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ABSTRACT
Exploiting sparsity is a key technique in accelerating quan-
tized convolutional neural network (CNN) inference on mo-
bile devices. Prior sparse CNN accelerators largely exploit un-
structured sparsity and achieve significant speedups. Due to
the unbounded, largely unpredictable sparsity patterns, how-
ever, exploiting unstructured sparsity requires complicated
hardware design with significant energy and area overhead,
which is particularly detrimental to mobile/IoT inference sce-
narios where energy and area efficiency are crucial.

We propose to exploit structured sparsity, more specifically,
Density Bound Block (DBB) sparsity for both weights and ac-
tivations. DBB block tensors bound the maximum number of
non-zeros per block. DBB thus exposes statically predictable
sparsity patterns that enable lean sparsity-exploiting hard-
ware and efficient memory access. We propose new hardware
primitives to implement DBB sparsity for (static) weights and
(dynamic) activations, respectively, with very low overheads.

Building on top of the primitives, we describe S2TA, a sys-
tolic array-based CNN accelerator that exploits joint weight
and activation DBB sparsity and new dimensions of data
reuse unavailable on the traditional systolic array. S2TA
in 16nm achieves more than 2× speedup and energy reduc-
tion compared to a strong baseline of a systolic array with
zero-value clock gating, over five popular CNN benchmarks.
Compared to two recent non-systolic sparse accelerators, Ey-
eriss v2 (65nm) and SparTen (45nm), S2TA in 65nm uses
about 2.2× and 3.1× less energy per inference, respectively.

1. INTRODUCTION

Convolutional neural network (CNN) inference has quickly
become an important workload in (ultra) low-power mobile
[12,48] and IoT/embedded [5,10,11,21] devices. CNN accel-
erators are now a standard component in mobile SoCs [17,24,
42,47], where 8-bit integer (INT8) CNN inference is the most
widely used [41] due to the stringent requirements on energy
efficiency (TOPS/W) and area efficiency (TOPS/mm2).

A common strategy to improve CNN accelerator efficiency
is to exploit sparsity, as zeros in the data tensors (both weights
and activations) reduce the theoretical compute and storage
requirement significantly. Zeros in CNNs are statistically dis-
tributed in a random pattern. Exploiting the random sparsity,

† Denotes equal contribution.

which is also commonly referred to as unstructured sparsity,
has been the main focus of sparse hardware accelerators to
date [6, 13, 15, 30, 36]. Exploiting unstructured sparsity, how-
ever, requires complex hardware structures that introduce
significant area and energy overhead, which are particularly
detrimental to mobile/embedded inference scenarios.

Exploiting unstructured sparsity introduces hardware over-
heads due to additional buffers used in data manipulation.
There are two fundamental approaches to supporting random
sparsity. The first is the inner-product style [6, 38] which re-
quires an operand gather stage to evenly distribute the unpre-
dictable workload to the PEs to perform the MAC operations.
The second, is the outer-product style which has more con-
ventional operand distribution and MAC operations, but then
requires a result scatter stage to spread the non-contiguous
results of the individual MACs over the output feature maps.
Both of these approaches introduce significant hardware over-
heads in the form of large buffers that drastically degrade the
energy and area-efficiency of the accelerator.

We quantitatively show that the additional buffers required
to exploit unstructured sparsity, which may seem like nitty-
gritty engineering details, in fact increase the energy per
MAC of a baseline (systolic array) dense accelerator by 71%.
As a result, random sparse accelerators published to date have
demonstrated high speedup, but due to hardware overheads,
have limited energy and area efficiency gains.

We argue that the sparsity-exploiting microarchitecture
structures must be lightweight for it to be beneficial to ex-
ploit sparsity at all in mobile/embedded CNN accelerators.
Otherwise, the energy/area overheads can easily eclipse the
speedup gains. To that end, we propose to exploit structured
sparsity, which has regular sparsity patterns that allow the
hardware additions required to be very lean. In particular, we
focus on Density Bound Block (DBB) [26] format, which
tiles data tensors into blocks, and then introduces a bound
on the maximum number of non-zero elements per block.
DBB overcomes both of the challenges with random spar-
sity. Firstly, the maximum number of MAC operations is
fixed, which significantly achieves high PE utilization with-
out operand buffers. Secondly, the blocked data limits the
location of output results, eliding distributed accumulators.

We first propose two primitives: W-DBB and A-DBB,
which exploit DBB in weight and activation sparsity, respec-
tively. Weight sparsity is statically known, and thus the hard-
ware design is relatively straightforward. Activation sparsity,
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Figure 1: Energy breakdown for a conventional dense INT8
systolic array accelerator, with typical 50% CNN sparsity.
The INT8 MAC datapath itself is very compact (consuming
only 20% of the energy), while the operand/result buffers
dominate.

however, is dynamic. We propose a dynamic pruning scheme
co-designed with a novel time-unrolled architecture to imple-
ment A-DBB.

Building on W-DBB and A-DBB, we describe how to
integrate the two building blocks into a fully-sparse CNN
accelerator that efficiently exploits sparsity in both weights
and activations. In particular, we focus on the well-known
systolic array architecture, popular in mobile/embedded infer-
ence scenarios due to its extreme efficiency arising from high
data reuse. We show that both W-DBB and A-DBB can be
easily integrated into a classic SA architecture by introducing
a tensor PE (TPE) design enabling further efficiency gains.

In summary, this paper makes the following contributions:

• Quantifying Overhead of Exploiting Unstructured
Sparsity We provide the first quantitative analysis of
the hardware overheads (area and energy) of exploit-
ing unstructured sparsity. We show that the additional
operand and accumulator buffers introduce about 50%
and 10% energy and area overhead compared to the
datapath of a baseline dense INT8 CNN accelerator.
These overheads are amortized in floating-point designs
[27, 32, 38], where the datapath power is much higher,
but in the mobile INT8 case, these overheads eclipse
the gains.

• Joint Weight/Activation DBB Sparsity We propose
an architecture that exploits DBB sparsity in both weights
and activations. This is non-trival, because while weight
sparsity is known offline, activation sparsity is not known
until runtime and can vary wildly. We propose Dynamic
Activation Pruning (DAP), which co-designs training
time activation DBB pruning and novel run-time hard-
ware support. DAP compresses activations by 2–3×
with negligible impact on test accuracy.

• Time-Unrolled Variable DBB Sparsity We propose
a new time-unrolled microarchitecture to serialize the
processing of MACs in a DBB block across time.

• Structured Sparse Tensor Accelerator (S2TA) We
show that joint DBB weight and activation sparsity can
be efficiently incorporated into CNN accelerators. As
a case study, we target the systolic array template, by
extending the traditional scalar PE into a tensor PE
(TPE) that consumes compressed DBB data blocks.

• Evaluation in 16nm and 65nm We implement the
S2TA design in both 16nm and 65nm technology. On a

range of popular models (AlexNet, MobileNetv1, VGG-
16, ResNet50v1), S2TA demonstrates 2.08× lower en-
ergy compared to the baseline without DBB. Compared
to the state-of-the-art unstructured sparse accelerator
SparTen [13] and Eyeriss-v2 [6], S2TA has 2.2× and
3.1× lower energy on AlexNet in 65nm technolgy.

2. MOTIVATION
In this section, we review the two fundamental approaches

to supporting random sparsity in embedded CNN accelerators:
(1) inner-product style with operand gather, and (2) outer-
product style with result scatter. Both introduce significant
hardware overheads that drastically degrade the energy and
area-efficiency of the accelerator.

2.1 Sparsity-Exploiting Structures Must be Ef-
ficient for Mobile DNN Inference

The simplest way to exploit sparsity in hardware is Zero
Value Clock Gating (ZVCG). Fig. 6b shows how ZVCG sim-
ply detects zero operands (weights and activations) and clock-
gates the operand and/or result registers to reduce power
dissipation. While ZVCG gives a significant reduction in
datapath power [7, 33], it does not increase throughput, nor
does it reduce the SRAM bandwidth (as the zeros are still
stored and read in sequence). More importantly, ZVCG re-
duces the hardware utilization and, thus, does not improve
area efficiency (TOPS/mm2), which is critical for mobile.

Sparse GEMM potentially achieves much higher gains
than ZVCG by reducing both the number of MACs that need
to be executed and also the memory bandwidth. To that
end, only the non-zero values and a corresponding positional
index are stored. The index encodes the position of each non-
zero element in the expanded matrix, via either compressed
sparse row/column (CSR/CSC) [15, 30] format or a simple
bitmask [13]. At runtime, both the SRAM bandwidth, and
the number of MACs executed are significantly reduced.

However, implementing fully sparse GEMM on energy and
area-constrained INT8 mobile/IoT accelerators is challenging.
Basically, removing MACs with zero operands breaks the
regular compute pattern and requires complex on-chip buffer-
ing and data re-ordering to maximize the hardware utilization.
The additional buffers significantly increase the energy and
area overhead. Fig. 1 shows the energy breakdown of an
INT8 dense systolic array accelerator for a typical CNN layer.
The data is obtained from the extracted post-layout power
estimation in a 16nm technology node with fully annotated
switching activity.

Key Insight The energy consumption of the actual INT8
MAC computation in Fig. 1 is significantly overshadowed by
the buffers used for operands and accumulators. Therefore,
any sparsity-exploiting scheme must not introduce significant
overheads that exacerbate the data buffering cost, as that is
already the dominant energy consumer.

Today’s sparsity-exploiting mechanisms, unfortunately, in-
troduce significant area and energy overhead for data buffer-
ing due to non-trivial data re-ordering, which can be classified
into two fundamental categories, as illustrated in Fig. 2. The
first category (Fig. 2a) performs a gather operation in the
front-end to collect matching pairs of non-zero operands be-
fore buffering and finally performing MAC computations in
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Figure 2: Hardware structures for sparse GEMM require
explicit data re-ordering, which introduces overheads (blocks
in red), in the form of either (a) an operand gather stage before
the MAC compute (SMT-SA [38]), or (b) a result scatter with
a distributed accumulator (SCNN [30]).
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Figure 3: Effective energy/area and speedup, with breakdown
by component for INT8 systolic array variants processing a
typical convolution with 50% weight and activation sparsity.
The SMT, our INT8 re-implementation of [38], achieves
speedup, but buffering overheads actually result in worse
energy efficiency than even the dense case.

the conventional manner. This approach is seen in previous
work, including EIE [15], Eyerissv2 [6], and SMT-SA [38].
The second approach (Fig. 2b) avoids re-ordering operands
in the front-end, by computing an outer-product (i.e. mul-
tiplying all non-zero weights with all non-zero activations).
This approach is seen in accelerators such as SCNN [30] and
SparTen [13]. However, this requires a scatter operation on
the partial products using a very large number of read-modify-
write accumulators to store the output activations. The rest of
this section quantifies the overhead associated with these two
approaches.

2.2 Overhead 1: Operand Gather Structure
The weight (W ) and activation (A) tensors have indepen-

dent random sparsity patterns. Thus, during execution, we
must walk the indexes to find matching pairs of non-zero
positions to pass to the MAC units. The number of matches
varies wildly depending on the position and the input data,
which gives rise to an unpredictable number of MACs in any
single cycle, leading to variable, unbalanced PE utilization at
run time.

To keep the MAC utilization high, this load imbalance is
usually evened out using a data staging buffer, which collects

Table 1: Comparison of PE buffer sizes per INT8 MAC.
Outer-product style accelerators (SCNN and SparTen) require
large buffers per MAC compared to a baseline systolic array.

Architecture Operands Accumulators Total

SCNN [30] 1.28 KB 0.375 KB 1.65 KB
SparTen [13] 864 B 128 B 0.99 KB
Eyeriss v2 [6] 165 B 40 B 205 B
SA-SMT1 [38] 16 B 4 B 20 B
Systolic Array1 [18] 2 B 4 B 6 B
S2TA-W2 (Ours) 0.375 B 0.5 B 0.875 B
S2TA-AW3 (Ours) 0.75 B 4 B 4.75 B

1Our INT8 implementation. 24/8 W-DBB (4×4×4_4×8).
3Time-Unrolled AW-DBB (8×4×4_8×8, BZ=8).

the matched operand pairs and packs them into groups of
a fixed size that matches the datapath width [27, 32]. The
hardware supporting this approach is shown in Fig. 2a. While
the non-zero operand matching itself may be of a reasonable
cost [13], the data staging buffer (typically FIFO) introduces
high energy and area overheads, which are especially signifi-
cant for low energy/area INT8 mobile/embedded accelerators.

Fig. 3 quantifies the energy and area overhead of the FIFOs
used for distributing matching pairs for INT8 operands. We
compare the energy and area across four designs: a dense
systolic array (SA), a systolic array with ZVCG optimization
(SA-ZVCG), and two variants of SA-SMT, a recent systolic
array that exploits random sparsity using operand FIFOs [38].
The two SA-SMT variants differ by their FIFO depths; one
uses 2-entry FIFOs (SMT-T2Q2) and the other uses 4-entry
FIFOs (SMT-T2Q4). The PPA is obtained for a typical
convolution layer with 50% weight and activation sparsity.
The energy and area are broken down into the two key SA
components: MACs (compute) and the on-chip buffers.

Key Insight We find that the two SA-SMT variants achieve
1.6× and 1.8× speedup. However, this requires additional
buffering for load balancing, introducing significant area and
energy overheads. Overall, despite the speedup achieved,
SMT shows nearly 50% higher power and roughly same area
to SA-ZVCG, with INT8 operands required for mobile.

2.3 Overhead 2: Result Scatter Structure
A common alternative to the gather structure for matched

operands, is to multiply every non-zero weight with every
non-zero activation (i.e., an outer-product). In this approach,
however, the MAC operations being executed in parallel cor-
respond to different, typically non-contiguous elements in
the output feature map. Therefore, the results of individual
MACs must be properly distributed to the right elements in
the output feature map, using a scatter operation.

Distributing the results is expensive because, instead of
using a simple local output stationary accumulator register in
the dense accelerator, one must construct a very large accu-
mulator buffer using FF or SRAM, where each accumulator
requires a read-modify-write operation to accumulate the par-
tial sum in the correct place. The area and power overhead of
this large accumulator buffer is, again, significant for INT8
inference accelerators, where the datapath logic is relatively
cheap compared to the buffers (Fig. 1).

Tbl. 1 quantifies the overhead of the additional buffers that
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Figure 4: Comparison of (a) an unstructured sparse tensor,
and (b) a density bound block (DBB) sparse tensor. DBB
constrains the maximum number of non-zeros (NNZ) per
block, such that the max workload is known at design time.
The NNZ shown is 3, and the block size (BZ) is 8.

implement the result scatter function. Specifically, the table
compares the buffer size per PE of the baseline systolic array
and a range of different accelerators. Of these accelerators,
SCNN [30] and SparTen [13] implement a scatter structure.
While the systolic array requires only 2B for storing operands
and 4B for storing the accumulators per PE, the storage re-
quirement is significantly higher for other accelerators: e.g.,
SCNN [30] reports a total buffer size of 1.65 KB per PE, and
SparTen [13] requires about 1 KB per PE.

3. MAIN IDEA AND DESIGN OVERVIEW
This section first introduces the DBB structured sparsity,

which we argue enables an efficient sparsity-exploiting ar-
chitecture (Sec. 3.1). We then highlight the rationale of our
architecture support for DBB, with the detailed designs to
follow in the subsequent sections (Sec. 3.2).

3.1 Exploiting Structured Sparsity
The sparsity-exploiting structures must be lightweight to

be at all beneficial in exploiting sparsity in mobile CNN accel-
erators. To that end, we propose to exploit structured sparsity,
which has regular sparsity patterns that allow the hardware
design to be lean. In particular, we focus on leveraging the
Density Bound Block (DBB) sparsity. DBB essentially di-
vides an (activation/weight) tensor into blocks and sets the
upper bound of the number of non-zero (NNZ) elements in
each block. Fig. 4 compares unstructured sparsity with DBB
sparsity. While the overall sparsity level is the same, DBB
sparsity constrains the maximum number of NNZs in a block
such that the maximum workload is known at design time.

DBB provides two benefits. First, processing DBB blocks
in order ameliorates the load imbalance problem and removes
the distributed accumulator problem encountered with un-
structured sparsity, avoiding the energy- and area-hungry
buffers. Second, DBB lends itself to a simple hardware de-
sign based around the movement of small DBB data blocks,
as we will illustrate with our S2TA accelerator (Sec. 6). This
compact and efficient hardware architecture is possible be-
cause results are naturally generated in sequential blocks; no

Figure 5: A 4/8 DBB example, where BZ=8 and NNZ=4.
The tensor is blocked along the channel dimension. The block
is compressed by storing only the non-zero elements and their
positional index bitmask (M). The same compression applies
to weights and activation tensors.

data reordering is required.
Fig. 5 gives a concrete DBB example, where the block size

(BZ) is 8 and the maximum number of non-zero values (NNZ)
per block is 4. In this particular case, the tensor blocking is
performed along the channel dimension, which is a common
strategy to avoid all the elements in any single channel falling
into the same block. The compression itself has two steps.
First, the non-zero elements are stored by removing the zeros.
Second, a simple bitmask M is added to encode the presence
of a non-zero element at each location in the expanded block.

We usually refer to a DBB block by the ratio NNZ/BZ.
The example in Fig. 5 would be a 4/8 block. Note that any
blocks that have less than NNZ non-zero elements will in-
clude one or more zeros in the compressed form. For sparse
DBB execution, a block cannot contain more than NNZ non-
zeros, achieved via pruning (Section 4 and 5). However, we
also support a conventional dense mode for unpruned models.

3.2 Design Overview
The rest of the paper discusses how to build an efficient ac-

celerator to exploit weight and activation DBB sparsity, with-
out significant accuracy drop. Weight sparsity is statically
known, and thus the hardware design is relatively straightfor-
ward. Activation sparsity, however, is dynamic. We propose
a dynamic pruning scheme co-designed with a novel time-
unrolled architecture to exploit DBB sparsity in activations.

Building on top of DBB compression for both weight and
activation, we describe how to integrate them into a complete
DNN accelerator (Sec. 6). In particular, we focus on the
popular systolic architecture. We show that both weight and
activation DBB support can be easily integrated into a classic
SA architecture by grouping PEs, leading to a tensor PE
(TPE) design. Critically, the TPE design naturally exposes
additional dimensions of data reuse that is unobtainable in
the traditional SA design, enabling further efficiency gains.

We note that weight DBB sparsity has been used in a com-
mercial A100 GPU from Nvidia [28]. Our design differs in
two ways. First, A100 supports only fixed 2/4 weight sparsity
with up to 2× speedup, while our design comprehensively
exploits both weight and variable activation DBB sparsity
for up to 8× speedup using a novel time-unrolled architec-
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Figure 6: Parallel sparse MAC hardware. (a) Dense 8-MAC vector dot product (DP8). (b) Dense DP8 with zero-value clock
gating (ZVCG) reduces power by exploiting random sparsity. (c) 4/8 weight DBB (W-DBB) sparsity uses only 4 MACs (DP4),
with an 8:1 mux (M8) for each (DP4M8). (d) A/W-DBB uses a 4-way mux (DP4M4), but is limited to fixed DBB sparsity ratios.
(e) W-DBB and Time-Unrolled, serialized A-DBB allow the hardware to support activation density from 1/8 to 8/8, tuned on a
per-layer basis, implemented with a very cheap single MAC and 4:1 mux (DP1M4). M denotes index bitmask.

ture (Section 5.2). We show that activation DBB requires
non-trivial extensions from previous weight DBB due to the
dynamic nature of activation sparsity. Second, our design
focuses on the systolic array architecture, which is well suited
to low-power mobile/embedded systems. To fairly compare
with A100, we implement an A100-featured systolic design,
S2TA-W, as a baseline in the evaluation. Sec. 7 and 8.2.

4. STATIC WEIGHT DBB SPARSITY
This section describes an architecture to apply DBB to

weight sparsity (W-DBB). Note that weight DBB has been
explored in [19, 45] and the proprietary A100 GPU from
Nvidia with fixed 2/4 weight only W-DBB [28, 31]. Here,
describing it allows us to explain the general principle of
DBB sparsity, which we additionally apply to activations too.

The key advantage of weight DBB is that the load imbal-
ance problem is greatly relaxed, as we have bounded the
maximum number of non-zero elements per block and can
provision hardware based on this. We illustrate this by modi-
fying the simple parallel (vector) architecture template given
in Fig. 6a, which show an 8-MAC dot product, which we
refer to as DP8. Building on top of DP8, Fig. 6c shows a
datapath for a 4/8 W-DBB block, using only 4 hardware
MACs instead of 8, yielding a 50% reduction in MACs at the
same throughput, and a 37.5% reduction in weight operand
bandwidth. Since this design has only 4 MACs (DP4), with
an 8-input mux (M8)1, we call this configuration DP4M8.

The key to the hardware for W-DBB is the 8:1 MUX in
front of each MAC. The MUX, controlled by the positional
bitmask(M) from the weight DBB block, is used to steer the
correct activation element into the MAC. The overhead of this
MUX is negligible, especially compared to the cost required
to exploit unstructured sparsity (Sec. 2). The DP4M8 (Fig. 6c)
also accommodates fall back to dense operation, which is
essential to support models that have density greater than
50%.

5. DYNAMIC ACTIVATION DBB SPARSITY

1Omitting trivial optimization of mux widths for the sake of clarity.

Activation DBB compression (A-DBB) can be used to-
gether with W-DBB, allowing us to exploit the full potential
of sparse data, without significant overheads. However, A-
DBB is more challenging than W-DBB because: (1) activa-
tion sparsity is unbounded, and (2) optimal activation DBB
sparsity varies significantly across the layers of a network. In
this section, we describe the co-designed Dynamic Activation
Pruning (DAP) and time-unrolled variable DBB architecture.

5.1 Dynamic Activation Pruning (DAP)
While weights can be compressed ahead of time (offline),

activations are the result of runtime computation and there-
fore must be compressed online. To do this, we propose
Dynamic Activation Pruning (DAP), which prunes and com-
presses the dense activation tensors into the DBB format.
The random sparsity of a given activation tensor may have
more non-zeros in a block than allowed by the DBB NNZ.
Therefore, DAP implements simple Top-NNZ pruning to keep
the block elements with the largest magnitude. As with W-
DBB (Fig. 5), the activation tensor is first decomposed into
1×1×BZ blocks along the channel dimension.

DAP is a lossy scheme, and can degrade test accuracy
on some models if NNZ/BZ is small. For example, Mo-
bileNetV1 shows a test accuracy drop from 71% to 56.1%
when using 4/8 DAP for all point-wise CNN layers. We
propose an extension to the conventional DNN training pro-
cedure to make up any accuracy loss from DAP (Sec 8.1).

5.2 Architectural Support for A/W-DBB
Basic Design A simple implementation of joint DBB

sparsity in a vector datapath is given in Fig. 6d, where both
weights and activations are compressed to reduce operand
bandwidth. As before, the only overheads are a single datap-
ath multiplexer before each MAC, which this time is reduced
to 4:1 (DP4M4). The index bitmasks can be trivially com-
pared to determine matching non-zero positions, and unused
MACs can be clock gated to further reduce power. Although
this doesn’t increase utilization of MACs, both weight and ac-
tivations are now compressed in DBB format, thus the power
to load both from SRAM is decreased dramatically.

Challenges to Support Variable A-DBB However, acti-
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vation DBB introduces a significant challenge because the
maximum sparsity varies significantly across layers, for ex-
ample for ResNet50v1, the per-layer tuned activation DBB
ranges from 8/8 (dense) in early layers down to 2/8 towards
the end. Therefore, while weight density typically hovers be-
low 50% and therefore 4/8 W-DBB is a safe choice, forcing
a fixed activation DBB sparsity (A-DBB) would be a huge
compromise and result in diminished gains. Therefore, it is
necessary to support variable A-DBB sparsity in the architec-
ture. Naively supporting variable DBB sparsity in hardware
reduces utilization and leads to low energy and area efficiency.
For example, if we implement a 4/8 DBB datapath and run a
model with 2/8 DBB, the utilization would drop by ∼50%.

Time Unrolled Architecture for Variable A-DBB To
support variable activation (A-DBB) sparsity efficiently, our
key idea is to switch from unrolling the elements in the A-
DBB blocks spatially (Fig. 6d) to serializing them in time
(Fig. 6e). This simply means that we process one element of
the activation block per cycle using a single MAC, over multi-
ple cycles. For example, a layer with low density activations
can use 1/8 DBB, requiring just one cycle per block. On the
other hand, a layer with denser 5/8 DBB activations requires
five cycles. In this way, we can now freely vary the activation
block density per layer directly by changing the number of
cycles per block, from 1/8 to 8/8. Meanwhile, the datapath
utilization and operand bandwidth remain constant.

6. STRUCTURED SPARSE TENSOR ACCEL-
ERATOR (S2TA)

This section describes how to integrate the architectural
support for W-DBB and variable A-DBB into a DNN acceler-
ator to exploit weight and activation sparsity. As a case-study,
we focus on systolic array-based DNN accelerators. Due to
their superior efficiency arising from local register-to-register
operand reuse [22], the systolic array has been widely pro-
moted for CNN accelerators [23,34,35,37,38], and even used
in commercial products [18]. We call our DBB-exploiting
systolic array S2TA, with two main variants: (1) S2TA-W
as a comparison baseline targeting W-DBB alone, and (2)

our optimal time-unrolled S2TA-AW exploiting joint A/W-
DBB.

6.1 Overall Architecture
The key to supporting DBB sparsity in a systolic array is to

replace the traditional scalar PE with a Tensor PE (TPE). A
scalar PE (Fig. 7b) accepts a single pair of operands per cycle
and computes a single MAC. A TPE (Fig. 7c), in contrast,
accepts a pair of fixed size operand blocks per cycle.

TPE is a natural design choice to support DBB, since both
weights and activations are naturally blocked in DBB. Each
TPE essentially computes the MACs between an activation
tensor and a weight tensor. One can implement the TPE using
the DP4M8 MAC unit in Fig. 6(c) to form S2TA-W. For the
time-unrolled S2TA-AW, the DP1M4 MAC unit in Fig. 6(e)
can be directly used as the TPE implementation.

A TPE can be configured in a variety of ways. For in-
stance, Fig. 7(c) shows a TPE that accepts a weight tensor
and an activation tensor in 4 cycles, with size A×B

′
=2×4 and

B×C=4×2, where B=4 is NNZ of weight DBB blocks. The
degenerate case of a 1×1×1 TPE is equivalent to the scalar
PE from a traditional SA (Fig. 7b). Fig. 7c shows a 2×4×2
TPE to exploit joint A/W-DBB, which is implemented by con-
necting four time-unrolled scalar DP1M4 datapath in Fig. 6(e)
together in a pure outer-product fashion. In contrast, a TPE
implemented with DP4M8 datapath (Fig. 6(c)) for exploiting
W-DBB alone is reminiscent of a 4-way dot-product with
dense A×B activation and sparse NNZ×C weight tensor in-
puts to the TPE.

At the array level, TPEs operate in the usual systolic fash-
ion as shown in Fig. 6a: each TPE receives a pair of tensor
operands from adjacent neighbors and passes them on, except
that the operands are tensors instead of scalar values. Net-
works are mapped onto the array using simple matrix tiling,
similar to the TPU [18], except we use output-stationary.

Data Reuse In addition to naturally supporting DBB spar-
sity, the TPE organization exposes two new dimensions of
data reuse compared to the 1× 1× 1 PE organization in
classic systolic arrays. First, moving from a scalar MAC

6



M
ag

ni
tu

de
 M

ax
po

ol

0
4

1
5

2
6

-1

-7

M
ag

ni
tu

de
 M

ax
po

ol

-7

0
4

1
5

2
6

-1

M
ag

ni
tu

de
 M

ax
po

ol

-7

0
4

1
5

2
6

-1

M
ag

ni
tu

de
 M

ax
po

ol

-7

0
4

1
5

2
6

-1

M
ag

ni
tu

de
 M

ax
po

ol

-7

0
4

1
5

2
6

-1

-7

0
4

1
5

2
6

-1

Input 
Block

Top-1
M: 8’h04

Top-2
M: 8’h05

Top-3
M: 8’0D

Top-4
M: 8’h4D

Top-5
M: 8’h4F

Figure 8: Hardware DAP array, consisting of cascaded mag-
nitude (absolute value) maxpool stages, configured for an
input block of BZ=8, with NNZ≤5. The elements in red
are discounted in consecutive maxpools. For 4/8 DBB, the
output will be the elements [4,5,−7,6] and the positional bit
mask M=8′h4D.

to a tensor-wise product in the TPE introduces intra-TPE
accumulator reuse, as we now achieve multiple MACs per
accumulator update, but lower the chance of ZVCG. Second,
moving from a single scalar input to tensors introduces intra-
TPE operand reuse, as each operand arriving at a TPE is used
more than once. This amortizes the cost of moving operands
across the array, amongst multiple MACs.

These two new forms of data reuse result in much smaller
on-chip buffer sizes, as the flip-flops required in the TPE
are increasingly shared amongst a larger number of MAC
units. Table 1 shows that S2TA-W with a 4×4×4_4×8 TPE
array, and time-unrolled 8×4×4_8×8 S2TA-AW for BZ=8
have ∼7–1,886× less total buffers per MAC than previous
architectures. As a result, a larger TPE would also increase
the energy efficiency, albeit at a marginally reduced clock
frequency. Note that the outer-product TPE is more efficient
than the dot-product counterpart due to increased data reuse.

6.2 Hardware Support for DAP
To support A-DBB, the hardware must implement DAP,

which simply selects the NNZ activation elements with the
largest magnitude from the BZ-block (Section 5.1).

The challenge of providing hardware support for DAP is
that the NNZ in a A-DBB block is variable at run time. To
support this, the DAP hardware cascades NNZ number of
maxpool stages. Fig. 8 shows the DAP hardware. Each max-
pool selects the largest magnitude elements from the input
block through binary comparison using BZ - 1 comparators,
which in our current design is fixed to contain 8 elements
as a block size of 8 is empirically found to provide a good
balance between accuracy and efficiency (Sec. 8.1).

We cap the maxpool stages at 5, since higher NNZ would
usually not lead to significant efficiency gains. Thus, the DAP
hardware (Table 2) supports a A-DBB sparsity ratio ranging
from 1/8 to 5/8, bypassing any unused stages.

6.3 Other Design and Implementation Details
On-chip SRAM As is commonplace for accelerators, we

heavily leverage local software managed SRAM [25] to pro-
vide a low-cost operand supply. The 0.5MB weight buffer
(WB) and the 2MB activation buffer (AB) are separate. Both
are double buffered to overlap computation in the TPE array
and DMA data transfer. The SRAM is grouped, rather than

Table 2: Area and power breakdown of the S2TA-A/W design
using a 16 nm process node, 8×4×4_8×8 TPE configuration
for BZ=8, with 4 TOPS peak throughput for 4/8 weight and
dense activation.

Component Power, mW Area, mm2

MAC Datapath and Buffers 317.7 (58.7%) 0.72 (19.1%)
Weight SRAM (512KB) 69.4 (12.8%) 0.54 (14.3%)
Activation SRAM (2MB) 93.4 (17.2%) 2.16 (57.3%)
Cortex-M33 MCU [1] ×4 50.4 (9.3%) 0.30 (8.0%)
DAP Array 10.4 (2%) 0.05 (1.3%)

Total 541.3 (100%) 3.77 (100%)

distributed, so we can use large high density SRAMs.
Local MCU with SIMD We implement non-GEMM op-

erations such as activation functions, pooling, scaling, nor-
malization and data type casting using Arm Cortex-M33 [1]
microcontrollers (MCUs), which have 32-bit SIMD instruc-
tions [2]. M33 is very small (0.008mm2 [1]) and low power
(3.9µW/MHz [1]) in 16 nm. Control and data movement
(DMA) tasks are also performed by the MCUs, e.g. loading
the input image into AB. We use a cluster of 4 MCUs each
with a small 64KB control store SRAM, which is sufficient to
ensure that the MCUs are never the performance bottleneck.

7. METHODOLOGY
Automatic RTL Generation The S2TA accelerator is

highly modular and can be configured to make a calculated
trade-off between area, performance, and power consumption.
Instead of evaluating an arbitrary design point, we implement
a parameterized Python RTL generator to explore the full
design space, defined by five main parameters: the three
TPE dimensions (A, B, C in Sec. 6.1) and the dimension of
the entire SA (M, N); altogether denoted as A×B×C_M×N.
Each design can be further configured with any combination
of W-DBB, A-DBB, ZVCG, and time-unrolling.

The RTL generator produces synthesizable Verilog RTL,
along with a testbench suite. Each design is automatically
validated in Synopsys VCS using the generated testbench,
which executes inference on a given CNN model. This gener-
ates accurate performance (throughput) metrics. During the
simulation, we also log value change dump (VCD) switching
activity traces used for accurate annotated power simulation.

Physical Design and Evaluation To evaluate area and
power, each design goes through a complete EDA flow con-
sisting of Synopsys and Cadence tools, with the TSMC PDKs
and Arm multi-Vt cell libraries and single-ported SRAM com-
pilers. We used both TSMC 16nm FinFET and TSMC 65nm
technology. The clock frequency is constrained to 1GHz in
16nm (500MHz in 65nm) at the slow corner, with multiple
process, voltage and temperature corners for setup and hold
timing. Power analysis was performed at the typical corner,
using Synopsys PrimeTimePX, with the parasitic-annotated
netlist and switching activity from VCD simulation traces.

S2TA-A/W Design Point Based on typical mobile DNN
accelerator specs, we set a hard constraint of 4 TOPS peak
(dense) throughput and clock frequency of 1GHz in 16nm
(500MHz in 65nm). We then sweep the design space to iden-
tify designs on the area-vs-power frontier, from which we
identify the TPE array design with the lowest power, which
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is the 8×4×4_8×8 outer-product TPE implemented with the
time-unrolled DP1M4 datapath (Fig. 6(e)). This configura-
tion with 4/8 W-DBB and variable A-DBB is referred to as
S2TA-AW, and is used throughout the evaluation. Full area
and power breakdown of S2TA-AW is shown in Table 2.

Baselines We compare against the following baselines:

• SA-ZVCG: classic SA design with zero-value clock
gating (1×1×1_32×64 TPE array in our notation).

• S2TA-W: this is the variant of S2TA that exploits
4/8 W-DBB sparsity alone (dense activations), using a
4×8×4_4×8 TPE with 4-MAC dot-product datapaths
(DP4M8 in Fig. 6(c)). Comparing against S2TA-W
allows us to understand the gains from exploiting A-
DBB and W-DBB jointly. This design also implements
ZVCG to weakly exploit activation sparsity.

• SA-SMT: our INT8 re-implementation of a recent
systolic array design that exploits unstructured sparsity
using operand staging FIFOs to distribute matching
operands [38], using the T2Q2 variant from the paper.

• SPARTEN and EYERISS-V2: both are recent non-systolic
array designs [6, 13] that exploit unstructured sparsity.

All systolic array designs have 4 TOPS peak (dense) through-
put and otherwise identical configurations. We use the same
EDA flow to obtain performance, power, and area (PPA) met-
rics for a fair comparison. The PPA metrics for SparTen and
Eyeriss-v2, are directly from the papers.

8. EVALUATION RESULTS

8.1 Accuracy Results
As with virtually all forms of sparsity, DBB sparsity used

in S2TA is lossy, and thus requires DNN fine-tuning to re-
gain any accuracy loss. Here, we first describe the simple
extensions to the conventional DNN training procedure to
support DBB sparsity, followed by the accuracy results. We
evaluate INT8 models since we focus on mobile inference,
where INT8 is the most widely used for deployment [41].

Training for W-DBB We apply magnitude based DBB-
aware weight pruning, which is similar to random magnitude
pruning [46], but pruning independently within each DBB
block. This typically runs for 20-50 epochs, progressively
pruning small-magnitude weights within each DBB block,
until the desired DBB sparsity constraint is met.

Tbl. 3 shows the results of W-DBB (with dense activation)
fine-tuning of five popular CNNs with INT8 quantization:
VGG-16, MobileNetV1, ResNet-50V1 on ImageNet, and
LeNet-5 on MNIST. We find that 4/8 W-DBB density typi-
cally achieves <0.5% accuracy loss, on both relatively big
(ResNet-50V1) and compact (MobileNetV1) networks.

In general, a larger block size (BZ) relaxes accuracy loss,
but increases the hardware cost to exploit the sparsity. Mean-
while, a larger NNZ per block increases accuracy while leav-
ing less room for exploiting sparsity. This is evident as we
increase the NNZ for ResNet-50V1 from 2 to 4 in Tbl. 3.
Overall, we find that 4/8 DBB density level is a good com-
promise that achieves low accuracy loss for both compact and
larger models. Compared to previous work, Kang [19] targets

a fixed 2/8 W-DBB, which is too aggressive to achieve good
accuracy, while the Nvidia A100 [28] uses 2/4, which is the
same sparsity level as our 4/8 choice, but less flexible. In this
paper, we apply BZ=8 throughout our description without
losing generality.

Training for A-DBB Dynamic Activation Pruning (DAP)
is lossy and requires fine-tuning to minimize accuracy impact.
We incorporate DAP into DNN fine-tuning by adding DAP
in front of convolution operations, mimicking how it is used
at inference. To back propagate through the DAP layer, we
calculate the gradient of DAP with respect to the activation a
∂DAP(a)

∂a , which is a binary mask tensor with a value 1 for the
Top-NNZ elements and a value 0 for the pruned ones.

As an example, MobileNetV1 shows a test accuracy drop
from 71% to 56.1% when using 4/8 A-DBB for all point-
wise CNN layers before fine-tuning. A 30-epoch DAP-aware
fine-tuning recovers the accuracy to 70.2%. We find that
50-100 epochs of fine-tuning are typically sufficient.

Tbl. 3 also shows the accuracy of applying A-DBB alone
and applying both forms of DBB sparsity jointly. Note that
while W-DBB density is hypertuned on a per-model basis,
the A-DBB density varies wildly from early layers to later
layers and is therefore tuned per-layer (supported by S2TA-
AW). We observe that combined A/W-DBB has a 0.1%–0.4%
accuracy loss compared to exploiting W-DBB alone. Total
additional training time is less than 48 hours in all cases.

Finally, we demonstrate A/W-DBB pruning of Transform-
ers, by training I-BERT [20] on the GLUE dataset [40].

8.2 Microbenchmarking Results
We first use a set of synthetic (microbenchmark) DNNs

with specific weight/activation sparsity to understand the per-
formance, energy, and area of S2TA relative to the baselines.

Fig. 9a show show the energy and performance of SA-ZVCG
vary with weight and activation density. The x-axis increases
the weight sparsity from 0% to 87.5%, and the two bars
refer to two different activation densities of 50% and 20%,
respectively. The energy is normalized to energy per MAC
operation. Naturally, the energy of SA-ZVCG scales weakly
as the weight and activation sparsity increases due to the
clock gating, but there is no speedup regardless of the spar-
sity. Fig. 9b shows that SA-SMT exploiting unstructured
sparsity for both weight and activation consumes significant
higher energy than the SA-ZVCG in Fig. 9a.

Exploiting W-DBB Alone Fig. 9c shows the energy and
performance of S2TA-W normalized to SA-ZVCG. S2TA-W
exploits a 4/8 W-DBB sparsity and, thus, achieves a maxi-
mal 2× speedup step when weight sparsity is ≥50%. The
2×speedup also gives a corresponding energy reduction. How-
ever, the energy reduction at 50% weight sparsity then plateaus,
only scaling weakly with additional DBB weight sparsity and
lower switching activity. Clearly, S2TA-W cannot maxi-
mally exploit the abundant activation sparsity.

Exploiting A/W-DBB Jointly Exploiting both forms of
sparsity, Fig. 9d shows that S2TA-AW achieves a significant
energy reduction of up to 9.1× compared to SA-ZVCG.

While the speedup from S2TA-W is capped at 2× regard-
less of the activation sparsity, S2TA-AW supports variable
activation compression and so the speedup increases with ac-
tivation sparsity from 1× at dense to 8× at 12.5% activation
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Figure 9: Energy (normalized to SA-ZVCG at 0% activation and 50% weight sparsity) and speedup with sparsity. (a)
SA-ZVCG energy falls slowly with density, no speedup. (b) SA-SMT shows higher energy than SA-ZVCG, up to 2×
speedup. (c) S2TA-W exploiting W-DBB alone provides a fixed 2× speedup, and 1.2× energy reduction compared to
SA-ZVCG, at sparsity ≥50%. (d) S2TA-AW with A/W-DBB exploits joint sparsity for up to 8× speedup and significant
energy reduction.

Table 3: Accuracies of the baseline (INT8) models and var-
ious DBB variants. The accuracy loss of exploiting both
A-DBB and W-DBB is generally about 1%. The accuracy
loss of exploiting one form of sparsity is about 0.5%. A-
DBB density varies significantly across layers. We report the
weighted average, which can be a non-integer ratio.

Model Dataset Baseline3 ———– DBB Pruning ———–
Acc. (%) A-DBB1 W-DBB2 Acc. (%)

LeNet-5 MNIST 99.0 3/8 – 98.9
LeNet-5 MNIST 99.0 – 2/8 98.9
LeNet-5 MNIST 99.0 4/8 2/8 98.8

MobileNetV1 ImageNet 70.1 3.8/8 – 69.4
MobileNetV1 ImageNet 70.1 – 4/8 69.8
MobileNetV1 ∗ ImageNet 70.1 4.8/8 4/8 68.9

AlexNet ImageNet 55.7 3.8/8 – 54.7
AlexNet ImageNet 55.7 – 4/8 54.9
AlexNet ∗ ImageNet 55.7 3.9/8 4/8 54.6

VGG-16 ImageNet 71.5 3.1/8 – 71.8
VGG-16 ImageNet 71.5 – 3/8 71.4
VGG-16 ∗ ImageNet 71.5 3.1/8 3/8 71.9

ResNet-50V1 ImageNet 75.0 – 4/8 74.5
ResNet-50V1 ImageNet 75.0 – 3/8 74.3
ResNet-50V1 ImageNet 75.0 – 2/8 73.1
ResNet-50V1 ImageNet 75.0 3.49/8 – 74.4
ResNet-50V1 ∗ ImageNet 75.0 3.49/8 3/8 73.9
ResNet-50V1 ImageNet 75.0 3.49/8 4/8 74.1

I-BERT (base) GLUE (QQP) 91.2 4/8 4 – 91.2
I-BERT (base) GLUE (QQP) 91.2 3/8 4 – 91.0
I-BERT (base) GLUE (QQP) 91.2 – 4/8 4 91.1
I-BERT (base) GLUE (QQP) 91.2 4/8 4 4/8 4 90.9
I-BERT (base) GLUE (SST2) 94.7 4/8 4 – 94.3
I-BERT (base) GLUE (SST2) 94.7 4/8 4 4/8 4 93.5

1Tuned per-layer, average reported; and − for dense. 2Tuned per-model (excluding
the 1st layer); and − for dense. 38-bit dense models. 4Fully-connected sub-layers

(FC1, FC2) of Encoders. ∗ Used for whole model evaluation in Sec. 8.3.

density.
Compared to Exploiting Unstructured Sparsity Fig. 10

shows energy and speedup on a typical convolution layer with
50% weight and 62.5% activation sparsity across all design
variants. SA-SMT [38] is a SA-based accelerator exploiting
unstructured sparsity using staging FIFOs with same INT8
operands. The results are normalized to SA-ZVCG. We
break down the energy consumption into different compo-
nents: the datapath of the PE array, the buffers in the PE array,
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Figure 10: Energy breakdown and speedup of various SA
variants for a typical convolution with 50% (4/8-DBB) and
62.5% (3/8-DBB) INT8 weight and activation sparsity, re-
spectively. The results are normalized to SA-ZVCG.

SRAM, activation layers (M33), and the DAP logic, which is
unique to S2TA-AW. We evaluate two variants of SA-SMT:
T2Q2 has an operand staging FIFO depth of two and T2Q4
has FIFO depth 4. While both SA-SMT variants are faster
than SA-ZVCG, they both also increase the effective en-
ergy consumption (43.0% (T2Q2); 41.2% (T2Q4)) versus
the baseline SA-ZVCG. This is due to the energy overhead
of the staging buffer for distributing matched operands, not
necessary for S2TA-W and S2TA-AW. This is also evident
in the significantly lower buffer energy for S2TA-W and
S2TA-AW.

A comparison between S2TA-W and S2TA-AW Fig. 10
shows that the energy benefits of S2TA-AW mainly come
from a 3.1× reduction in the SRAM energy, as S2TA-AW
exploits activation sparsity using the time-unrolled outer-
product TPE, whereas S2TA-W loads dense activations from
SRAM.

8.3 Full Model Inference Results
We compare S2TA-AW with SA, SA-ZVCG, SA-SMT,

and S2TA-W across four models: VGG16, MobileNetv1,
ResNet50v1, and AlexNet. Fig. 11 gives energy reduction
(top figure) and speedup (bottom figure) comparison, normal-
ized to SA-ZVCG. Compared to SA-ZVCG, S2TA-AW
reduces energy by 1.76–2.79×, with 1.67–2.58× speedup.
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Table 4: Comparison of S2TA-AW and baselines, along with previously published sparse CNN accelerators in 16nm/65nm.

SparTen [13] Eyeriss v2 [6] SA-ZVCG1 SA-SMT1 [38] S2TA-W1 S2TA-AW1

Weight Sparsity Random Random ZVCG Random 4/8 DBB, Dense 4/8 DBB, Dense
Activation Sparsity Random Random ZVCG Random Dense (1−5)/8 DBB, Dense
SRAM Size (W/A) – 246KB 2MB / 0.5MB 2MB / 0.5MB 2MB / 0.5MB 2MB / 0.5MB
Hardware MACs 32 (INT8) 384 (INT8) 2048 (INT8) 2048 (INT8) 2048 (INT8) 2048 (INT8)

Process Technology - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16nm Implementations - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Clock Freq. GHz – – 1.0 1.0 1.0 1.0
Area mm2 – – 3.7 4.2 3.4 3.8
Peak Throughput2 TOPS – – 4 8 8 8 (166)
Peak Energy Eff.2 TOPS/W – – 10.5 (12.83) 8.01 (11.93) 12.4 (13.93) 14.3 (26.53)

AlexNet
×103 Inf./sec – – 2.2 (3.05) 2.7 (4.05) 3.3 (5.05) 3.7 (6.35)
×103 Inf./J – – 4.81 (7.55) 4.48 (6.735) 7.2 (8.75) 9.9 (13.15)
TOPS/W – – 7.2 (9.85) 6.7 (8.75) 9.8 (115) 14 (195)

MobileNet
×103 Inf./sec – – 2.7 (3.65) 3.5 (5.45) 4.2 (7.35) 5.2 (9.75)
×103 Inf./J – – 7.9 (8.45) 7.5 (8.05) 9.2 (9.95) 13.3 (14.95)
TOPS/W – – 8.7 (9.25) 8.2 (9.05) 10 (115) 14 (175)

Process Technology 45nm 65nm 65nm – 65nm 65nm
Clock Freq. GHz 0.8 0.2 0.5 – 0.5 0.5
Area mm2 0.7666 3.386,7 21 – – 24
Peak Throughput2 TOPS 0.2 0.152 2 – 4 4 (86)
Peak Energy Eff.2 TOPS/W – – 0.78 – 0.87 1.1

AlexNet
×103 Inf./sec – 0.28 (0.345) 1.1 (1.55) – 1.6 (2.55) 1.8 (3.25)
×103 Inf./J (0.52 5) 0.66 (0.745) 0.44 (0.675) – 0.55 (0.665) 0.77 (1.025)
TOPS/W (0.685) 0.96 (1.15) 0.67 (0.955) – 0.82 (0.955) 1.2 (1.45)

MobileNet
×103 Inf./sec – 0.134 1.6 (1.825) – 1.82 (3.645) 3.60 (4.855)
×103 Inf./J – 0.224 0.68 – 0.76 1.04
TOPS/W – 0.24 0.75 – 0.83 1.1

1Our results. 250% sparse weights and activations. 375% sparse weights and activations. 4Scaled from MobileNet-v1-0.5-128 to 1.0-224. 5Conv only. 6Logic only. 72.7Mgates.

Figure 11: Energy reduction and speedup (normalized to
SA-ZVCG) comparison on ResNet50V1, VGG16, Mo-
bileNetV1, and AlexNet (Convolution only) using the same
16nm technology. The S2TA-AW is 2.08×, 1.84×, 2.24×
energy efficient, and 2.11×, 1.26×, 1.43× speedup than
SA-ZVCG, S2TA-W, SA-SMT baselines, respectively.

S2TA-W On average, S2TA-AW consumes 1.84× lower
energy and achieves 1.26× speedup over S2TA-W (Fig. 11).

SA-SMT SA-SMT [38] exploits unstructured sparsity
in a systolic array. SA-SMT suffers from the overhead of
distributing matching pairs, which can stall the data flow
in the systolic array. SA-SMT resolves it using expen-
sive operand buffer FIFOs (Sec. 2.2). We reimplemented
SA-SMT, which achieves 8.01 TOPS/W compared to 14.3
TOPS/W for S2TA-AW at the same sparsity, as shown in
Tbl. 4. This is due to the high energy cost of the FIFOs
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Figure 12: AlexNet per-layer energy for EYERISS-V2 [6],
SPARTEN [13], SA-ZVCG, S2TA-W, and the optimal
S2TA-AW. S2TA-AW in 65nm is about 2.2× more effi-
cient than the 45nm SPARTEN on AlexNet energy per infer-
ence. SparTen has low energy only on very high sparsity
layers (i.e. Conv3, 4 and 5). EYERISS-V2 consumes 3.1×
more total energy than S2TA-AW in the same 65nm technol-
ogy.

(Fig. 9b and 10).
Non-SA Accelerators Next, we compare S2TA with non-

SA random-sparse accelerators, SPARTEN and EYERISS-V2.
SPARTEN [13] is a state-of-the-art CNN accelerator that

exploits unstructured sparsity in weights and activations, with
superior results to SCNN [30]. For the comparison, we re-
implemented S2TA-AW in 65nm technology, which is older
than the 45nm used for SPARTEN and, thus, does not un-
fairly favor S2TA-AW. Fig. 12 compares the energy for
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S2TA-AW and SPARTEN on AlexNet, with SA-ZVCG and
S2TA-W. The total energy per inference on AlexNet is 2.2×
lower on S2TA-AW compared to SPARTEN, even with a
one node process disadvantage (65nm vs 45nm). The gain on
MobileNet is even greater, as shown in Tbl. 4. SPARTEN per-
forms best on layers with very high sparsity (e.g., Conv3-5),
and less well on layers with dense or more moderate sparsity
(e.g., Conv1,2).

A comparison with EYERISS-V2 [6] is given in Tbl. 4 and
Fig. 12. S2TA-AW shows 4.7× and 1.4× higher energy
efficiency on MobileNet and AlexNet for convolution layers,
respectively. Fig. 12 indicates EYERISS-V2 is 3.1× less
energy efficient than S2TA-AW in the same 65 nm process
technology.

As with any SA-based inference accelerators, fully-connected
(FC) and depthwise (DW) layers are memory bound on S2TA,
as batching is typically not used in inference. However, we
do prune FC/DW, included in the full model results in Tbl. 4.

These results demonstrate that although the speedup gained
by S2TA is moderate, the overheads are low and the archi-
tecture is more energy efficient. In fact, we find that even
the baseline SA-ZVCG has lower energy than SPARTEN on
AlexNet and EYERISS-V2 on MobileNet. While achieving
high speedup from sparsity is important for certain scenarios,
it is essential to also consider the overheads and start with an
energy efficient architecture, which is especially important
for mobile inference.

8.4 Summary of Results
Finally, we summarize the key results, based on full-accelerator

synthesis data with typical weight and activation sparsity.

1. DBB pruning of both weights and activations reduces the
complexity of DNNs without significant accuracy loss
(Table 3).

2. SA-ZVCG consumes 25% less energy than a dense SA
by exploiting random sparsity.

3. S2TA-W exploiting W-DBB alone only marginally re-
duces energy (by 1.13×) compared to SA-ZVCG; ex-
ploiting both weight and activation sparsity is far superior.

4. S2TA-AW achieves an average 2.08× energy reduction
and 2.11× speedup compared to SA-ZVCG on full DNNs.

5. Activation DBB sparsity varies widely across layers, thus
the S2TA-AW time-unrolled architecture supports vari-
able activation DBB sparsity, with fixed weight sparsity.
2

6. S2TA-AW on typical CNN microbenchmarks with 50%
(75%) weight and activation sparsity show 8 (16) TOPS,
14.3 (26.5) TOPS/W, and 2.16 (4.21) TOPS/mm2, in 16nm,
based on full-accelerator synthesis data in Table 5.

7. S2TA-AW has 1.4 – 4.7× lower energy than state-of-the-
art accelerators exploiting unstructured sparsity, including
SPARTEN, EYERISSV2, and SA-SMT (Table 5).

Table 5 summarizes key aspects of this work.
2 S2TA time-unrolled architecture can also be implemented to sup-
port variable weight DBB sparsity and fixed activation DBB sparsity.

9. RELATED WORK
Zero Value Clock Gating (ZVCG) (Sec. 2.1) saves power

when having zero operands [7, 18, 33]. We apply ZVCG to
exploit excess sparsity that cannot be exploited by DBB.

Indexed Unstructured Sparsity EIE [15] implements a
fine-grained sparse CSR-encoded INT16 matrix-vector accel-
erator, and ESE [16] extends this to LSTMs. Doping [39]
and MASR [14] also exploit unstructured sparsity for LSTMs
and RNNs, but uses a bitmask encoding. A number of pa-
pers target unstructured sparse matrix multiplication for very
sparse data, such as Outer Space [29], which uses an outer
product scheme, and SpArch [44], which further optimizes
for locality. Cnvlutin [4] skips compute for zero activations,
without explicit indexes. SCNN [30] implements a fully CSR-
indexed sparse CNN accelerator using an outer product to
exploit sparse weights and activations. FixyNN [43] demon-
strates a fixed-weight accelerator, that can very efficiently
exploit random sparsity. SparTen [13] and Eyeriss v2 [6] both
support fully-sparse inference. We focus on DBB sparsity,
but compare with SparTen, and Eyeriss v2 (Table 4).

DBB Weight Sparsity Kang [19] implements accelerator
exploiting a fixed 2/8 W-DBB sparsity. The design is based
on a dot product microarchitecture with limited data reuse.
Similar work [45] also exploited W-DBB in the GPU context.
The proprietary Nvidia A100 GPU implements fixed 2/4 W-
DBB, which achieves 1.5× speedup and 3.12 TOPS/W (peak)
[8], 4× lower than the S2TA-W baseline at 12.4 TOPS/W
(Table 4).

S2TA is the first architecture exploiting both W-DBB and
A-DBB, and is the first to incorporate DBB into a systolic
array with the novel time-unrolled technique exploiting new
dimensions of data reuse for up to 8× peak speedup.

Sparsity in Systolic Arrays SAs (e.g. Google TPU [18])
are efficient because they have high data reuse and local com-
munication. SMT-SA [38] is an SA that exploits unstructured
FP32 sparsity using data staging FIFOs, which are energy
inefficient for INT8 datapath, although acceptable for FP32.
Kung et al. [23] showed a preprocessing step of column com-
bining of sparse weight matrices, before processing on a
dense SA architecture. Liu et al. [26] exploited W-DBB spar-
sity for INT8 datapath in systolic architecture. NB-SMT [37]
is a sparse SA with the ability to momentarily halve the MAC
precision during to aid load balancing pipeline hazards.

Bit-wise Sparsity Even sign extension and zero bits within
a word can be considered for optimization: Pragmatic [3]
implements weight bit-sparsity, Tactical [9] implements ac-
tivation bit-sparsity, and Laconic [36] implements weight
and activation bit-sparsity. While orthogonal to our work,
bit-sparsity is an interesting avenue for future DBB research.

10. CONCLUSION
Density bound block (DBB) exploits structured sparsity,

without the overheads of random sparsity schemes. We de-
scribe an architecture to aggressively exploit DBB sparsity
on both weights and activations. For weight DBB, we prune
during training to meet the DBB structured sparsity con-
straint. However, we cannot do this for activations, which
are not static, but rather computed at runtime. Therefore, we
introduce Dynamic Activation Pruning (DAP), a co-design
solution for activation DBB, which implements activation
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Table 5: Summary of designs evaluated and previous works. S2TA-AW is a very low overhead fully-sparse architecture that
achieves significant speedup and energy efficiency gains. The optimal design is the Time-unrolled (Variable DBB) S2TA-AW
architecture with up to 8× speedup.

Architecture Weight Sparsity Activation Sparsity Hardware Overhead ZVCG Variable DBB (Time-unrolling)

- - - - - - - - - Power Savings From Random Sparsity, No Speedup - - - - - - - - -
SA [18] 7 7 – 7 7
SA-ZVCG 7 7 – 3 7

- - - - - - - - Speedup From Random Sparsity Incurs HW Overheads - - - - - - - -
SA-SMT [38] Random Random Gather 3 7
SCNN [30] Random Random Scatter 7 7
SparTen [13] Random Random Gather 7 7

- - - - - - - - - - Speedup From Structured Sparsity: No Overheads - - - - - - - - - -
Kang [19] 2/8 DBB 7 – 7 7
STA [26] 4/8 DBB 7 – 7 7
A100 [28] 2/4 DBB 7 – –1 7
S2TA-W 4/8 DBB 7 – 7 7
S2TA-AW 4/8 DBB (1−5)/8 DBB – 3 3

1 Unpublished proprietary design.

DBB in hardware during runtime to force the required DBB
sparsity. DAP is lossy, and therefore must also be incorpo-
rated during training to prevent accuracy loss at inference
time.

The proposed novel time-unrolled DBB sparsity archi-
tecture, S2TA-AW, implements joint weight and activation
sparsity in an efficient systolic architecture. The design sig-
nificantly outperforms other strong baselines, including the
variants S2TA-W and SA-SMT, which exploit weight spar-
sity alone, and fully unstructured sparsity, respectively. On
the pruned INT8 benchmark models AlexNet, MobileNetv1,
VGG16, ResNet50v1, a 16nm S2TA-AW with joint weight
and activation DBB sparsity demonstrates 2.08× and 1.84×
energy reduction, on average, compared to the baseline SA-
ZVCG and S2TA-W which exploits weight DBB sparsity
alone, respectively. Finally, S2TA-AW has about 2× and
3× the energy efficiency of the state-of-the-art unstructured
sparse accelerator SparTen and Eyersiss-v2 on AlexNet, re-
spectively.
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