch sizes. We often see an approximately
linear increase in training throughput, until a certain point.

Figure [TT] shows the throughput under CPU and GPU as we
scale the batch size. As the batch size increase, communication
per iteration increases since the number of embedding lookup
operations per iteration also increase. For GPU training, large
batch size reduces the overhead from CUDA API calls such
as kernel launches, as well as allowing better use of GPU
compute capacity. When communication overhead becomes
larger than the GPU compute benefit, throughput starts to
saturate. Even if increasing the batch size beyond the first
saturation point does not affect the throughput significantly,
it impacts the model quality. As we discuss later, given
the importance of model quality in recommendation models,
batch size needs to be carefully selected for each model
configuration.

64-4
64-16

= 64-64
3 207 64-128
S 256-4
= 256-16
215/ 256-64
= 256-128
i —— 1024-4
g 10- —#— 1024-16
= —¥— 1024-64
e ./—/ —#— 1024-12
c —e— 4096-4
S 5; — . ;- — —=— 4096-16

—¥— 4096-64

—»— 4096-128

0.

400000 3200000 25600000
CPU Hash Size

100000

25

64-4
- 64-16
5 64-64
_8-20 64-128
o 256-4
3 256-16
£ 15 256-64
= 256-128
kel —o— 1024-4
%10 —=- 1024-16
= —¥— 1024-64
£ —#— 1024-12
5 5 :\'—_‘.\' —e— 4096-4
z —m— 4096-16
% e iooese
0 —%— 4096-128
100000 400000 3200000 25600000

GPU Hash Size

Fig. 12: Hash size scaling on CPU (left) and GPU (right).

C. Embedding Table Hash Size: As the effective size of
embedding tables grows with an increasing hash size, the
training throughput of Big Basin reduces significantly due to
the increasing communication overhead between the GPUs.

Each sparse feature’s hash size denotes the number of
entries of that feature’s embedding lookup table, wherein each
entry is a d-dimensional embedding. Increasing this parameter
yields a linear increase in the embedding table size and the
total model size, but does not significantly affect embedding
lookup time or overall model throughput on CPU. For GPU
training, due to the limited HBM2 memory of the GPU
compared with the system memory of the CPU, more GPUs
need to be used in order to store the embeddings.

Figure [12] shows the throughput with varying hash size on
CPU and GPU. We use a single CPU parameter server with
256 GB memory and a single Big Basin server with 256 GB
GPU memory for a fair comparison. During CPU training,
all tables are stored in the same single server as the hash
size increase. During GPU training, as the hash size increase
more GPUs within the single server need to be used to fit
the increasing size of the embedding tables and this increases
the communication cost between GPUs. Therefore, throughput
drops significantly as we scale hash size.

D. MLP Dimensions: Increasing the width of the MLP layers
and the number of sequential layers reduces CPU training
throughput higher than the GPU throughput.

Figure [13[shows the training throughput under varying MLP
dimensions on CPU and GPU. We denote the MLP width and
layers as width™“m-19v¢"s e o 642 means 2 layers of size
64. For smaller MLP dimensions, the relatively high number
of sparse features in the model resulted in disproportionately
more expensive embedding lookup, pooling and interaction.
Therefore, we do not see the throughput decrease significantly
until the MLP dimension grows larger than (256°) for both
CPU and GPU training. When the MLP dimensions grow, the
drop in normalized relative throughput is higher for CPU train-
ing compared with GPU training due to the higher compute
capacity of the GPU.

10! 1 GPU.1024-64
5 CPU.1024-64
a
<
<)
>
e
<
=
o
9]
N
©
£
o
=
10°
N A G
© © © ,f) ,f) ,{:) '\/Q”l/ \’Q’L \9’1/

MLP Dimensions

Fig. 13: Throughput under varying MLP dimensions.

Mlprod M2prod M3pr0d
Sparse Features 30 13 127
Dense Features 800 504 809
Embedding Size [GB] tens tens hundreds

Embedding Lookups 28 17 49

Bottom MLP Dimensions 512 1024 512
Top MLP Dimensions 512-512-512 | 1024-1024-512 | 512-256-512
-256-512

TABLE II: Descriptions of three production models.

VI. CASE STUDY WITH PRODUCTION-SCALE MODELS

We present case studies for three production recommenda-
tion models (M1prod, M2pr04, and M3p0q) to compare CPU
and GPU efficiency in real-life scenarios. These models are
written in the Caffe2 framework, which is now a part of
PyTorch [1], and use FP32 (single precision floating point)
precision. Table [[I} summarizes the main properties of the three
models evaluated here. The first two models (M1p.0q & 2) have
lower number of sparse features than the third one. In terms of
dense features, M2,,,q has lower number of dense features than
the others. Moreover, in respect of embedding sizes, M1oq
& 2 have embedding tables in the order of tens of GBs, and
M3,,10q has in the order of hundreds. Two important properties
captured by the production models that were not captured by
the test suite are: the varying number of lookups per table and
the diverse hash sizes for the individual embedding tables as
we presented earlier in Figure [] and

Mlprod szrod M3pmd

6 trainers 20 trainers 8 trainer
CPU Setup 3

parameter servers | 16 parameter servers | 8 parameter servers

GPU Setup 1 Big Basin GPU 1 Big Basin GPU 1 Big Basin GPU
Embedding Placement GPU Memory GPU Memory Remote CPU Memory
Sync Mode easgd, 1 hogwild easgd, 1 hogwild easgd, 4 hogwild
Optimal Batch Size per GPU 1600 3200 800
GPU/CPU Relative Throughput 2.25x 0.85x 0.67x
GPU/CPU Power Efficiency 4.3x 2.8x 0.43x

TABLE III: CPU-GPU optimal setup comparison.

A. CPU vs Big Basin GPU Performance: When embedding
tables fit on the GPU memory, as compared to CPUs, Big
Basin provided higher throughput and power efficiency.

We compare the relative throughput and power efficiency
between the CPU and Big Basin GPU training systems.
Table shows the original production CPU setups and our
prototype on Big Basin. When we port these models into GPU,
the first step is finding the optimal batch size as we discussed
in the previous section. We found the throughput started to
saturate after batch size of 1600, 3200 and 800 for M1,2,3,04
respectively. We evaluated M1y04 & M2,0q On a single Big
Basin GPU and stored the embedding tables on GPU memory.

Ml0a achieved 2.25 times higher throughput on GPU
compared to its production CPU setup and is 4.3 times more
power efficient. M2,,4 achieved close performance to its
production CPU setup (i.e. 0.85 times) and achieved 2.8 times
higher power efficiency on Big Basin GPUs. As we showed
in the previous section, when embedding tables are placed
on GPU memory, throughput and efficiency exceeds the CPU
setup in most cases. On the other hand, when embedding tables
do not fit on the limited GPU memory, it is harder to achieve
the same level of efficiency. For M3,,4, when embedding
tables do not fit on the high-bandwidth memory of the Big
Basin GPUs, we use remote CPU servers to serve as parameter
servers and a single Big Basin GPU server to serve as a trainer.
We scaled-up the number of parameter servers and yet the
throughput on Big Basin only reached 0.67x of the throughput
of the production setup on 8 CPU trainers. We found that CPU
resources on the Big Basin server and data copies from the
parameter servers became the performance bottleneck.

When the embedding tables do not fit on a single GPU
server, another option is to distribute the tables on the GPU
memory of multiple Big-Basins. To be performance efficient,
this mode requires fast inter-node GPU-GPU communication
for embedding look-ups. Due to the lack of this capability, we
were not able to test this model setup on multiple Big Basins.

B. Big Basin vs Zion GPU Performance: Zion's large mem-
ory capacity, bandwidth and CPU compute resources provide
several orders of magnitude efficiency improvement over Big
Basin, when the embedding tables do not fit on GPU memory.

As model size and complexity increase, improving the
training throughput efficiently becomes a challenge. Zion is
Facebook’s large-memory training platform trying to address
this challenge. We compare the training throughput with
different placement options on Big Basin and Zion using one
of the models (M2p,q) on Figure With GPU memory

10

(%)
)

[Z] Big Basin
§_4_ 1 . Zion
o
=}

o

< 3+ /

'_

kel

o —
N2+

©

£

21 ‘/

GPU System Remote System
Memory Memory Memory
Embedding Placement Option

Fig. 14: Embedding placements on Big Basin vs. Zion for
M2;10d.

placement, Big Basin showed the best performance. Zion’s
performance was much lower because there was no GPU-
GPU direct communication in our prototype Zion server, hence
all communication across GPUs went through CPUs. This
shows the importance of the GPU-to-GPU interconnect when
placing the embedding tables on GPUs. With system memory
placement, Zion performed the best as expected due to its
high CPU memory bandwidth. For Big Basin, throughput
was four times lower than the first placement option due
to slower memory bandwidth and low CPU resources. With
remote system memory placement, performance could not
exceed other approaches on both Big Basin and Zion despite
scaling up the number of remote parameter servers to store
the embedding tables. We found that lookup latency and the
CPU resources on the GPU server becomes a bottleneck. The
performance of Zion was only slightly better than Big Basin
due to its higher memory bandwidth and more CPU resources.

Zion’s main advantage over Big Basin comes into play when
embedding tables do not fit on the GPU memory of a single
GPU-server. Its ~2 TB system memory and ~1 TB/s memory
bandwidth provide large capacity to store the embedding tables
and fast look-up operations. Our analytical model showed that
for RM-3, training on Zion is several orders of magnitude
more efficient than using multiple Big Basins with embedding
tables placed on the GPU memory. The challenge remaining
for Zion is the case where model sizes grow into multiple
terabytes which requires scaling out on multiple Zion servers.

o
[N)
3

©
N
o

o
iy
w

o
=
o

Accuracy Loss
After Manual Tuning [%]

o
o
o

o
o
S

1200 1600 2000 2400

Batch Size

400 800
Fig. 15: Accuracy gap on GPUs compared with CPU runs
increase with the batch size when the model is tuned manually.

C. Accuracy: For applications requiring very well-calibrated
predictions, model accuracy loss in the orders of ~0.1% may
not be tolerable for recommendation models to achieve a
higher training throughput. In order to test and improve the
model prediction quality, high volumes of data are used. This
also increases the length of the process of hyper-parameter
tuning, which is an important part of training given the
accuracy requirement.

Different model and system configurations result in different
optimal hyper-parameters, impacting the model quality, mea-
sured by the convergence of traditional model loss metrics,
such as normalized entropy or mean squared error. To achieve
optimal model convergence, hyper-parameters such as the
learning rate needs to be re-tuned as the batch size and the
number of servers change [19]. Figure shows the model
loss on GPU as the batch size is scaled after manual hyper-
parameter tuning. Despite the tuning, accuracy gap grows as
we scale the batch size. Model loss regression in the order
of 0.1-0.2% might be considered small in certain machine
learning use cases, however for recommendation models, such
model accuracy trade-off may not be tolerable. This makes an
automated approach for hyper-parameter tuning necessary to
achieve a similar or higher model quality.

FBLearner, a suite of ML tools at Facebook [[13]], supports
a parameter sweep feature with different search strategies
such as grid-based, random, and Bayesian optimization. Users
can select a search strategy to find optimal parameters au-
tomatically — a process often known as AutoML. We use a
Bayesian optimization based strategy [6] to re-tune the hyper-
parameters in our GPU setup from scratch. For both M1 0q
and M2,,q GPU setup showed higher accuracy, i.e. lower
negative entropy (NE) (-0.2%, -0.1% respectively). Using less
number of trainers and higher synchronization rate are possible
reasons for achieving higher model quality.

The process of hyper-parameter tuning to minimize model
loss took around a week to complete as we used high volumes
of data to train to ensure the quality of the new model setup.
Due the model’s low throughput and the cost of running a
hyper-parameter search sweep, accuracy was not evaluated for
M304.

11

VII. RELATED WORK

Using accelerators for recommendation models have started
to gain momentum in the industry. For example, as compared
to CPUs, Google’s search and ranking recommendation model
training performs 14 times better on TPUs [|10]. Baidu showed
a hierarchical GPU parameter server approach to train a
10 TB recommendation model that is two times faster than
CPU training [58]]. Alibaba’s advertisement recommendation
models use GPUs, at least, for inference [59].

Most recently, in 2020, Google scored the first place in
the MLPerf benchmark competition [[39]] for training Face-
book’s open source Deep Learning Recommendation Model
(DLRM) [42] on TPUV4 in just 1.21 minutes [2f]. Furthermore,
NVIDIA’s DGX-A100 with its own Merlin HugeCTR software
stack won the second place, finishing DLRM training in 3.33
minutes [[18]]. NVIDIA’s optimized software library enables
more than 30% performance speedup for the DGX-A100
systems (and more than 70% speedup for DGX2-V100).

Despite the importance of deep learning recommendation
models, this class of deep learning workloads is under studied,
especially by the system and architecture’s community [54].
Thus far, industry-scale recommendation models are repre-
sented in the MLPerf Training and Inference benchmark
suites [38]], [39], [49], [55]. However, the MLPerf-DLRM
benchmark represents a medium-scale recommendation model
for click-through-rate prediction. As what we presented in
this paper, there is a diverse collection of recommendation
models deployed at Facebook’s production environment. De-
pending on the specific recommendation use cases, model
architectures and parameters used for training can vary. In
particular, efficient training for the large embedding tables
with varying memory access patterns imposes significant sys-
tem design and optimization challenges. In addition, recent
studies have started analyzing the system- and architecture-
level implications of neural recommendation inference [20],
[21]], [24]]. Recent works also examine near memory process-
ing architectures, such as RecNMP [29]], TensorDIMM [30].
However, neither RecNMP nor TensorDIMM is optimized for
gradient aggregation. The benefits do not translate well into
training performance improvement. Finally, making training
infrastructures reliable has a profound impact in the training
workflow efficiency as well [37], [44]], [46].

This paper is the first to describe the unique properties of
industry-scale recommendation models trained at Facebook’s
production environment. The key characteristics of the model
architecture with MLP stacks and a collection of large embed-
ding tables underpin the design of Facebook’s next-generation
Zion systems [32]. The goal of this paper is to advance
the state-of-the-art understanding of Facebook’s deep learning
recommendation models, the wide variety of model param-
eters and architectures and the complexity of the hardware-
software co-design space for Facebook’s production scale. We
also present in-depth training throughput and model quality
characterization analysis for three production-representative
models. We describe the optimization techniques necessary to

enable recommendation training on Facebook’s existing Big
Basin and next-generation Zion training systems.

VIII. CONCLUSION

Deep learning recommendation models have diverse set of
characteristics based on their model architectures and param-
eter configurations, leading to different levels of CPUs, mem-
ory capacity, memory and network bandwidth requirements.
We share insights from Facebook’s production workflows by
characterizing the effects of dense and sparse features, batch
sizes, embedding table hash sizes, and MLP dimensions, on
training throughput.

Important challenges continue to loom for training deep
learning recommendation models as the memory capacity
requirement for embedding tables grow into multiple terabytes.
Furthermore, training requires high volumes of data to ensure
the model quality. The need for high throughput coupled with
high accuracy is driving the industry to design and customize
specialized hardware architectures for training. We present
the next-generation scale-out Zion platform to address this
need. The design space characterization and analysis presented
in this paper with Facebook’s production-scale deep learning
recommendation models can be used to guide the design
of training infrastructures. We hope the insights will enable
further research across the entire system stack, from the design
of training algorithms to next-generation training infrastructure
development and optimization.

IX. ACKNOWLEDGEMENTS

We would like to thank Facebook colleagues, especially
Shunting Zhang, Hassan Eslami, Chenguang Xi, Manoj Kr-
ishnan, Jiyan Yang for the discussions and feedback on this
work.

REFERENCES

[1]
[2]

“Caffe2 framework,” https://caffe2.ai/.

“Google breaks Al performance records in MLPerf with world’s fastest
training supercomputer,” https://cloud.google.com/blog/products/ai-
machine-learning/google-breaks-ai- performance-records-in-mlperf-
with-worlds-fastest-training- supercomputer.

“NVIDIA DGX,” |https://www.nvidia.com/content/dam/en-zz/Solutions/
Data- Center/dgx- 1/dgx- 1-print-infographic-738238-nvidia- web.pdf,
2018.

T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
sgd: Training resnet-50 on imagenet in 15 minutes,” arXiv preprint
arXiv:1711.04325, 2017.

N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, “Cross-
architecture performance prediction (XAPP) using CPU code to predict
GPU performance,” in International Symposium on Microarchitecture,
2015, pp. 725-737.

E. Bakshy, L. Dworkin, B. Karrer, K. Kashin, B. Letham, A. Murthy,
and S. Singh, “AE: A domain-agnostic platform for adaptive experimen-
tation,” 2018.

1. Baldini, S. J. Fink, and E. Altman, “Predicting GPU performance from
CPU runs using machine learning,” in IEEE International Symposium
on Computer Architecture and High Performance Computing, 2014, pp.
254-261.

H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong,
V. Jain, X. Liu, and H. Shah, “Wide & deep learning for recommender
systems,” in Workshop on Deep Learning for Recommender Systems,
2016.

[3]

[5]

[6]

[7]

[8]

12

[9]

[10]

(11]

[12]

(13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

(28]

[29]

(30]

(31]

(32]

P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
YouTube recommendations,” in ACM Recommender Systems Confer-
ence, 2016.

J. Dean, “Machine learning for systems and systems for machine
learning,” in Presentation at the Conference on Neural Information
Processing Systems, 2017.

J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74-80, 2013.

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in International Conference on Neural
Information Processing Systems - Volume 1, 2012, p. 1223-1231.

J. Dunn, “Introducing fblearner flow: Facebook’s Al backbone,” 2016.
S. Edunov, M. Ott, M. Auli, and D. Grangier, “Understanding back-
translation at scale,” arXiv preprint arXiv:1808.09381, 2018.

A. Eisenman, M. Naumov, D. Gardner, M. Smelyanskiy, S. Pupyrev,
K. Hazelwood, A. Cidon, and S. Katti, “Bandana: Using non-
volatile memory for storing deep learning models,” arXiv preprint
arXiv:1811.05922, 2018.

A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning
approach for cross domain user modeling in recommendation systems,”
in International Conference on World Wide Web, 2015, p. 278-288.

A. Ginart, M. Naumov, D. Mudigere, J. Yang, and J. Zou, “Mixed dimen-
sion embeddings with application to memory-efficient recommendation
systems,” arXiv preprint arXiv:1909.11810, 2019.

I. Goldwasser, “Optimizing NVIDIA AI performance for MLPerf v0.7
training,” https://developer.nvidia.com/blog/optimizing-ai-performance-
for-mlperf-v0-7-training/, 2020, last accessed July 29, 2020.

P. Goyal, P. Dollér, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S.
Lee, D. Brooks, and C.-J. Wu, “DeepRecSys: A system for optimizing
end-to-end at-scale neural recommendation inference,” 2020.

U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia et al., “The architectural
implications of Facebook’s DNN-based personalized recommendation,”
in International Symposium on High Performance Computer Architec-
ture, 2020, pp. 488-501.

K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning
at Facebook: A datacenter infrastructure perspective,” in IEEE Inter-
national Symposium on High Performance Computer Architecture, Feb
2018, pp. 620-629.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in /[EEE
International Conference on Computer Vision, Oct 2017.

S. Hsia, U. Gupta, M. Wilkening, C.-J. Wu, G.-Y. Wei, and D. Brooks,
“Cross-stack workload characterization of deep recommendation sys-
tems,” in IEEE International Symposium on Workload Characterization,
2020.

Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning
in fixed topology networks,” arXiv preprint arXiv:1706.07880, 2017.
P. H. Jin, Q. Yuan, F. Iandola, and K. Keutzer, “How to scale distributed
deep learning?” arXiv preprint arXiv:1611.04581, 2016.

J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” arXiv preprint arXiv:1702.08734, 2017.

A. Joulin, P. Bojanowski, T. Mikolov, H. Jegou, and E. Grave, “Loss in
translation: Learning bilingual word mapping with a retrieval criterion,”
arXiv preprint arXiv:1804.07745, 2018.

L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee et al., “RecNMP:
Accelerating personalized recommendation with near-memory process-
ing,” in ACM/IEEE International Symposium on Computer Architecture,
2020, pp. 790-803.

Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” arXiv preprint arXiv:1908.03072, 2019.

K. Lee, “Introducing big basin: Our next-generation ai hardware,” https:
//fb.me/lee_2017, 2017, last accessed April 17, 2020.

K. Lee and V. Rao, “Accelerating Facebook’s infrastructure with
application-specific hardware,” https://engineering.fb.com/data-center-
engineering/accelerating-infrastructure/, March 2019.

https://caffe2.ai/
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-print-infographic-738238-nvidia-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-print-infographic-738238-nvidia-web.pdf
https://developer.nvidia.com/blog/optimizing-ai-performance-for-mlperf-v0-7-training/
https://developer.nvidia.com/blog/optimizing-ai-performance-for-mlperf-v0-7-training/
https://fb.me/lee_2017
https://fb.me/lee_2017
https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” arXiv preprint
arXiv:1705.09056, 2017.

X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” arXiv preprint arXiv:1710.06952,
2017.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolldr, “Focal loss for
dense object detection,” arXiv preprint arXiv:1708.02002, 2017.

M. Lui, Y. Yetim, Ozgiir Ozkan, Z. Zhao, S.-Y. Tsai, C.-J. Wu,
and M. Hempstead, “Understanding capacity-driven scale-out neural
recommendation inference,” arXiv preprint arXiv:2011.02084, 2020.
K. Maeng, S. Bharuka, I. Gao, M. C. Jeffrey, V. Saraph, B.-Y. Su,
C. Trippel, J. Yang, M. Rabbat, B. Lucia, and C.-J. Wu, “CPR: Under-
standing and improving failure tolerant training for deep learning rec-
ommendation with partial recovery,” arXiv preprint arXiv:2011.02999,
2020.

P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, B. Jia,
D. Kang, D. Kanter, N. Kumar, J. Liao, D. Narayanan, T. Oguntebi,
G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S. John, C.-J.
Wu, L. Xu, C. Young, and M. Zaharia, “Mlperf training benchmark,”
arXiv preprint arXiv:1910.01500, 2019.

P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang et al., “MLPerf:
An industry standard benchmark suite for machine learning perfor-
mance,” IEEE Micro, vol. 40, no. 2, pp. 8-16, 2020.

I. Medvedev, H. Wu, and T. Gordon, “Powered by AI: Instagram’s
explore recommender system,” https://ai.facebook.com/blog/powered-
by-ai-instagrams-explore-recommender-system/, November 2019.

M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao,
S. Yilmaz, C. Kim, H. Yuen, M. Ozdal, K. Nair, I. Gao, B.-Y. Su,
J. Yang, and M. Smelyanskiy, “Deep learning training in Facebook
data centers: Design of scale-up and scale-out systems,” arXiv preprint
arXiv:2003.09518, 2020.

M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep
learning recommendation model for personalization and recommenda-
tion systems,” arXiv preprint arXiv:1906.00091, 2019.

V. Nguyen, E. Oldridge, and M. Lee, “Announcing NVIDIA
Merlin: An application framework for deep recommender
systems,” https://developer.nvidia.com/blog/announcing-nvidia-merlin-

application- framework-for-deep-recommender-systems/, 2020, last
accessed May 14, 2020.

B. Nicolae, J. Li, J. M. Wozniak, G. Bosilca, M. Dorier,
and F. Cappello, “DeepFreeze: Towards Scalable Asynchronous

Checkpointing of Deep Learning Models,” in IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, 2020. [Online].
Available: https://hal.inria.fr/hal-02543977

M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
arXiv preprint arXiv:1904.01038, 2019.

A. Qiao, B. Aragam, B. Zhang, and E. Xing, “Fault tolerance in iterative-
convergent machine learning,” in International Conference on Machine
Learning, 2019, pp. 5220-5230.

Y. Raimond and J. Basilico, “Deep learning for recommender systems,”
https://www.slideshare.net/moustaki/deep-learning- for-recommender-
systems-86752234, January 2018.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in Neural
Information Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger, Eds., 2011, pp. 693-701.
V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” arXiv preprint arXiv:1911.02549, 2019.

Q. Song, D. Cheng, H. Zhou, J. Yang, Y. Tian, and X. Hu, “Towards

13

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

automated neural interaction discovery for click-through rate prediction,”
arXiv preprint arXiv:2007.06434, 2020.

A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,
R. Murthy, and H. Liu, “Data warehousing and analytics infrastructure
at Facebook,” in ACM International Conference on Management of data,
2010, pp. 1013-1020.

S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65-76, 2009.

B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “FBNet: Hardware-aware efficient ConvNet
design via differentiable neural architecture search,” arXiv preprint
arXiv:1812.03443, 2018.

C.-J. Wu, D. Brooks, U. Gupta, H.-H. Lee, and K. Hazelwood,
“Deep learning: It’s not all about recognizing cats and dogs,”
https://www.sigarch.org/deep-learning-its- not-all-about-recognizing-
cats-and-dogs/, 2019.

C.-J. Wu, R. Burke, E. H. Chi, J. Konstan, J. McAuley, Y. Raimond,
and H. Zhang, “Developing a recommendation benchmark for mlperf
training and inference,” arXiv preprint arXiv:2003.07336, 2020.

X.Yi, Y.-F. Chen, S. Ramesh, V. Rajashekhar, L. Hong, N. Fiedel, N. Se-
shadri, L. Heldt, X. Wu, and E. H. Chi, “Factorized deep retrieval and
distributed TensorFlow serving,” ser. Conference on Machine Learning
and Systems, 2018.

S.Zhang, A. E. Choromanska, and Y. LeCun, “Deep learning with elastic
averaging sgd,” in Advances in neural information processing systems,
2015, pp. 685-693.

W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li, “Distributed
hierarchical gpu parameter server for massive scale deep learning Ads
systems,” arXiv preprint arXiv:2003.05622, 2020.

G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai,
“Deep interest evolution network for click-through rate prediction,” in
AAAI conference on artificial intelligence, vol. 33, 2019, pp. 5941-5948.
G. Zhou, C. Song, X. Zhu, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
arXiv preprint arXiv:1706.06978, 2017.

https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
https://developer.nvidia.com/blog/announcing-nvidia-merlin-application-framework-for-deep-recommender-systems/
https://developer.nvidia.com/blog/announcing-nvidia-merlin-application-framework-for-deep-recommender-systems/
https://hal.inria.fr/hal-02543977
https://www.slideshare.net/moustaki/deep-learning-for-recommender-systems-86752234
https://www.slideshare.net/moustaki/deep-learning-for-recommender-systems-86752234
https://www.sigarch.org/deep-learning-its-not-all-about-recognizing-cats-and-dogs/
https://www.sigarch.org/deep-learning-its-not-all-about-recognizing-cats-and-dogs/

	I Introduction
	II Background on ML Training at Facebook
	II-A Machine Learning Training at Facebook
	II-B Training Systems for Deep Learning Recommendation

	III Overview of Training Recommendation Model Architectures and Parameters
	III-A Model Architecture Configurations
	III-A1 Feature Selection
	III-A2 Embedding Tables
	III-A3 Feature Interaction
	III-A4 MLP Dimensions
	III-A5 Batch Size
	III-A6 Gradient Synchronization Method

	IV Hardware and System Configurations
	IV-A Hardware Platforms
	IV-B System Configurations
	IV-B1 Embedding Table Placement
	IV-B2 Number of Servers

	V Efficiency of model setup configurations
	V-A Number of Sparse and Dense Features: As the number of dense and sparse features increase, training throughput reduces because of the increasing memory overhead from embedding operations. Big Basin provides higher training throughput despite, in a few cases, with lower performance-per-watt energy efficiency.
	V-B Batch size: There exists a different throughput-optimal batch sizes for CPU and GPU training. The optimal batch size varies based on the sparse and dense configurations of the model.
	V-C Embedding Table Hash Size: As the effective size of embedding tables grows with an increasing hash size, the training throughput of Big Basin reduces significantly due to the increasing communication overhead between the GPUs.
	V-D MLP Dimensions: Increasing the width of the MLP layers and the number of sequential layers reduces CPU training throughput higher than the GPU throughput.

	VI Case Study with production-scale models
	VI-A CPU vs Big Basin GPU Performance: When embedding tables fit on the GPU memory, as compared to CPUs, Big Basin provided higher throughput and power efficiency.
	VI-B Big Basin vs Zion GPU Performance: Zion's large memory capacity, bandwidth and CPU compute resources provide several orders of magnitude efficiency improvement over Big Basin, when the embedding tables do not fit on GPU memory.
	VI-C Accuracy: For applications requiring very well-calibrated predictions, model accuracy loss in the orders of 0.1% may not be tolerable for recommendation models to achieve a higher training throughput. In order to test and improve the model prediction quality, high volumes of data are used. This also increases the length of the process of hyper-parameter tuning, which is an important part of training given the accuracy requirement.

	VII Related Work
	VIII Conclusion
	IX Acknowledgements
	References

