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Abstract—Given recent algorithm, software, and hardware in-
novation, computing has enabled a plethora of new applications.
As computing becomes increasingly ubiquitous, however, so does
its environmental impact. This paper brings the issue to the
attention of computer-systems researchers. Our analysis, built on
industry-reported characterization, quantifies the environmental
effects of computing in terms of carbon emissions. Broadly,
carbon emissions have two sources: operational energy consump-
tion, and hardware manufacturing and infrastructure. Although
carbon emissions from the former are decreasing thanks to
algorithmic, software, and hardware innovations that boost
performance and power efficiency, the overall carbon footprint
of computer systems continues to grow. This work quantifies the
carbon output of computer systems to show that most emissions
related to modern mobile and data-center equipment come
from hardware manufacturing and infrastructure. We therefore
outline future directions for minimizing the environmental impact
of computing systems.

I. INTRODUCTION

The world has seen a dramatic advancement of information
and communication technology (ICT) in the last two decades.
The rise in ICT has resulted in a proliferation of consumer
devices, networking technologies, and data centers. Despite
its myriad societal benefits, ICT has incurred tremendous
environmental footprint. ICT accounted for up to 3% of the
global energy demand as of 2015. In fact, data centers alone
accounted for 1% of the global demand, eclipsing the total en-
ergy consumption of many nations. By 2030, ICT is projected
to account for 7% of the global energy demand. Anticipating
the ubiquity of computing, researchers and developers must
enable the design and deployment of sustainable computer
systems.

To curb the growing energy demand of computing technol-
ogy, software and hardware researchers have invested heavily
in maximizing the energy efficiency of systems and workloads.
For instance, between the late twentieth and early twenty-first
centuries, Moore’s Law has enabled fabrication of systems
that have billions of transistors and 1,000x higher energy
efficiency. For salient applications, such as Al, molecular dy-
namics, video encoding, and cryptography, systems now com-
prise specialized hardware accelerators that provide orders-of-
magnitude higher performance and energy efficiency. More-
over, data centers have become more efficient by consolidating
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Fig. 1. The majority of computing’s carbon footprint comes from embodied
emissions not operational energy use. (Top) From iPhone 3 to iPhone 12
, the operational footprint reduced by 2.09x given efficiency optimizations
while the embodied emissions rose by 2.85x due to higher manufacturing
overheads. Between 2010 and 2018, the operational energy consumption of
datacenters increased by only 6% collectively while the number of compute
instances, i.e., infrastructure overheads, increased by 6x. (Bottom) Moving
forward, enabling sustainable computing requires optimizing emissions across
hardware life cycles. Each life cycle phase corresponds to different categories
of the GHG protocol for fabs, mobile vendors, and datacenter operators.

equipment into large, warehouse-scale systems and by reduc-
ing cooling and facility overhead to operate at near optimal
power usage effectiveness (PUE of 1.1).

Given the advancements in energy efficiency, this paper
shows computer system and architecture researchers must go
beyond energy and consider the carbon footprint of platforms
end-to-end. Similar to infrastructure efficiency optimization
targeting operational expenditures (opex, recurring operations)
and capital expenditures (capex, one-time infrastructure and
hardware), we can categorize carbon emissions into opex-
and capex-related activities. We define opex-related emis-
sions as emissions from hardware use and energy consump-
tion (operational footprint) and capex-related emissions as
emissions from facility-infrastructure construction and chip
manufacturing (embodied footprint), such as, procuring raw
materials, fabrication, packaging, and assembly. Figure 1 (left)

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt ://www.ieee.ogg/;ublications_standards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 27,2022 at 13:

4:34 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3163226, IEEE

Micro

shows that, between iPhone 3 (2009) and iPhone 11 (2019),
the operational footprint has decreased due to improved energy
efficiency while embodied footprint has increased due to more
sophisticated hardware. For client devices (e.g., iPhones) the
dominating source of carbon footprint has shifted from being
opex-related to capex-related. In contrast, Figure 1 (right)
shows the carbon footprint breakdown for data centers. At
the data-center scale we find operational emissions between

2010 and 2018 have increased by 6% while infrastructure

capacity, which correspond to embodied hardware emissions,

has increased by 6x [1].

If left unchecked, we anticipate the gap between opex- and
capex-related carbon output will widen in coming years. As
energy efficiency rises along with the use of renewable energy,
opex-related emissions will become a less significant part of
computing’s environmental impact. Increasing application de-
mand will exacerbate capex-related emissions, however. In less
than two years, Facebook hardware devoted to Al training and
inference has grown by 4x and 3.5Xx, respectively. Likewise,
to support emerging applications (e.g., Al and AR/VR) on
mobile devices, smartphones today have more transistors and
specialized circuits than their predecessors; limited by dark
silicon [2], the additional hardware exacerbates capex-related
carbon footprints. Addressing both opex- and capex-related
emissions requires fundamentally rethinking designs across the
entire computing stack.

This paper takes a data-driven approach to studying the
carbon breakdown of hardware life cycle—including manu-
facturing, transport, use, and recycling—for consumer devices
and data-center systems. It serves as a call-to-action for
computer system and architecture researchers to tackle com-
puting’s growing environmental crisis by laying the foundation
for understanding and creating more-sustainable designs. First,
we present the state of industry practice using the Greenhouse
Gas (GHG) Protocol to quantify the environmental impact of
commercial mobile and data-center supply chains (Section II).
On the basis of publicly available industry sustainability re-
ports from, we show that the hardware-manufacturing process,
rather than system operation, is the primary source of carbon
emissions (Section III and IV). Moreover, we demonstrate
that the use of renewable energy to power fabs is no panacea;
hardware manufacturing and infrastructure-related activities
will continue to dominate the carbon output (Section V).
Finally, we outline future research and design directions across
the computing stack to realize environmentally sustainable
systems (Section VI).

The important contributions of this work are:

1) We show that given the considerable efforts over the past
two decades to improve energy efficiency, the Amdahl’s
law bottleneck for computing’s carbon output has shifted
from operational activities to capex-related activities such
as hardware manufacturing and system infrastructure.

2) We take a data-driven approach to quantify computing’s
end-to-end carbon footprint in mobile and data-center scale
systems. For instance, the fraction of life-cycle carbon
emissions due to hardware manufacturing increased from

49% for the iPhone 3GS to 86% for the iPhone 11
Similarly, we show that because an increasing fraction
of warehouse-scale data centers employ renewable energy
(e.g., solar and wind), data-center carbon output is also
shifting from operation to hardware design/manufacturing
and infrastructure construction. In 2019, capex- and supply-
chain-related activities accounted for 23x more carbon
emissions than opex-related activities at Facebook.

3) We chart future paths for software and hardware re-
searchers to characterize and minimize computing technol-
ogy’s environmental impact.

II. QUANTIFYING ENVIRONMENTAL IMPACT

This section details the state-of-the-art industrial practices
for quantifying carbon emissions. Our discussion presents
carbon-footprint-accounting methods that serve broadly across
technology companies, including AMD, Apple, Facebook,
Google, Huawei, Intel, Microsoft, and TSMC [3]-[8]. First
we review methods for analyzing organization-level emissions.
Next, we analyze how to use the results of such analyses across
the technology supply chain to develop models for individual
computer systems at the data-center and mobile scale.

A. Industry-level carbon-emission analysis

A common method accounting standard for quantifying
organization-level carbon output is the GHG Protocol. Many
technology companies, including AMD, Apple, Facebook,
Google, Huawei, Intel, and Microsoft publish annual sustain-
ability reports using the GHG Protocol, which categorizes
emissions into Scope 1 (direct emissions), Scope 2 (indirect
emissions), and Scope 3 (upstream and downstream supply-
chain emissions). Figure 1(bottom) summarizes the salient
emissions from each category for chip manufacturers, mobile
vendors, and data-center operators [9].

Scope 1 emissions come from fuel combustion, refrigerants
in offices and data centers, transportation, and the use of chem-
icals and gases in semiconductor manufacturing. Although
Scope 1 accounts for a small fraction of emissions for mobile-
device vendors and data-center operators, it comprises over
half the operational carbon output from chip manufacturers
including Global Foundries, Intel, and TSMC [3], [4], [10].
Much of these emissions come from burning perfluorocarbons,
chemicals, and gases.

Scope 2 emissions come from purchased energy powering
semiconductor fabs, offices, and data-centers. They depend on
two parameters: the amount of energy consumed and the GHG
footprint from generating the consumed energy, i.e., grams
of CO2 emitted per kilowatt-hour of energy. Compared with
“brown” energy (e.g., coal, gas), “green” energy (e.g., solar,
wind, nuclear) produces up to 30x fewer GHG emissions.
Scope 2 emissions are especially important in fabs and data
centers.

Fabs need copious energy to manufacture chips. Energy con-
sumption produces over 63% of the emissions from manufac-
turing 12-inch wafers at TSMC [10]. Fab energy consumption
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is expected to rise with next-generation semiconductor fabs
and more advanced process technology nodes.

Scope 2 emissions are also crucially important for data
centers whose operational footprint depends on the overall
energy consumption from thousands of servers. To reduce their
operational footprint, modern warehouse-scale data centers are
procuring higher amounts of renewable energy.

Scope 3 emissions come from all other activities, including
the full upstream and downstream supply chain. They often
comprise business travel, logistics, and capital goods. For tech-
nology companies, a crucial and challenging aspect of Scope
3 analysis is accounting for hardware bought and sold. Data
centers, for instance, contain thousands of server-class CPUs
whose production releases GHGs from fabs. Constructing
datacenters also produces GHG emissions. Similarly, mobile-
device vendors must consider both the GHGs from upstream
manufacturing and downstream use.

B. System-level carbon-output analysis

In addition to the organization-level analysis, carbon out-
put can be computed for individual hardware systems and
components. Knowing the carbon footprint of individual hard-
ware systems is crucial for carbon optimization. The state-of-
industry practice to evaluate the carbon footprint of individual
systems is to conduct life-cycle analyses (LCAs) [11], to
quantify emissions across production/manufacturing, transport,
use, and end-of-life processing, as Figure 1(bottom) shows.

o Production: emissions from procuring or extracting raw
materials, manufacturing, assembly, and packaging.

« Transport: emissions from moving the hardware to its point
of use.

o Use: emissions from the hardware’s operation, including
static and dynamic power consumption.

o End-of-life: emissions from end-of-life processing and re-
cycling of hardware.

Mobile and data-center devices integrate components and
IP from various organizations. The design, testing, and manu-
facture of individual components (e.g., CPUs, SoCs, DRAM,
and HDD/SSD storage) spreads across many technology
companies. Furthermore, mobile devices comprise displays,
batteries, sensors, and cases that contribute to their carbon
footprint. Similarly, data centers comprise rack infrastructure,
networking, and cooling systems; data center construction is
yet another factor. Quantifying individual systems requires
quantifying emissions across fabs, mobile vendors, and data-
center operators. Figure 1(bottom) ties the Scope 1, Scope
2, and Scope 3 (upstream and downstream), of technology
companies to hardware manufacturing and operational use.
This paper uses accredited and publicly reported LCAs from
industry, including Apple, Google, Microsoft, and TSMC.

III. ENVIRONMENTAL IMPACT OF PERSONAL COMPUTING

Using publicly reported carbon-emission data from indus-
try, this section studies the environmental impact of personal
computing devices. We detail the carbon footprint of various
platforms (e.g., mobile phones, wearable devices, personal
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Fig. 2. Breakdown of carbon emissions for various Apple, Google, and
Microsoft personal-computing platforms. As the top chart shows, hardware
manufacturing dominates the carbon output for battery-powered devices (e.g.,
phones, wearables, and tables); most emissions for always connected devices
(e.g., laptops, desktops, and game consoles) come from product use. The
bottom chart shows the absolute carbon output of battery-powered and always
connected devices. Overall, carbon footprint (total, manufacturing, and use)
is variable and scales with the platform.

assistants, tablets, laptops, and desktop PCs). Furthermore,
we conduct a case study on tradeoffs between mobile perfor-
mance, energy efficiency, and carbon emissions for an example
Al inference workload. The results demonstrate that software
and hardware researchers should revisit mobile design to build
platforms that are not only efficient but also sustainable.

A. Personal-computing life-cycle analyses

While the computer systems community has devoted signifi-
cant efforts to optimize the operational efficiency of personal-
computing platforms, the majority of their carbon footprint
owes to hardware manufacturing. For example, in 2019, Apple
reported a company-wide carbon footprint of 25 million metric
tons of CO,. Hardware manufacturing of integrated circuits
(IC’s), boards and flexes, displays, electronics, steel, and
assembly, accounts for over 74% of all emissions. By com-
parison, operational emissions from running Apple devices
amounts to 19% of the company’s total emissions [9].

Among the salient hardware-manufacturing components are
integrated circuits, boards and flexes, aluminum, electron-
ics, steel, and assembly. Manufacturing integrated circuits,
comprises 33% of Apple’s total carbon output, consist of
CPUs, DRAMs, SoCs, and NAND flash storage [5]. In fact,
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capex-related carbon emissions from manufacturing IC’s alone
eclipse opex-related carbon emissions from device energy
consumption. The role of IC’s illustrates the potential impact
computer-architecture and circuit researchers can have on
sustainable-hardware design.

Going deeper than the overall breakdown of personal com-
puting devices, the breakdown of carbon footprint between
manufacturing and use varies across devices.

Takeaway: Manufacturing dominates emissions for battery-
powered devices, whereas operational energy consumption
dominates emissions from always-connected devices.

Figure 2 (top) shows LCAs for different battery-powered
devices (e.g., tablets, phones, wearables, and laptops) and
always connected devices (e.g., personal assistants, desktops,
and game consoles). The analysis aggregates LCAs from
Apple, Google, and Microsoft products released after 2017.
For devices with multiple models, such as the iPhone 11,
iPhone XR, and iPhone SE, we show one standard deviation
of manufacturing and operational-use breakdowns. For all
devices, we aggregate each one’s emissions across its lifetime,
representing an average of three to four years for mobile
phones, wearables, tablets, and desktops [5], [8].

To reduce the carbon footprints of personal-computing
devices, hardware and software designers must consider the
carbon impact of both hardware manufacturing (embodied)
and energy consumption (operational). For instance, Figure 2
(top) shows that manufacturing accounts for roughly 75% of
the emissions for battery-powered devices. Energy consumed
by these devices accounts for approximately 20% of emissions.
By comparison, most emissions for always connected devices
are from operation. Nonetheless, hardware manufacturing ac-
counts for 40% of carbon output from personal assistants and
50% from desktops.

Takeaway: In addition to the carbon breakdown, the total
output for device and hardware manufacturing varies by plat-
form. The hardware-manufacturing footprint increases with in-
creasing hardware capability (e.g., flops, memory bandwidth,
and storage).

Figure 2 (bottom) shows the average absolute carbon emis-
sions for manufacturing (A), operation (X), and the overall
device total (@).

Across devices, the amount of total, manufacturing-related,
and use-related emissions vary. For instance, always connected
devices typically involve more emissions than battery-powered
devices. To illustrate, the total and manufacturing footprint for
an Apple MacBook laptop is typically 3x that of an iPhone.
The varying total and manufacturing levels illustrate that the
embodied emissions depend on the platform design and scale
rather than being a static overhead.

In addition to varying emissions across devices, the carbon
footprint across hardware generations varies as well. As an
example, we consider generations of iPhones 3GS (2008) to
XR (2018). While manufacturing accounted for 40% of iPhone
3GS’ emissions, it is responsible for 75% of emissions in
the iPhone XR. Furthermore, we find the absolute carbon
output increased by nearly 50%, despite the increase in energy-
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Fig. 3. Evaluating carbon footprint between manufacturing- and operational-
related activities for Google Pixel 3 smartphone. Algorithmic Al and hard-
ware advances dramatically shifted carbon emissions toward manufacturing
overhead. The top shows the algorithm-level and hardware-level energy im-
provements for mobile Al inferences. The bottom chart shows how many days
of image processing is necessary for operational output to equal integrated-
circuit-manufacturing output.

efficiency, leading to lower operational emissions [9]. The rise
in total footprint owes to a rising contribution from manufac-
turing owing to increased hardware sophistication (e.g., per-
formance, efficiency, storage and memory capacity, application
support). The opposing energy-efficiency and carbon-emission
trends underscore the inequality of these two factors.

B. Performance and energy versus carbon footprint

In addition to the overall carbon emissions from manufac-
turing and operational energy consumption, we also consider
performance, energy, and carbon footprint tradeoffs for an
example workload: mobile Al inference.

Takeaway: Given the energy-efficiency improvements from
software and hardware innovation over the last decade, amor-
tizing the manufacturing carbon output requires continuously
operating mobile devices for three years—beyond their typical
lifetime.

Figure 3 illustrates the energy (top) consumption of several
well-known convolutional neural networks. Results are for a
unit batch size and 224x224 images on a Google Pixel 3
phone with a Qualcomm Snapdragon 845 SoC. We measured
energy consumption on a Monsoon power monitor. As ex-
pected, algorithmic and hardware innovation has improved
energy efficiency by 36x and 2Xx, respectively. These energy
optimizations are a result of improved performance and power
efficiency; they also also affect carbon output of Al on mobile
devices.

Carbon emissions from hardware manufacturing can be
amortized by lengthening the hardware’s operating time. Here,
we define the starting point of this amortization when the
carbon output from operational use equals that from hardware
manufacturing (i.e., the ratio of opex emissions to capex
emissions is 1). Figure 3 shows this breakeven in terms of the
number of days of continuous operation (bottom) on a Google
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Fig. 4. Carbon footprint of Facebook and Google (two large data center
operators). As data centers increasingly rely on renewable energy, carbon
emissions originate more from Scope 3, or supply-chain emissions (e.g.,
hardware manufacturing and construction).

Pixel 3 phone. We converted our measured power consumption
to operational carbon emissions by assuming the average US
energy-grid output: 380 g of CO5 per kilowatt-hour. Finally,
the manufacturing carbon footprint considers the overhead of
building the SoC alone—based on Apple’s sustainability report
that half of the device’s manufacturing footprint come from
integrated circuits.

Algorithmic and architectural innovation has boosted energy
efficiency, lengthening the amortization time. Figure 3(bottom)
illustrates how many days of continual AI inference are
necessary for the operational carbon footprint to equal the
manufacturing footprint. MobileNet v3 running on a CPU, for
example, takes 5 billion images and 350 days of continuous
operation. DSPs increase the duration to nearly 1,200 days—
a total of 10 billion images—due to 1.5x and 2.2x im-
provements in performance and power efficiency, respectively.
By comparison, the device’s expected lifetime is three years,
or 1,100 days. Generally, given algorithmic and architectural
enhancements, amortizing carbon emissions from hardware
manufacturing requires performing Al inference beyond the
expected lifetime of most mobile devices.

IV. ENVIRONMENTAL IMPACT OF DATA CENTERS

As Al, autonomous driving, robotics, scientific computing,
AR/VR, and other emerging applications become ubiquitous,
it is vital to consider the environmental implications of both
edge and data-center systems. In this section we explore the
environmental impact of data centers. First we consider the
carbon-emission breakdown of Facebook and Google facilities
using industry-reported GHG Protocol data. Next, we discuss
the historical trends of data-center carbon emissions. Our
discussion highlights the positive impact of renewable energy
on these emissions and the need for more-detailed accounting
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and reporting. Finally, we summarize the impact of renewable
energy on data-center footprints.

A. Breakdown of warehouse-scale data centers

Takeaway: For modern warehouse-scale data-center oper-
ators and cloud providers, most emissions are capex-related—
for example, construction, infrastructure, and hardware man-
ufacturing.

Figure 4 illustrates the carbon footprint of Google (2013 to
2018) and Facebook (2014 to 2019). Following the GHG Pro-
tocol, we split emissions into Scope 1 (blue), Scope 2 (green),
and Scope 3 (red). Recall, Scope 1 comprises emissions from
burning refrigerants, gas, and diesel; Scope 2 emissions owe
to purchased energy; and Scope 3 emissions come from the
supply chain (see Section II).

Analyzing the most recent data, Scope 3 comprises the
majority of emissions for both Google and Facebook. In 2018,
Google reported 21x higher Scope 3 emissions than Scope
2 emissions—that is, 14,000,000 metric tons of COsversus
684,000. In 2019, Facebook reported 23x higher Scope 3
emissions than Scope 2 emissions—that is, 5,800,000 metric
tons of COyversus 252,000.

Recall that Scope 3 emissions aggregate the entire supply
chain; a large fraction of them are from data-center capex
overhead such as construction and hardware manufacturing.
In 2019, Facebook reported capital goods—a combination of
construction and hardware manufacturing for servers—account
for half of its Scope 3 emissions.

Similarly, we anticipate the majority of Google’s Scope 3
emissions are from construction and hardware manufacturing.
Figure 4 shows that between 2017 and 2018, the company re-
ported a 5x increase in that output. In comparison, during the
two years, Google’s data-center energy consumption increased
by 30%. The large increase in carbon emissions is a result
of Google additionally accounting and disclosing emissions
from capex-related activities (i.e., hardware manufacturing,
construction). The additional disclosure results in capex-
related emissions dominating opex-related ones. The varying
guidelines for accounting and disclosing end-to-end supply
chain emissions underscores the importance of improved and
standardized measurement.

B. Impact of renewable energy

To decrease operational carbon emissions, data centers are
increasingly employing renewable energy.

Takeaway: Although overall data-center energy consump-
tion has risen over the past five years, carbon emissions
from operational energy consumption have fallen. The primary
factor contributing to the growing gap between data-center
energy consumption and carbon output is the use of renewable
energy.

Figure 4 illustrates the carbon footprint of Google and
Facebook over six years. Although the figure divides these
emissions into Scope 1, Scope 2, and Scope 3, Scope
2 comprises two types: location based and market based.
Location-based emissions assume the local electricity grid
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produces the energy—often through a mix of brown (i.e.,
coal and gas) and green sources. Market-based emissions
reflect energy that companies have purposefully chosen or
contracted—typically solar, hydroelectric, wind, and other
renewable sources. Around 2013, Facebook and Google be-
gan procuring renewable energy to reduce operational carbon
emissions. These purchases decreased their operational carbon
output even though their energy consumption continued to
increase. Thus, minimizing the emissions related to data-center
workloads and hardware must consider renewable energy and
the tradeoffs between opex- and capex-related factors.

The importance of considering the impacts of renewable
energy for data-center scale systems is further highlighted by
sustainability analyses from Intel and AMD. The semiconduc-
tor manufacturers carbon data reports mimic the format of
hardware life cycles categorizing emissions between manu-
facturing, transport, use, and recycling. Assuming a baseline
US energy grid, roughly Intel and AMD report 60% and
45% of the hardware carbon footprint’s owe to hardware
use and energy consumption [9]. With renewable energy,
however, emissions from operational consumption decrease.
For instance, assuming the server-class systems are driven
by solar or wind energy, over 80% of emissions come from
hardware manufacturing.

Designing sustainable data centers should therefore consider
the role of renewable energy, the effect of efficiency increases
on opex-related emissions, and the effect of resource provi-
sioning and leaner hardware on capex-related emissions.

V. ENVIRONMENTAL IMPACT FROM MANUFACTURING

So far, our results show hardware manufacturing comprises
a large portion of emissions in both mobile and data-center
systems. In data centers, renewable energy is a significant
contributor to the opex-related footprint. In this section, we
consider the carbon footprint of chip manufacturing and the
impact of powering fabs using renewable energy.

Takeaway: Using renewable energy to power fabs will
reduce the carbon emissions from hardware manufacturing.
Even under optimistic renewable-energy projections, however,
manufacturing will continue to represent a large portion of
hardware-life-cycle carbon footprints.

Figure 5 shows the carbon breakdown for wafer manufac-
turing at TSMC [10]. The breakdown is normalized to the
baseline energy source. To model the impact of renewable
energy, we vary the carbon intensity of the energy consumed.
Although the precise energy-grid efficiency is unknown, our
analysis considers a range of improvements, including the
best case: replacing coal with 100% wind energy for a 70x
improvement. Using greener energy directly reduces the fab’s
carbon output from consumed energy (green).

Even though using renewable energy can cut a fab’s
hardware-manufacturing carbon emissions, minimizing life-
cycle and hardware-manufacturing emissions will remain im-
portant. As Figure 5 shows, a 64x boost in renewable energy
reduces the overall carbon output by roughly 2.7x, an ambi-
tious goal. By 2025, TSMC estimates renewable energy will
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Fig. 5. Carbon-emissions breakdown for TSMC wafer manufacturing. Re-
newable energy provides up to a 64X reduction in emissions from electricity,
and overall emissions for wafers drops by 2.7 x. Although the reduction will
reduce the carbon output of manufacturing, consideration of capex-related
emissions for mobile and data-center hardware will remain important.

produce 20% of the electricity that drives forthcoming 3nm
fabs [10]. Recall that roughly 75% of the carbon footprint
for battery-powered devices is from hardware manufacturing
(see Section III), and opex is a small fraction for data centers.
Even as fabs employ more renewable energy to reduce their
environmental impact, hardware manufacturing will remain
an important aspect of designing sustainable computers and
workloads.

VI. ADDRESSING CARBON FOOTPRINT OF SYSTEMS

Optimizing the environmental impact of mobile and data-
center computing platforms requires addressing the carbon
footprint from operational energy consumption and hardware
manufacturing. Given its immediate importance and scale, we
must adopt vertically integrated research methods to minimize
the emissions associated with computing. This section outlines
future directions to tackle the environmental footprint of
computing.

A. The need for carbon accounting

The first step to design and optimization is the ability
to quantify the carbon footprint of computing platforms.
Although many organizations publicly report their carbon
emissions, improved accounting and report is crucial to enable
sustainability-aware optimizations. Similar to performance,
power, energy, and area measurement and modeling tools, the
systems and architecture needs commensurate carbon account-
ing methods. This includes a combination of detailed platform-
level life-cycle analyses at the mobile and data-center scale,
as well as component-level carbon footprint breakdown for
processors, memory, storage, and networking IC’s. Standard-
ized accounting and disclosure as well as broader participation
will provide further guidance on tackling salient challenges in
realizing environmentally sustainable systems.

B. Carbon footprint as a first-order design optimization target

In addition to improve accounting and reporting, researchers
and developers across the computing stack must consider
carbon footprint as a first-order design metric alongside perfor-
mance and efficiency. The analysis shown in this work demon-
strates the distinct trends between efficiency optimization and
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carbon emissions across end-to-end hardware life cycles. This
requires researchers and developers to holistically consider
both operational and embodied emissions.

Furthermore, efficiency optimization is insufficient to curb
computing’s rising carbon footprint. While improving effi-
ciency can reduce both operational and embodied emissions,
the benefits are typically overshadowed by rising application-
level demands, as illustrated by Jevon’s paradox. Enabling
sustainable computing requires targeted carbon optimization.

C. Cross-stack carbon optimization

Applications and algorithms. Application- and algorithm-
level optimizations can reduce both operational and embodied
emissions. For example, at the datacenter scale, reducing
application-level demands directly lowers power and infras-
tructure capacity devoted to services. As an example, consider
Al training. The energy footprint of Al training is parameters
based on the footprint of processing one example (E), the
data-set size (D), and the hyperparameter search (H) [12].
Reducing carbon emissions requires training on systems with
fewer resources. Novel methods to train models given lesser
compute and storage capabilities can directly reduce carbon
emissions (i.e., F/, D). Similarly, reducing the hyperparameter-
search factor (H) reduces the necessary number of parallel
training nodes. Generally, algorithmic optimizations for scale-
down systems will drastically cut emissions.

Systems and hardware. Systems researchers can guide
overall mobile- and data-center-scale system provisioning to
reduce both operational and embodied emissions. Recently,
systems have scaled up and out to boost performance. Future
sustainable systems must consider strict resource budgets
based on application and service-level requirements. Further-
more, over the past 20 years, substantial effort has been
devoted to energy-efficient mobile and data-center systems.
As devices rise to the billion-transistor scale, workloads ex-
perience low utilization. Researchers must design hardware
to balance under utilized dark silicon with the overhead of
embodied emissions. By judiciously balancing general pur-
pose and specialized circuits, hardware platforms can directly
reduce carbon output.

Circuits and devices. Future circuit research can also
reduce embodied carbon emissions. First, it may consider
circuit-level resource provisioning to balance performance,
area, energy efficiency, and carbon. Vertically integrated re-
search into specializing low-carbon circuits for salient appli-
cations will also decrease embodied emissions. Finally, em-
bodied emissions must be addressed through device modeling,
characterization, design, and fab manufacturing. For instance,
hardening a device’s reliability and endurance extends its
lifetime (e.g., DRAM, NAND-flash-memory), cutting embod-
ied carbon emissions. Moreover, sustainable manufacturing
processes via novel devices, yield enhancement, fabrication
materials, renewable-energy sources, and maximum operating
efficiency will directly reduce production overhead.

VII. CONCLUSION AND FUTURE WORK

As computing technology becomes ubiquitous, so does
its environmental impact. This work shows how develop-
ers and researchers can approach the environmental con-
sequences of computing, from mobile to data-center-scale
systems. First, we demonstrated that, going forward, reducing
operational energy consumption alone fails to reduce end-
to-end carbon emissions. Next, we described the industry’s
practice for quantifying the carbon output of organizations
and individual systems. Finally, on the basis of our analysis,
we characterized the carbon emissions of various hardware
platforms. Our effort demonstrates that over the last decade,
hardware manufacturing—as opposed to operational energy
consumption—has increasingly dominated the carbon foot-
print of mobile systems. Similarly, as more data centers
employ renewable energy, the dominant source of their total
carbon footprint is shifted to hardware manufacturing.

We hope this work lays the foundation for future inves-
tigation of environmentally sustainable systems. Designing,
building, and deploying such systems requires collective in-
dustry/academic collaboration.
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