
Duet: Creating Harmony between Processors
and Embedded FPGAs

Ang Li
Princeton University

Princeton, NJ 08544, USA
angl@princeton.edu

August Ning
Princeton University

Princeton, NJ 08544, USA
aning@princeton.edu

David Wentzlaff
Princeton University

Princeton, NJ 08544, USA
wentzlaf@princeton.edu

Abstract—The demise of Moore’s Law has led to the rise
of hardware acceleration. However, the focus on accelerating
stable algorithms in their entirety neglects the abundant fine-
grained acceleration opportunities available in broader domains
and squanders host processors’ compute power.

This paper presents Duet, a scalable, manycore-FPGA archi-
tecture that promotes embedded FPGAs (eFPGA) to be equal
peers with processors through non-intrusive, bi-directionally
cache-coherent integration. In contrast to existing CPU-FPGA
hybrid systems in which the processors play a supportive role,
Duet unleashes the full potential of both the processors and the
eFPGAs with two classes of post-fabrication enhancements: fine-
grained acceleration, which partitions an application into small
tasks and offloads the frequently-invoked, compute-intensive ones
onto various small accelerators, leveraging the processors to
handle dynamic control flow and less accelerable tasks; hardware
augmentation, which employs eFPGA-emulated hardware widgets
to improve processor efficiency or mitigate software overheads
in certain execution models.

An RTL-level implementation of Duet is developed to evaluate
the architecture with high fidelity. Experiments using synthetic
benchmarks show that Duet can reduce the processor-accelerator
communication latency by up to 82% and increase the bandwidth
by up to 9.5x. The RTL implementation is further evaluated with
seven application benchmarks, achieving 1.5-24.9x speedup.

I. INTRODUCTION

The demise of Moore’s Law [33] and the stagnation of
processor performance growth [44] have given rise to hardware
acceleration [12], [22], [34]. Since ASIC-based accelerators
suffer from high non-recurring engineering costs and low ver-
satility, field-programmable gate arrays (FPGAs) are gaining
steam due to their post-fabrication, gate-level reconfigurability
and close-to-ASIC performance [16], [20], [8]. FPGAs can
be integrated either as standalone devices (Fig. 1a) or into
field-programmable system-on-chips (FPSoC) (Fig. 1b). The
conventional, FPGA-based acceleration paradigm is coarse-
grained acceleration (Fig. 2b), which offloads an algorithm
in its entirety onto the FPGA. Despite offering substantial
improvements in performance and energy efficiency, coarse-
grained acceleration is only practically applicable to limited
algorithms that are both stable (to justify the accelerator design
costs) and sufficiently large (to justify the control and data
transfer overheads).

This work proposes Duet (Fig. 1c, Sec. II), a novel,
cache-coherent, manycore-FPGA architecture that is tailored
to enable two novel paradigms of hardware acceleration.

FPSoC (e.g. Versal)

Processor
Subsystem Embedded

FPGA

PCIe Ctrl

Snooping Bus

Core Core

Cache
Coherence
Crossbar

ACP

ACE
AXI Switch

Ethernet Ctrl

GPIO

ACP

ACE

AXI

N
oC

DRAM Ctrl

Scratchpad
Memory

On-Chip Devices
e.g. AI Engines

L2$ L2$

LLC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

Duet
(This Work)

Logic-rich
eFPGA

Memory-rich
eFPGA

LLC
Shard

NoC
Duet

Adapter

LLC
Shard

NoC
Duet

Adapter

LLC
Shard

NoC
Duet

AdapterLLC
Shard

L2$

Core

NoC

Multicore/Manycore Processor

L2$

Core

Other
I/O

DRAM
Ctrl

PCIe
Ctrl

PCIe
Switches

FPGA

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

(a) Multicore/Manycore Processor and Standalone FPGA
L2$=Private cache; NoC=Network-on-chip; LLC=Last-level cache

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

Duet
(This Work)

Logic-rich
eFPGA

Memory-rich
eFPGA

LLC
Shard

NoC
Duet

Adapter

LLC
Shard

NoC
Duet

Adapter

LLC
Shard

NoC
Duet

AdapterLLC
Shard

L2$

Core

NoC

Multicore/Manycore Processor

L2$

Core

Other
I/O

DRAM
Ctrl

PCIe
Ctrl

PCIe
Switches

FPGA

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

ACP

ACE

ACP

ACE

AXI

L2$ L2$

LLC

Core Core

Snooping Bus

Processor
Subsystem

FPSoC (e.g. Versal)
Scratchpad

Memory

AXI Switch

Cache
Coherence
Crossbar

On-Chip Devices
e.g. AI Engines

N
oC

DRAM Ctrl

PCIe Ctrl

Ethernet Ctrl

GPIO

Embedded
FPGA

(b) Field-Programmable System-on-Chip (FPSoC), e.g. Versal [19]
AXI [3]: non-coherent interconnect; ACP [3]: uni-directional
coherent interconnect; ACE [3]: fully coherent interconnect.

Multicore/Manycore Processor

L2$

Core

Other
I/O

DRAM
Ctrl

PCIe
Ctrl

PCIe
Switches

FPGA

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

L2$

Core

NoC

LLC
Shard

ACP

ACE

ACP

ACE

AXI

L2$ L2$

LLC

Core Core

Snooping Bus

Processor
Subsystem

FPSoC (e.g. Versal)
Scratchpad

Memory

AXI Switch

Cache
Coherence
Crossbar

On-Chip Devices
e.g. AI Engines

N
oC

DRAM Ctrl

PCIe Ctrl

Ethernet Ctrl

GPIO

Embedded
FPGA

L2$

Core

Duet
(This Work)LLC

Shard

NoC

L2$

Core
LLC

Shard

NoC

L2$

Core
LLC

Shard

NoC
L2$

Core
LLC

Shard

NoC

L2$

Core
LLC

Shard

NoC

L2$

Core
LLC

Shard

NoC NoC

LLC
Shard

Duet
Adapter

NoC

LLC
Shard

Duet
Adapter

NoC

LLC
Shard

Duet
Adapter

Memory-rich
eFPGA

Logic-rich
eFPGA

(c) Duet (This Work)
Each Duet Adapter can be configured independently to support
uni- or bi-directional coherence in addition to a memory-mapped
non-coherent interface. Duet enables scalable integration of: 1) any
number of processors; 2) multiple independent embedded FPGAs
(eFPGAs); 3) multiple NoC access points per eFPGA.

Fig. 1: CPU-FPGA Systems

Fine-grained acceleration (Fig. 2c, Sec. III-A) partitions an
algorithm into smaller tasks and offloads only the frequently-
invoked, compute-intensive ones onto a variety of small ac-
celerators. Processors still play a critical role by handling dy-
namic control flow, memory/IO-bound tasks, or any other less
accelerable computations. For example, fine-grained acceler-
ators can be used for special instructions like tangent, basic
algorithms like sorting, or inner loop bodies like the compute
payload per node/edge during a graph traversal. Hardware

1

ar
X

iv
:2

30
1.

02
78

5v
1

 [
cs

.A
R

]
 7

 J
an

 2
02

3

Time

B+

Communication
Overhead

Accelerated
Function

Critical Section

(e)

Manycore
Baseline

...

Coarse-Grained
Acceleration

...

...

...

DMA DMA &
Interrupt

Hardware
Augmentation

(This work)

...

...

Fine-Grained
Acceleration

(This Work)

(a)

(b)

(c)

(d)

CPU Execution

A B
B

B
B

C
C

C
C

B D
A

C

D

B

DA

B+ B+ B+
C+ C+

C+C+

A DB B B B

C+C+ C+C+
B

A D

B

B+
B+

B+
B+

C
C

C
C

B+

Fig. 2: Accelerating a Hypothetical Program
(a-c) Execution time of a manycore baseline and different
acceleration paradigms; (d) An example of hardware augmentation
in which the embedded FPGA emulates a lock-free task scheduler;
(e) Control flow graph of the program.

augmentation (Fig. 2d, Sec. III-B) takes an application-
agnostic approach — it employs FPGA-emulated hardware
widgets to reduce processor idle time or mitigate software
overhead in certain execution models. For example, hardware-
implemented, lock-free data structures can reduce synchro-
nization overhead in shared-memory, multi-thread programs;
hardware task schedulers enable task-level parallelism with
lower overhead than software schedulers.

Existing CPU-FPGA systems are inefficient for fine-grained
acceleration and hardware augmentation due to two reasons:
first, the centralized, bandwidth-optimized CPU-FPGA inter-
connect performs poorly when lots of cores and accelerators
communicate via short, frequent messages; second, even on
state-of-the-art FPSoCs which support bi-directional cache
coherence between the processors and the FPGA, cacheline-
granular memory sharing incurs non-trivial overhead. The
overhead is justifiable for coarse-grained acceleration due to
extremely high compute-to-memory ratio, but becomes critical
for small, frequently-invoked, fine-grained accelerators.

Duet is tailored to the distinct architecture requirements
posed by fine-grained acceleration and hardware augmen-
tation. In essence, Duet promotes eFPGAs to be equal
peers with processors and integrates them as first-class
citizens on the network-on-chip (NoC) through the novel,
lightweight, Duet Adapters. In particular, Duet contains the
following novelties:

• Scalability: Duet enables tight integration of one to mul-
tiple eFPGAs of various resource compositions into a scalable
manycore system. Each eFPGA may be connected to multiple
Duet Adapters for higher aggregate memory bandwidth.

• Hybrid Cache Coherence: Duet adopts a hybrid scheme
to coherently integrate the eFPGAs. Each Duet Adapter con-
tains one to multiple private, local, hardware Proxy Caches
(Sec. II-C) that translate the platform-dependent, cache coher-
ence protocols into simple memory interfaces for the eFPGA.
Furthermore, each Proxy Cache can be configured at eFPGA
programming time to support an optional, bi-directionally

coherent, soft cache built out of eFPGA resources. The use
of soft caches improves accelerator performance by exploiting
data locality while coherently sharing data with the processors.

• Non-Intrusive Integration: For fine-grained acceleration
and hardware augmentation, a sizable amount of compute
is still run on the processors and is critical to the overall
performance. However, the direct participation of eFPGA-
emulated, soft caches in cache coherence may slow down
the cache system because eFPGAs run at a lower clock
frequency and suffer from clock-domain-crossing overheads.
Addressing this challenge, the Duet Adapters operate in the
processors’ (fast) clock domain and move FPGA-side coher-
ence maintenance off of the critical path. As a result, the cache
system performs equally fast as if each Duet Adapter was an
additional processor-owned private cache.

• Plug-and-Play Integration: Duet requires little to no
hardware changes to existing manycore systems because the
Duet Adapters transduce between the eFPGAs and the NoC.
Such decoupling is critical because modifying a mature pro-
cessor design often leads to performance degradation or even
hardware bugs, especially as design complexity and verifica-
tion costs skyrocket on advanced technology nodes [23].

To evaluate Duet with high fidelity, we build Dolly, a
prototype instance of Duet at the RTL level (Verilog &
SystemVerilog). In addition, we assemble a full toolchain
for software development and accelerator design, leveraging
an array of open-source projects, including OpenPiton [6],
BYOC [5], PRGA [31], Yosys [54], and VTR [38]. To
encourage further research in tightly-integrated, hard-
ware cache-coherent CPU-eFPGA systems, we have open-
sourced Dolly and its toolchain, available at https://github.
com/PrincetonUniversity/Duet.

Experiments show that the Duet Adapter introduces neg-
ligible hardware overhead for the CPU-eFPGA integration
(Sec. V-B). The Proxy Cache reduces the latency of processor-
accelerator communication up to 82% and increases the band-
width up to 9.5x compared to having the eFPGA participating
directly in the coherence protocol (Sec. V-C). The latency
reduction and bandwidth increase are stable across different
eFPGA clock frequencies. On selected benchmarks (Sec. V-D),
Dolly improves the overall performance up to 24.9x in com-
parison to corresponding processor-only baselines and up to
4x in comparison to other CPU-FPGA systems.

The major contributions of this work are:

• Presenting Duet, a manycore-FPGA architecture which
employs novel Duet Adapters to integrate embedded FPGAs
in a scalable, non-intrusive, cache-coherent manner.

• Identifying and demonstrating with examples two novel
paradigms of hardware acceleration enabled by Duet, namely
fine-grained acceleration and hardware augmentation.

• Presenting Dolly, an RTL-level prototype of Duet and a
full toolchain for software development and accelerator design.

• Evaluating Dolly’s silicon area consumption and perfor-
mance with synthetic and application benchmarks.

• Releasing Dolly and its toolchain for open-source access.

2

https://github.com/PrincetonUniversity/Duet
https://github.com/PrincetonUniversity/Duet

Shared LLC* DRAM Ctrl PCIe Ctrl Other I/O

Network-on-Chip*

L2$CoreL2$CoreL2$Core

Control Hub (Sec. II-E)

FPGA Manager Soft Register
InterfaceProgrammable

Clock Generator

Programming
Engine

Exception
Handler

Feature
Switches Shadow

Registers
(Sec. II-F) Async

FIFO

Memory Hub
(Sec. II-B)

Exception
Handler

Feature
Switches TLB

(Sec. II-D)

Proxy
Cache

(Sec. II-C)

Async
FIFO

Duet
Adapter

More
Memory

Hubs

More
Duet

Adapters

More
eFPGAs

eFPGA
Configuration

Memory

FPGA (Slow)
Clock
Domain Soft Accelerator

Soft Controller Soft Cache (Sec. II-C) More Soft Caches

Non-Coherent Memory

Fig. 3: Duet Architecture and an Emulated Soft Accelerator
* For simplicity, the figure shows a bus-based NoC and a centralized LLC. Duet can be adapted to other

NoC topology and distributed LLC. For example, Dolly (Sec. IV) uses a 2D-mesh and a distributed LLC.

II. ARCHITECTURE

Before diving into the architecture of Duet, we want to
clarify several terms that are used throughout this paper:
software refers to the program running on the processors;
hardware, hard cache, etc. refer to the components that are
fixed at fabrication time, in contrast to the soft components that
are emulated with the reconfigurable resources in the eFPGAs.
In addition, we use the term soft accelerator to refer to both
fine-grained accelerators and hardware augmentation widgets.

A. Overview

Fig. 3 shows an overview of the Duet architecture. Duet
integrates eFPGAs as first-class citizens on the NoC through
novel, hardware Duet Adapters. Each Duet Adapter contains
one to several Memory Hubs and one Control Hub. The
Memory Hubs enable bi-directionally coherent memory ac-
cesses of the soft accelerators and transduce between the mem-
ory interfaces of the eFPGAs and the NoC. The Control Hubs
present the eFPGAs as on-chip devices that are accessible via
memory-mapped I/Os (MMIOs).

The fact that eFPGA-emulated soft accelerators typically
run at a much slower clock than the rest of the system poses a
challenge to minimizing processor-accelerator communication
overhead. In particular, any traffic entering or leaving the slow
clock domain must pay for the clock-domain-crossing (CDC)
overhead, and every slow clock cycle significantly penalizes
the total communication time (Fig. 5a & Fig. 6a). A few dozen
cycles seem negligible, but since the accelerated tasks are short
and invoked frequently, the accumulated overhead can chip
away a large fraction of the effective speedup. Addressing this
challenge, the Duet Adapter adopts various strategies to move
the logic in the slow clock domain off of the critical path.

B. Memory Hub

Each Duet Adapter may contain multiple Memory Hubs,
each attached to the NoC using an independent connection.
The soft accelerator may use all or any subset of them
to access the memory. Each Memory Hub consists of an

Soft-Only

Clock
Boundary

eFPGA

Soft Cache

eFPGA eFPGA

Soft Cache

Shared LLC Shared LLC Shared LLC

Hard-Only Hybrid

Accelerator

NoC

Accelerator Accelerator

Hard Cache Hard Cache

NoC NoC

Fig. 4: FPGA-Side Cache Organization Options

exception handler, a set of feature switches, and a Proxy
Cache (Sec. II-C), all implemented in hardware. Besides the
hardware Proxy Cache, each memory hub can support one
optional, bi-directionally coherent, Soft Cache built out of
eFPGA resources. The exception handler as well as all the
feature switches can be configured by the processors via on-
chip MMIOs.

The exception handler employs timeout and parity checks
to monitor eFPGA outputs. When an exception is detected,
e.g., due to an RTL or software bug, it asserts an error
code and deactivates all Memory Hubs in the same Duet
Adapter. Once deactivated, the Memory Hubs stop accepting
any memory requests from the eFPGA, but the Proxy Caches
remain functional, so that any in-flight coherence messages
are processed properly. This mechanism prevents accelerator
bugs from halting the system at the micro-architecture level.

The feature switches allow the processors to configure the
Memory Hubs according to the state of the eFPGA and the
specifications of the soft accelerator. For example, the Memory
Hubs should be deactivated during eFPGA reconfiguration; if
soft caches are used, the Memory Hubs should be configured
to forward invalidation requests into the eFPGA.

C. Proxy Cache

A key challenge in building coherently-integrated CPU-
FPGA systems is how to organize the FPGA-side caches.
Fig. 4 shows the options:

3

0 1 2 3 4 5 6 7 8 9 10 11
NoC Req

NoC Resp

FIFO (Proxy→FPGA)

FIFO (FPGA→Proxy)

Inv

Inv
Soft Cache Inv

Ack

Clock Boundary

Acc Datapath Load
Hit

Data

Crit. Path
AckInv

Ack

Crit. Path
eFPGA Clock

Processor Clock

(a) Cache Operations with Only Soft Caches
Inv=Invalidation from a remote cache; Ack=Acknowledgement

NoC Req
NoC Resp

eFPGA Clock

Processor Clock

FIFO (Proxy→FPGA)

FIFO (FPGA→Proxy)

0 1 2 3 4 5 6

Ack

Clock Boundary

Hard Cache Inv

Acc Datapath Load

7 8 9

Ld
Hit

Data

Data
Data

10 11

Load

Crit. PathInv

Crit. Path

(b) Cache Operations with Only Hard Caches

Crit. Path

NoC Req
NoC Resp

FIFO (Proxy→FPGA)

FIFO (FPGA→Proxy)

0 1 2 3 4 5 6
Inv

Soft Cache Inv

Ack

Clock Boundary

Proxy Cache Inv

Acc Datapath Load
Hit

Data

7
Crit. Path

8 9

Inv

10 11

Inv

eFPGA Clock

Processor Clock

(c) Cache Operations with Duet (This Work)

Fig. 5: Cache Operations with Different Cache Organizations
For simplicity, this figure shows single-stage async FIFOs, and the
FPGA clock runs at half of the system clock frequency. On real
hardware, async FIFOs typically take two to four stages, and the
FPGA clock could be as slow as 1/10 of the system clock.

Soft-Only The eFPGA is directly connected to the NoC. The
soft cache, if used, must implement the system-
wide cache coherence protocol.

Hard-Only A hardware, private cache is added between the
eFPGA and the NoC. Cache coherence is hidden
from the eFPGA, so soft caches are not supported.

Hybrid A hardware, private cache participates in the
system-wide cache coherence on behalf of the
eFPGA and supports the use of soft caches with
a local cache coherence protocol.

Option 1, soft-only, has three main drawbacks. First, it
becomes the accelerator developers’ burden to design a cache
in compliance with a platform-dependent, complex cache
coherence protocol. The sophisticated control logic consumes
more logic resources, has higher access latency, and is rarely
reusable across devices — a soft cache designed for ACE [3]
would hardly work with CHI [4]. Second, since the soft caches
have access to the micro-architectural state (e.g., can block a
NoC message indefinitely), the system cannot fully contain
faulty or malicious behaviors of the soft caches. Third, as
shown in Fig. 5a, the soft caches may slow down the hardware
cache system due to CDC overheads and the slow cycles
spent in the FPGA clock domain. Nonetheless, soft-only is the
de facto design on most commodity FPSoCs because these
FPGA-centric architectures are designed for coarse-grained
acceleration. Specifically, coherent memory sharing is rare and
mainly offered to simplify programming; soft cache IPs are

licensable from the vendors; and accelerator bugs are expected
to fail the entire system.

Option 2, hard-only, addresses all the drawbacks of the
soft-only approach but has other limitations. First, the CDC
overhead is now imposed on the accelerator datapaths (5b).
Second, the cache implementation is fixed at fabrication time
and may be suboptimal for certain accelerators.

Given the downsides of the soft-only and hard-only options,
Duet takes a hybrid approach. A private, local, hardware Proxy
Cache implements the platform-dependent, system-wide cache
coherence protocol and provides a simple memory interface
to the eFPGA. Each Proxy Cache can be configured through
feature switches to support an eFPGA-emulated, soft cache
which can be tightly integrated into the accelerator datapaths.
Moreover, the Proxy Cache contains two key novelties when
compared to a naïve implementation of the hybrid approach:

First, the Proxy Cache neither requires nor accepts any
acknowledgements from the soft cache. As a result, the
Proxy Cache always responds to coherence messages promptly
(Fig. 5c), insulating the cache system from the slow eFPGA
clock. To maintain coherence, the Proxy Cache requires the
soft cache to be write-through but allows write buffering (the
Proxy Cache itself can be write-back or write-through, de-
pending on the coherence protocol of the LLC). Furthermore,
because the asynchronous FIFOs deliver messages in order, the
soft cache always receives invalidations, line fills, and write
acks in the same order as they are sent by the Proxy Cache.
Rigid proof of the correctness of such protocols is out of the
scope of this paper, but the PCX protocol in OpenSPARC
T1 [41] and its extension, the TRI protocol in BYOC [5], are
two examples that meet the above requirements.

Second, the protocol is simple yet flexible. In the com-
mon case, the soft cache only needs to support two request
types (Load and Store) and three response types (LoadAck,
StoreAck and Invalidation). It is up to the accelerator designer
whether to use a write buffer, how many entries the write
buffer has, and whether read-after-write forwarding is com-
patible with the consistency assumptions of the application.
The Proxy Cache can be configured to work with either a
write-allocate or a write-no-allocate soft cache, as well as be
configured to enable atomic operations which require the soft
cache to support incrementally more message types.

D. Memory Protection and Virtualization

Another key challenge for CPU-FPGA systems is memory
protection and virtualization. The Proxy Cache is physically-
indexed, physically-tagged because it is implemented in hard-
ware and is closer to the LLC. However, it depends on the
type of soft accelerator whether the eFPGA should use virtual
or physical addresses. Hardware augmentation widgets may
be trusted firmware and can be granted access to physical
memory. On the contrary, application-specific, fine-grained
accelerators are like user programs and can be faulty or
malicious, so they are better restricted to virtual addresses.

To enable virtual memory accesses of the soft accelerator,
Duet adds a translation look-aside buffer (TLB) to each

4

Memory Hub. The TLB can be disabled if the soft accelerator
is granted access to the physical memory space; otherwise,
accelerator-initiated memory accesses must be translated by
the TLB while being speculatively processed by the Proxy
Cache. On a page fault, the TLB sends an interrupt to a
processor, then the kernel-level interrupt handler either updates
the TLB using MMIOs or kills the accelerator if the page
access is deemed invalid.

One special case is when soft caches are used but the
accelerator only has access to virtual addresses, i.e., the
soft caches are virtually-indexed, virtually-tagged. To enable
reverse-mapping from physical address to virtual address when
the Proxy Cache forwards an invalidation into the soft cache,
the Proxy Cache stores the virtual page number beside the
physical tag of each cacheline. This also rules out the coexis-
tence of synonym aliases (different virtual addresses mapping
to the same physical address) in the soft cache. In particular,
the Proxy Cache can invalidate the existing virtual address
before responding to a load request for the same physical
cacheline through a different virtual address.

E. Control Hub

The Control Hub consists of two submodules: the FPGA
Manager and the Soft Register Interface. The FPGA Man-
ager provides necessary hardware support for programming
and monitoring the eFPGA. The programming engine loads
the bitstream into the configuration memory, and performs
integrity checks to detect data corruption. The programmable
clock generator either divides the system clock, or integrates
a separate PLL for finer control over the generation of the
FPGA clock. The exception handler and the feature switches
are similar to those in the Memory Hubs. In particular, the
feature switches can be used to set the timeout limit, reset the
soft accelerator, or clear previously-logged error codes.

The Soft Register Interface enables the soft accelerator to
implement a soft "device controller" similar to those com-
monly seen on off-chip peripheral devices. The soft registers
emulated by the eFPGA are accessible via on-chip MMIOs
and often have additional effects rather than simply holding a
value. For example, reading a soft register may dequeue from
a FIFO inside the accelerator so that repetitive reads return
different values. When the Control Hub is deactivated, the Soft
Register Interface returns bogus data to all processor accesses
so that the system is not halted.

F. Shadow Registers

To prevent unwanted side effects, MMIOs typically adhere
to a strict memory ordering model, e.g., I/O ordering. Unfortu-
nately, as stressed in Sec. II-A, these strictly ordered accesses
may stall the processors’ pipelines because the eFPGA runs at
a slower clock (Fig. 6a). Addressing this inefficiency, the Soft
Register Interface is augmented with several types of Shadow
Registers residing in the fast clock domain (Fig. 6b). When
a processor writes to a shadowed soft register, the Shadow
Register acknowledges the request before forwarding the write
into the eFPGA. Conversely, the soft accelerator actively

Clock Boundary

NoC Req
NoC Resp

Soft Reg.

FIFO (NoC→FPGA)

FIFO (FPGA→NoC)

0 1 2 3 4 5 6 7 8 9 10 11
WR

Ack
Ack

WR

1

Crit. Path

0
eFPGA Clock

Processor Clock

(a) Accesses to a Normal Soft Register

Clock Boundary

NoC Req
NoC Resp

Soft Reg.

FIFO (NoC→FPGA)

FIFO (FPGA→NoC)

Shadow Reg.

0 1 2 3 4 5 6 7 8 9 10 11
WR RD RD

Ack Ack

Sync

Sync

0 1 1 2

0 1 2

Crit. Path

1

Ack

eFPGA Clock

Processor Clock

Accelerator
Write

(b) Accesses to a Shadowed Soft Register (This Work)

Clock Boundary

NoC Req

NoC Resp

FIFO (NoC→FPGA)

FIFO (FPGA→NoC)

Shadow Reg. B

0 1 2 3 4 5 6 7 8 9
WR:A

WR:A

Soft Reg. A

WR:B (stalled)

0 1

Ack:A

0

eFPGA Clock

Processor Clock

Ack:A

Sync:B

Ack:B

1

Soft Reg. B 0 1

(c) Strict Ordering of Two Soft Register Writes (This Work)
Fig. 6: Accessing Soft Registers and Shadow Registers

synchronizes shadowed soft registers over the asynchronous
FIFO, so that the Shadow Registers can respond to processor
reads immediately without notifying the eFPGA.

Duet supports four types of Shadow Registers: plain, FPGA-
bound FIFO, CPU-bound FIFO, and token FIFO. Plain
Shadow Registers only keep the last value of multiple writes,
which are ideal for passing constant parameters. FPGA-bound
and CPU-bound FIFOs, as their names suggest, record all
writes from one side and allow the other side to read in
order. CPU-bound FIFO is blocking, i.e., a processor read
is stalled until the soft accelerator pushes into the FIFO or
the request times out. In contrast, CPU-bound token FIFO
is a dataless, non-blocking FIFO that consumes a token or
returns "empty" in response to a processor read. Token FIFO
is designed particularly to emulate the non-blocking try_join
semantic in parallel programming models.

Note that normal soft registers are still available in case the
software requires non-bufferable accesses that must be sent
all the way to the endpoint. For example, a soft register can
be dedicated as a barrier for synchronizing the processor and
the eFPGA. The processor signals its arrival at the barrier
by reading the soft register, while the eFPGA signals its
arrival at the barrier by acknowledging the read. To maintain
I/O ordering, Shadow Register accesses are processed and
responded to in order with respect to other shadowed or normal
register accesses, as shown in Fig. 6c.

III. APPLICATIONS

Duet enables two novel paradigms of hardware acceleration,
namely fine-grained acceleration and hardware augmentation.
In this section, we illustrate both paradigms with examples
and discuss why Duet is the ideal architecture for them.

5

Listing 1: The key compute loop of the Barnes-Hut simulation
algorithm [7]. The highlighted functions are static, compute-
intensive, and ideal for fine-grained acceleration.
// Calculate the net force on particle "p"
void CalculateNetForce (BHTreeNode node, Particle p):
if (Distance (node, p) > node.radius * THRESHOLD)

// "p" is far enough from the particles in the subtree of
// "node", so we approximate the net force with a low-order
// multipole expansion and stop traversing the subtree
p.force += ApproxForce (node, p);

else if (IsLeafNode (node))
for (Particle q : node.children)

p.force += CalcForce (q, p);
else

// traverse the subtree via recursive calls
for (BHTreeNode child : node.children)

CalculateNetForce (child, p);

// Calculate the net forces on all particles in parallel
void CalculateNetForceOnAllParticles (

BHTreeNode root, vector<Particle> allParticles):
parallel_for (Particle p : allParticles)

CalculateNetForce (root, p);

A. Fine-Grained Acceleration

1) Overview: At its core, fine-grained acceleration and
coarse-grained acceleration are similar because they both
offload computation onto application-specific accelerators. In
fact, there is a spectrum rather than a clear boundary between
the two paradigms — the shorter the accelerated function is, or
the more frequent the accelerator interacts with the processors,
the closer it is to the fine-grained end of the spectrum.

Fine-grained acceleration has the following advantages:
first, it fully utilizes the compute power of the processors by
running the less accelerable fractions of an algorithm on them,
for example dynamic control flow, memory/IO-bound tasks,
managing complex data structures, etc.; second, it reduces
software and accelerator design costs by moving less logic
onto the FPGA; third, in comparison to a monolithic acceler-
ator, a collection of small accelerators are more composable,
reusable, and more resilient to software updates.

2) Example: Barnes-Hut (BH) algorithm [7] is an approxi-
mation algorithm for simulating a dynamic system of particles
interacting via certain physical forces such as gravity. In each
time step, the simulation volume is divided into hierarchical,
cubic cells stored in an octree (for three-dimensional space), so
that the total force exerted by particles in distant cells can be
approximated through a center-of-mass abstraction or a low-
order multipole expansion. Listing 1 shows the key functions
that calculate the net force on all particles.

Prior work [17] has proposed an FPGA-based, coarse-
grained BH accelerator which contains replicated pipelines to
parallelize force calculation on multiple particles. However,
despite the use of a special traversal cache that facilitates
data reuse between the pipelines, control flow divergence often
leads to low pipeline utilization. Furthermore, the accelerator
relies on the host processor to serialize the BH-tree and preload
the node pointers into the traversal cache, making it inappli-
cable if the dataset exceeds the FPGA’s BRAM capacity. In
summary, building a coarse-grained BH accelerator can be an
intimidating task without a satisfactory result.

Fig. 7 shows the timeline of BH running on a dual-

CPU
Thread #1

CPU
Thread #2

Accelerator #2
CalcForce

Accelerator #1
ApproxForce

Visit Node

Invoke ApproxForce

Visit Node

Invoke CalcForce

Visit Node

Invoke CalcForce

Invoke CalcForce

Invoke CalcForce

1

2

3

Fig. 7: Multi-Threaded BH with Fine-grained Acceleration
1© Loop-carry dependencies and dynamic control flow are handled

by the processors; 2© Processors and accelerators run in parallel
through software pipelining; 3© Accelerators are time-multiplexed
by multiple CPU threads to increase utilization.

core system with two fine-grained accelerators. Besides being
easy to program, this software-hardware co-design is scal-
able and flexible: multiple accelerators of each type can be
instantiated to increase parallelism; if THRESHOLD is high,
i.e., ApproxForce is called for less times, the system can
allocate more eFPGA resources to implement more and/or
faster CalcForce accelerators, and vice versa if THRESHOLD
is low.

The fine-grained BH accelerators would be inefficient with-
out Duet’s architectural support. First, the accelerators access
just a few cachelines at random memory locations per ex-
ecution, resulting in poor utilization of the block-oriented,
bandwidth-optimized memory system in most existing CPU-
FPGA architectures. In contrast, Duet’s hybrid cache organiza-
tion minimizes accelerators’ memory access latency, especially
for random accesses at cacheline granularity. Second, the
accelerators are invoked frequently and time-multiplexed by
multiple CPU threads. A centralized CPU-FPGA interconnect
may be congested by the MMIOs issued by the processors to
invoke the accelerators. Duet’s scalable integration makes it
possible to split the workload across multiple eFPGAs, and
the shadow registers can further minimize MMIO latency.

B. Hardware Augmentation

1) Overview: Hardware augmentation allows application
developers to add various hardware widgets to the system
after chip fabrication. These widgets help improve proces-
sor efficiency and/or mitigate software overheads in certain
execution models, providing application-agnostic acceleration.
Different hardware augmentation widgets often exhibit unique
behaviors and provide distinct software APIs. For example,
decoupled access-execute engines [49] hide the latency of
memory redirects by dereferencing software-specified pointers
and collect the data into a hardware queue; hardware garbage
collectors [32] run autonomously in the background and
alleviate software overhead of the runtime environment. Since
hardware augmentation widgets collaborate closely with the
processors, Duet’s scalable, tight, cache-coherent integration
is critical to maximize performance.

2) Example: Discrete event simulation (DES) is a well-
known challenge for parallel execution [18]. All the simu-

6

Ariane

L2
Cache

L2
Cache

L2
Cache

L2
Cache

Coherent
Mem Intf

Coherent
Mem Intf

1

2

3

L3 Cache
Shard

L3 Cache
Shard

L3 Cache
Shard

L3 Cache
Shard

NoC
Router

NoC
Router

NoC
Router

NoC
Router

Ariane

P-Mesh
Socket

P-Mesh
Socket

P-Tile

P-Tile

C-Tile

M-Tile

P-Mesh
Socket

P-Mesh
Socket

Soft Reg Intf

FPGA Manager

Duet Adapter FPGA

Config
Memory

So
ft

 A
cc

el
er

at
or

So
ft

 C
ac

h
e

So
ft

 C
ac

h
e

Fig. 8: Architecture of Dolly-P2M2
Dolly-P2M2 has 2 processors, 1 eFPGA, and 2 Memory Hubs.
P-tile, C-tile and M-tile are physical tiles in a 2D mesh network.
P-Mesh Socket is a physical wrapper for common components in
all physical tiles, including an L2 cache, a NoC router, and a shard
of the shared L3 cache. 1© is the Control hub (Sec. II-E). 2© and
3© are two Memory Hubs (Sec. II-B). Note that 1© and 2© reside

in the same physical C-tile.

lating threads must either progress in lock step (conservative
method), which suffers from high synchronization overheads,
or exploit speculative execution (optimistic method), which re-
quires a carefully designed software runtime or an architecture
that supports thread-level speculation, e.g., SWARM [27].

Duet opens up another possibility through hardware aug-
mentation: an eFPGA-emulated task scheduler can be loaded
as part of the simulator software while offering hardware-level
performance. Consider a possible implementation of such a
task scheduler. Processors schedule new events by pushing
memory pointers to the events into a FPGA-bound FIFO,
after which the task scheduler fetches the event data from
shared memory and adds the pointer into the proper event
queue. Once certain events are ready to be processed, the
task scheduler pushes the pointers into an CPU-bound FIFO
so that the processors can streamline event processing with
minimal communication latency with the scheduler. The task
scheduler can support task speculation by fetching the cache-
lines that may be modified by a speculative event and storing
versioned copies of them in its non-coherent memory. On a
mis-speculation, the task scheduler rolls back the cachelines to
the most up-to-date, non-speculative versions, then reschedules
the mis-speculated events.

IV. DOLLY

To evaluate Duet with high fidelity, we built Dolly1, a
prototype system at the RTL level (Verilog/SystemVerilog)
with a full toolchain for software development and accelerator
design. Dolly is configurable in the number of processors, the
logic capacity of the eFPGA, the number of memory hubs, etc.
For simplicity, we name each Dolly instance PpMm, where
p specifies the number of processors, and m specifies the

1Named after Dolly Suite, Op. 56, a collection of pieces for piano duet
composed by Gabriel Fauré.

number of memory hubs available to the eFPGA. For example,
Fig. 8 shows the architecture of Dolly-P2M2. To encourage
further research in tightly-integrated, hardware cache-
coherent CPU-eFPGA systems, we have open-sourced
Dolly and its toolchain, available at https://github.com/
PrincetonUniversity/Duet.

Dolly is based on the OpenPiton P-Mesh cache coherence
system [6] in a 2D mesh configuration. The cache system
is organized in three levels: the L1 caches are tightly inter-
woven into the processors; one private, write-back, 8KB L2
cache per physical tile interfaces with the corresponding L1
cache through the transaction-response interface (TRI) [5];
the shared L3 cache is distributed among all physical tiles,
64KB per shard, and runs a directory-based MESI protocol
together with the private L2 caches. The NoC offers point-
to-point ordering of message delivery and supports additional
message types besides the coherence messages, enabling on-
chip MMIOs required by Dolly.

Dolly contains three types of physical tiles and an eFPGA.
Each P-Tile hosts an Ariane [57] processor, a 6-stage, single-
issue, in-order CPU which implements the 64-bit RISC-V
instruction set. Each Ariane processor has a private hardware
FPU, an 8KB L1 instruction (L1I) cache, and an 8KB L1 data
(L1D) cache. C-Tiles and M-Tiles compose the Duet Adapter:
each C-Tile contains one Control Hub (Sec. II-E) and one
Memory Hub (Sec. II-B); each M-Tile includes one Memory
Hub. To demonstrate Duet’s adaptability, Dolly implements
the Proxy Cache by adding a coherent memory interface to
the unmodified P-Mesh L2 cache. The L2 cache, L3 cache
shard and NoC router are the same across all physical tile
types, so we wrap them into one module, the P-Mesh socket.

The eFPGA is built with PRGA [31] and employs a
standard island-style architecture composed of logic blocks
and routing blocks. The eFPGA includes all of the common
logic resources available on modern FPGAs, including look-
up tables (LUT), bypassable flip-flops, hard adder chains,
Block RAMs (BRAM), and hard multipliers. Dolly employs
a non-synthesizable clock generator to generate the eFPGA
clock whose frequency can be specified in software. All the
asynchronous FIFOs are implemented with dual-clock RAMs
and Gray-coded, 2-stage synchronizers.

V. EVALUATION

A. Overview

We conduct our evaluation of Duet through RTL simulations
of Dolly instances and focus on three perspectives: first of all,
we report the area consumption and the typical frequency of
the hard components of Dolly (Sec. V-B); second, we run syn-
thetic benchmarks to measure the CPU-FPGA communication
latency and bandwidth achieved by the Duet Adapter under
different conditions (Sec. V-C); third, we run seven application
benchmarks and compare their performance against processor-
only and FPSoC baselines (Sec. V-D).

To show the lower bound of Duet-enabled improvements,
we give the processors various advantages throughout our
evaluation. Specifically, we boost the clock frequency of the

7

https://github.com/PrincetonUniversity/Duet
https://github.com/PrincetonUniversity/Duet

TABLE I: Area and Typical Frequency of Dolly Components

Component Device Area Freq. Scaled Area* Scaled Freq.*
Technology (mm2) (MHz) (mm2) (MHz)

Ariane [58] GlobalFoundries 0.39 910 1.56 455†
22nm FDX

P-Mesh IBM 32nm SOI 0.55 1000 1.1* 711*†
Socket [6]

FPGA Mgr +
FreePDK45

0.21 925 0.21* 925*
Soft Reg Intf

Coherent 0.04 1250 0.04* 1250*
Memory Intf

* Scaled to 45nm with a linear MOSFET scaling model
† To emulate a higher-performance multi-core, our evaluation sim-

ulates the Ariane cores and the hardware cache system at 1GHz

Ariane processors and the P-Mesh cache system to 1GHz,
despite that previous works reported their maximum frequen-
cies (after scaling to 45nm) to be 455MHz and 711MHz,
respectively. For the application benchmarks, processor-only
baselines always start with a warm cache, while the soft
accelerators always start with a cold cache.

B. Area and Typical Frequency of the Hard Components

Table I summarizes the area and typical frequency of each
hardware component of Dolly. The numbers for Ariane and
P-Mesh components are retrieved from previous works. The
submodules of the Control Hub and the Memory Hub are
synthesized using Synopsys Design Compiler and Silvaco’s
Open-Cell Library [48] based on the NCSU FreePDK45
process design kit [50] using an area utilization rate of 70%.
In summary, the Control Hub and the Memory Hub require
minimal hardware resources. The area consumption of the
eFPGA and the clock frequency of the emulated accelerator
are reported on a per-benchmark basis in Sec. V-D.

C. CPU-eFPGA Communication Latency and Bandwidth

In this section, we evaluate the peak performance of Duet
with a synthetic benchmark. The eFPGA emulates a simple
scratchpad memory and a processor uses different mechanisms
to access it. To show that the eFPGA’s clock frequency has
a significant impact on performance, we sweep the eFPGA
clock from 20MHz to 500MHz while fixing the system clock
at 1GHz. In particular, we study the following CPU-eFPGA
communication mechanisms and show how Duet improves
them over existing CPU-FPGA systems:

Soft registers are memory-mapped, eFPGA-emulated regis-
ters which the processor can read and write via non-coherent
MMIOs. These soft registers can be implemented inside the
eFPGA (Normal Registers), in which case processor ac-
cesses must pay the Clock-Domain-Crossing (CDC) overhead.
Shadow Registers address this inefficiency. In this study, we
use FPGA-bound FIFOs to handle processor writes and CPU-
bound FIFOs for processor reads.

Alternatively, the processor can store the data in shared
memory and pass the memory address to the eFPGA via a
soft register write. The soft register write not only signals
the eFPGA to load the data (eFPGA Pull), but also works
as a synchronization to ensure that all processor stores are
committed into the cache system before the eFPGA starts

0 50 100 150 200 250 300
Roundtrip Latency (ns)

100
200
500

100
200
500

100
200
500

100
200
500

100
200
500

100
200
500

eF
PG

A
Fr

eq
ue

nc
y

(M
Hz

)

20
20
20

20
20
20

17
17
17

17
17
17

26
26
26

26
26
26

33
33
33

47
47
47

25
25
25

142
70
28

100
51
20

105
57

27

103
56
27

104
57

27

104
56
26

300
180

108

170
123

94

229
133

72

42
42
42

130
82

52

26
26
26

NoC Latency
Cache Logic (Fast Clock Domain)
Cache Logic (Slow Clock Domain)
Clock-Domain-Crossing Overhead

Shadow Reg.
(This Work)

Normal Reg.

CPU Pull w/
Proxy Cache
(This Work)

CPU Pull w/
Slow Cache

eFPGA Pull w/
Proxy Cache
(This Work)

eFPGA Pull w/
Slow Cache

Co
m

m
un

ica
tio

n
M

ec
ha

ni
sm

Fig. 9: CPU-eFPGA Communication Latency
(Single processor; Single transaction; Lower is better)

loading. The eFPGA can send data to the processor in a
similar way (CPU Pull). As described in Sec. II-C, commodity
FPSoCs typically emulate FPGA-side caches using eFPGA
resources (Slow Cache), while Duet employs the novel Proxy
Cache to improve cache performance.

Latency Study
We first measure the minimum round-trip latency of the

aforementioned communication mechanisms on Dolly-P1M1.
Fig. 9 shows the breakdown of the CPU-eFPGA communi-
cation latency into four parts: NoC latency, cache processing
time in the fast clock domain, cache processing time in the
slow clock domain, and the CDC overhead. All numbers are
collected in an ideal scenario, that is, single processor (no
contention or NoC congestion), single transaction (no buffer
clogging). Note that the eFPGA pulls and CPU pulls are
guaranteed to miss in the requesting cache and to hit in the
other party’s private cache in a modified state. Both the NoC
latency and the cache processing time in the fast clock domain
include the time for the distributed directory to send and
process the secondary write-back requests.

As we can see, the CDC overhead and the slow clock
penalty on cache processing constitute over half of the round-
trip latency for a slow cache, even when the eFPGA runs
at 50% of the CPU clock frequency. For eFPGA pulls, the
Proxy Cache can reduce the latency by 13% to 43%, and
the reduction increases as the eFPGA runs slower. For CPU
pulls, the Proxy Cache achieves a constant latency regardless
of the eFPGA clock frequency, reducing the latency by 42% to
82%. The Shadow Registers also have a fixed latency, reducing
CPU-eFPGA communication latency by 50% to 80%. Note
that the Proxy Cache and the Shadow Registers only move the
eFPGA off of the critical path, and the eFPGA still needs time
to issue memory accesses and to handle soft register accesses.

Single-Processor Bandwidth Study
Next, we study the maximum bandwidth of single-processor

communications on Dolly-P1M1. In this study, we configure
the synthetic benchmark to pass 512 quad-word (8 Bytes)
integers from one processor to the eFPGA and then fetch
them back. With the soft registers, this is done by having
the processor execute a loop that writes/reads one integer

8

20 (2%) 50 (5%) 100 (10%) 200 (20%) 500 (50%)
eFPGA Frequency (MHz) and Ratio to CPU Frequency (1GHz)

0

100

200

300

400

500

600

700
Ba

nd
wi

dt
h

(M
By

te
s/

s)
Normal Reg.
CPU Pull w/ Slow Cache
eFPGA Pull w/ Slow Cache

Shadow Reg. (This work)
CPU Pull w/ Proxy Cache (This work)
eFPGA Pull w/ Proxy Cache (This work)

Fig. 10: Processor-eFPGA Communication Bandwidth vs.
eFPGA Clock Frequency (Single processor; Higher is better)

per iteration. When using shared memory, the processor first
allocates two 4KB buffers in the memory and passes the base
addresses to the eFPGA using two plain shadow registers.
Then, the processor stores all the integers into one of the
two buffers and sends a read request to another normal
soft register, awakening the eFPGA and blocking itself. The
eFPGA proactively loads the entire array into its scratchpad
memory, stores it back to the other buffer, and then unblocks
the processor by acknowledging the processor’s read request.
Finally, the processor loads the array from shared memory.

Fig. 10 shows the results of this study. The Proxy Cache
delivers the highest bandwidth across all eFPGA frequencies.
In fact, the Proxy Cache reaches the peak bandwidth for
eFPGA pulls (558MB/s) when the eFPGA runs faster than
100MHz (10% of the CPU clock frequency); for CPU pulls,
the peak bandwidth (201MB/s) is reached at 50MHz. In
comparison, the slow cache can only achieve 287MB/s for
eFPGA pulls and 144MB/s for CPU pulls even when the
eFPGA runs at 500MHz. The largest bandwidth gap is 9.5x
when the eFPGA runs at 100MHz. The upper bounds of cache-
based communications are determined by the NoC bandwidth
and the number of concurrent, in-flight, memory requests
supported by the Proxy Cache. Note that the upper bounds
of CPU pulls are much lower than those of eFPGA pulls.
This is because the cache line size is 16 Bytes and the
eFPGA can load up to one line per cycle, but the L2 cache in
Dolly only supports stores up to 8 Bytes, so the eFPGA must
send two requests to store one cacheline, under-utilizing the
asynchronous FIFOs.

The Shadow Registers also achieve a stable bandwidth
(213MB/s) once the eFPGA clock frequency exceeds 10% of
the CPU clock frequency. In comparison, normal registers can
only reach 121MB/s at 500MHz. The upper bound of soft
register accesses is limited by the strict consistency model of
MMIOs. If the I/O consistency model is relaxed, the upper
bound is then limited by the number of concurrent, in-flight
MMIOs supported by the load-store queue of the processor.

Multi-Processor Scalability Study
One key difference between Duet and existing CPU-FPGA

systems is the scalability. At the architecture level, Duet has no
constraint on the number of processors, eFPGA fabrics, or the

1 2 4 8 16
Number of Processors Accessing the Registers

101

102

103

Ba
nd

wi
dt

h
(M

By
te

s/
s,

lo
g-

sc
al

e) Normal Reg. Write
Normal Reg. Read

Shadow Reg. Write (This Work)
Shadow Reg. Read (This Work)

Fig. 11: Processor-eFPGA Communication Bandwidth (Per
Processor) vs. Number of Contending Processors

number of Memory Hubs per eFPGA. In this section, we study
the effect of multi-processor contention on the soft registers. In
particular, we run the synthetic benchmark on multiple Dolly
instances with different number of processors which constantly
writes/reads the same soft register. The eFPGA clock is fixed
at 500MHz (50% of the CPU clock frequency).

Fig. 11 shows the results. The Shadow Registers can stably
support up to 8 processors before the per-processor bandwidth
starts to drop, while the normal registers can only support
up to 2 processors. Considering that the processors need
to perform other tasks between soft register accesses, the
Shadow Registers can support even more processors in real
applications.

Summary
In summary, the significant reduction in latency and the

stable increase in bandwidth clearly justify the promotion of
soft registers and private caches into the fast clock domain.

D. Application Benchmarks

In this section, we evaluate Duet with seven application
benchmarks. For each benchmark, we first run a C imple-
mentation as the processor-only baseline and record the total
runtime. Note that all benchmarks are run in bare metal due
to limited simulation speed at the RTL level. We then design
the soft accelerators for each benchmark, either directly at the
RTL level, or by synthesizing an alternative C implementation
with Catapult HLS [47]. Each accelerator is synthesized,
placed and routed with the PRGA [31] workflow to get the
accurate eFPGA clock frequency and an area estimation of the
utilized FPGA resources. In particular, we map each bench-
mark onto the flagship FPGA model provided by VTR [38]
(k6_frac_N10_frac_chain_mem32K_40nm) which resembles an Altera
Stratix IV FPGA. With the accurate eFPGA clock frequency,
we rerun the benchmarks on various Dolly instances and an
FPSoC-like architecture, recording the total runtime which
includes all the overhead in CPU-FPGA communication and
synchronization. In particular, the FPSoC model moves the
P-Mesh L2 cache into the eFPGA’s (slow) clock domain and
downgrades all shadowed soft registers to normal registers. We
then compute the speedup over processor-only baselines and
compare the results achieved by Dolly and the FPSoC model.

9

0

2

4

6

8
No

rm
al

ize
d

Sp
ee

du
p

(H
ig

he
r i

s b
et

te
r)

9.8 12.9 16.2 15.1 24.9

2.14

4.53

CPU
FPSoC
Duet (This Work)

tangent popcount sort/32 sort/64 sort/128 dijkstra barnes-hut pdes/4 pdes/8 pdes/16 bfs/4 bfs/8 bfs/16 geomean
Benchmark

0

1

2

3

No
rm

al
ize

d
AD

P
(L

ow
er

 is
 b

et
te

r)

1.23
0.61

Fig. 12: Normalized Speedup and ADP of Application Benchmarks
sort/N indicates the array size of the sorting accelerator; pdes/N and bfs/N indicates the number of cores sharing the accelerator.

We use Area-Delay-Product (ADP) to quantify and com-
pare area efficiency. When calculating area consumption, the
processor-only baseline only counts the processors and the
hardware cache system. The FPSoC-like architecture adds the
silicon area of the FPGA on top of the processor-only baseline,
and Dolly further includes the Duet Adapters.

The seven benchmarks, their corresponding Dolly instance,
and the acceleration paradigm (FG for fine-grained accelera-
tion, HA for hardware augmentation) are the following:
• Tangent (P1M0, FG): A floating-point Tangent accelerator
is implemented with Catapult HLS using a piece-wise linear
approximation algorithm with a maximum error rate of 0.3%
compared to the C math library (libm). An FPGA-bound FIFO
is used to pass the argument to the accelerator and invoke it.
Results are returned through an CPU-bound FIFO.
• Popcount (P1M1, FG): Popcount counts the number of ones
in a long bit vector (512 bits). Since the Ariane processor
does not support the RISC-V BitManip Extension, we use a
byte look-up algorithm for the processor-only baseline. The
accelerator is hand-written in Verilog and uses one Memory
Hub to load the bit vector from coherent memory.
• Sort (P1M2, FG): We use the SPIRAL Project [60] to
generate 3 sorting networks in Verilog for sorting 32, 64,
128 double-word (4-Byte) integers. The accelerator uses two
memory hubs, one for reading the input array from coherent
memory and one for writing the sorted array back, so that the
accelerator can be pipelined to sort fixed-length slices of a
larger array which can then be merge-sorted by the processor.
The processor-only baseline runs quicksort on the entire array.
• Dijkstra (P1M1, FG): We implement an accelerator for
Dijkstra’s Shortest Path algorithm with Catapult HLS and use
a soft cache to exploit data locality between consecutive calls
to the accelerator.
• Barnes-Hut (P4M1, FG): As explained in Sec. III-A2, the
two key kernels in the Barnes-Hut algorithm are implemented
as soft accelerators using Catapult HLS. Both accelerators
are pipelined and time-multiplexed by four processors. The
processor-only baseline also parallelizes force calculation for
different particles across four processors.
• PDES (P4M1/P8M1/P16M1, HA): As described in

TABLE II: Clock Frequency and Area of Soft Accelerators

Benchmark Max. Freq Norm. Resource Utilization
(MHz) Area * CLB † BRAM

Ariane + 1000 1.0 - -P-Mesh Socket
Tangent 282 0.47 0.84 0

Popcount 189 2.77 0.83 0.56
Sort (32) 228 6.29 0.30 0.76
Sort (64) 234 8.10 0.27 0.92
Sort (128) 228 10.27 0.27 0.92
Dijkstra 127 1.94 0.96 0.31

Barnes-Hut 85 14.22 0.99 0.05
BFS 208 1.24 0.61 0.75

PDES 126 2.77 0.47 0.56
* Total silicon area needed by the eFPGA to implement the accelerator,

normalized to 1x Ariane + 1x P-Mesh Socket
† Configurable Logic Block, including LUTs and flip-flops

Sec. III-B2, a non-speculative, hardware task scheduler is
designed in Verilog to accelerate Parallel Discrete Event
Simulation (PDES) of a digital circuit. The processor-only
baseline uses MCS locks [35] to arbitrate accesses to the
shared event queue, and the lock contention can be severe as
the number of cores increases.
• BFS (P4M0/P8M0/P16M0, HA): We implement multiple
hardware, lock-free queues in Verilog to alleviate the synchro-
nization overhead in parallel Breadth-First Search (BFS). The
processors traverse the graph in barrier-synchronized steps and
use the queues to store the current and next search frontiers.
Similar to the PDES benchmark, the processor-only baseline
suffers from synchronization bottlenecks.

Table. II lists the maximum clock frequency and eFPGA
resource utilization of the soft accelerators. Note that the soft
accelerators can only run at 8% - 28% of the processors’
clock frequency. As studied in Sec. V-C, Duet achieves peak
bandwidth in this frequency range and outperforms the con-
ventional FPSoC communication mechanisms by at least 2x.

Fig. 12 shows the normalized speedup and ADP of the appli-
cation benchmarks. Duet outperforms FPSoC across all bench-
marks and achieves a geometric mean of 4.53x speedup over
processor-only baselines, in comparison to 2.14x achieved by

10

FPSoC using the same accelerators. The sorting accelerators
provide up to 16.2x speedup on Duet but only 4.0x on FPSoC,
because the FPGA-side caches in FPSoC are penalized by the
slow clock cycles. Some may argue that the FPGA-side caches
are unnecessary because sorted arrays are consecutive blocks
for which DMAs are efficient. However, due to the small array
sizes (128-512B), even LLC-coherent DMA incurs too much
control overhead in cache flushing. The lock-free queues used
in BFS provide up to 24.9x speedup on Duet but only 7.8x
on FPSoC, because the processor-accelerator communication
latency on FPSoC is much higher without the shadow registers.
Note that the BFS benchmark shows a superlinear speedup
when scaling from a 4-core system (Dolly-P4M0) to an 8-
core system (Dolly-P8M0). This is because the processor-only
baseline sees a performance decrease when scaling from 4
cores to 8 cores due to intensifying lock contention.

In terms of area efficiency, Duet achieves a geometric mean
of 0.39x lower ADP than the processor-only baseline (lower
is better), while the FPSoC is 0.23x higher. Duet outperforms
FPSoC on most benchmarks except for Dijkstra. This is
because the FPSoC model hardens the FPGA-side cache in the
slow clock domain, so that soft caches become unnecessary
and can be removed to save eFPGA resources.

In summary, Dolly achieves superior speedup with the same
eFPGA-emulated accelerators than FPSoCs. Therefore, we can
conclude that Duet provides better support for fine-grained
acceleration and hardware augmentation.

VI. RELATED WORK

A. Standalone FPGA-Based Accelerators

FPGAs are being used in a fast-growing range of application
domains due to their programmability and close-to-ASIC
performance. On a smaller scale, standalone FPGAs are used
to accelerate database queries [51], image processing [14],
network filtering [52], and most popularly, deep learning
applications [21], [46], [59]. On the other end of the spectrum,
FPGAs are massively deployed in the Cloud, either offered di-
rectly as an on-demand computing service such as the Amazon
AWS F1 instances [2], or used to build cloud-scale accelerators
such as Microsoft Catapult [10] and BrainWave [15]. In these
systems, the FPGAs are often integrated as PCIe peripherals
or separate machines on the datacenter network. As explained
in Sec. I, such systems excel in accelerating at the application
level, but are insufficient for fine-grained acceleration due to
high CPU-FPGA communication overhead.

B. Same-Package CPU-FPGA Hybrids and FPSoCs

Addressing the CPU-FPGA communication bottleneck,
academia and industry have explored tighter integration of
the two. Intel Harp [13] combines an Intel Xeon multi-core
CPU and an Altera FPGA in one package, and bridges the
two with QPI, a point-to-point interconnect with cache coher-
ence support. Field-Programmable System-on-Chips (FPSoC)
achieves even tighter integration by integrating processors and
FPGAs on the same chip, similar to Duet at a high level. Many
commodity FPSoCs [26], [36], [37], [42], [55] and academic

FPSoCs [28], [45], [53] support full or partial cache coherence.
For example, the Xilinx Zynq-7000 employs the AXI4 ACP
interface [3] which supports uni-directional cache coherence
(I/O coherency). The Xilinx Zynq UltraScale+ MPSoC [56]
and Versal ACAP [19] provide full coherence support with
the ACE protocol [3].

There are two key differences between Duet and FPSoCs.
First, as shown in Fig. 1b, the processor subsystem and the
eFPGA in FPSoCs are separated by a centralized interconnect,
and the hardware cache hierarchy resides in the processor sub-
system. Such organization is reasonable for an FPGA-centric,
dual-core architecture, but cannot scale to a larger number of
cores. Second, in the absence of FPGA-side hardware caches,
it becomes the accelerator designers’ burden to design and
verify soft caches that comply with the coherence protocol,
for example ACE [3]. Besides increasing design complexity,
the soft caches’ direct participation in cache coherence slows
down the entire cache system because they run in the slow
clock domain. Moreover, since the soft caches have access to
the micro-architecture states of the NoC, the system cannot
restrain faulty or malicious behaviors of the soft caches.

C. Near- and In-Processor Reconfigurable Computing

Dating back to the early days of reconfigurable computing,
computer architects have proposed to integrate Reconfigurable
Fabrics (RF) very close to or even into processors. Garp [9]
places an RF between a processor and its private cache,
making the two compute units share the entire memory sys-
tem. Chimaera [24] and PRISC [43] embed Reconfigurable
Functional Units (RFUs) directly into a processor’s datap-
ath, enabling post-fabrication customization of the Instruction
Set Architecture (ISA). The Post-Fabrication Microarchitec-
ture [29] couples an RF with a superscalar core and allows
the RF to observe and microarchitecturally intervene at key
pipeline stages. These systems have their advantages but con-
flict with our plug-and-play integration goal as they mandate
the redesign of the processors.

D. Coherence Protocols for Accelerators

Hardware cache coherence has been widely adopted in
multi-processor systems as they provide not only programma-
bility but also performance. In the context of hardware accel-
eration, recent studies have also shown benefits of employing
hardware cache coherence and have proposed a variety of
solutions. FUSION [30] is a hierarchical, timestamp-based
coherence protocol emphasizing data transfer between accel-
erators; Crossing Guard [39] proposes the use of a hard cache
transducer to decouple the accelerator coherence protocol
and the processor (host) protocol, as well as to incorporate
fault-tolerance and memory translation; Spandex [1] offers
flexible write strategy and granularity, adapting to highly het-
erogeneous architectures. While all of these proposals achieve
hardware cache coherence, they are not optimized for FPGA-
based accelerators in that they all require direct participation of
the accelerators. However, through the use of the Proxy Cache,
Duet can be adapted to these coherence protocols, pretending

11

to be a "fast" accelerator to the NoC and hiding the slow clock
domain from the coherence protocol.

Accelerator coherence standards and interconnects are also
emerging in industry, e.g., CCIX [11], OpenCAPI [40], and
CXL [25]. These proposals target the board level or above and
are really optimized for coarse-grained acceleration.

VII. CONCLUSION

In this work, we present Duet, a scalable, manycore-FPGA
architecture with non-intrusive, coherently-integrated, embed-
ded FPGAs that is optimized for fine-grained acceleration and
hardware augmentation in the broad general-purpose domains.
By promoting the eFPGA to a first-class citizen on chip, Duet
enables the eFPGA to access the NoC and to participate in bi-
directional cache coherence just as any other processor. The
novel, lightweight, Duet Adapters reduce critical communi-
cation overheads by placing the Proxy Caches and Shadow
Registers in the faster processor clock domain. Our evaluation
shows that Dolly, an RTL-level implementation of Duet, can
reduce the latency of processor-accelerator communications by
up to 82% and increase the bandwidth by up to 9.5x, stably
across a wide range of eFPGA clock frequencies. Selected
benchmarks leveraging Duet-enabled soft accelerators show up

to 24.9x speedup over processor-only baselines and up to 4x
over FPSoCs. Dolly and its toolchain have been open-sourced
and available at https://github.com/PrincetonUniversity/Duet.

ACKNOWLEDGEMENTS

This material is based on research sponsored by the Air
Force Research Laboratory (AFRL) and Defense Advanced
Research Projects Agency (DARPA) under agreement No.
FA8650-18-2-7852. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
CNS-1823222 and the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE-2039656.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory
(AFRL) and Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

12

https://github.com/PrincetonUniversity/Duet

REFERENCES

[1] J. Alsop, M. D. Sinclair, and S. V. Adve, “Spandex: A Flexible
Interface for Efficient Heterogeneous Coherence,” in Proceedings
of the 45th Annual International Symposium on Computer Architecture,
ser. ISCA ’18. IEEE Press, 2018, p. 261–274. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00031

[2] Amazon, “Amazon EC2 F1 Instances,” https://aws.amazon.com/ec2/
instance-types/f1/.

[3] ARM Limited, “AMBA AXI and ACE Protocol Specification,” https:
//developer.arm.com/documentation/ihi0022/e/.

[4] ——, “AMBA CHI Architecture Specification,” https://developer.arm.
com/documentation/ihi0050/c/.

[5] J. Balkind, K. Lim, M. Schaffner, F. Gao, G. Chirkov, A. Li, A. Lavrov,
T. M. Nguyen, Y. Fu, F. Zaruba, K. Gulati, L. Benini, and D. Wentzlaff,
“BYOC: A "Bring Your Own Core" Framework for Heterogeneous-ISA
Research,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 699–714. [Online]. Available:
https://doi.org/10.1145/3373376.3378479

[6] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou,
A. Lavrov, M. Shahrad, A. Fuchs, S. Payne, X. Liang,
M. Matl, and D. Wentzlaff, “OpenPiton: An Open Source
Manycore Research Framework,” in Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’16. New York,
NY, USA: ACM, 2016, pp. 217–232. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872414

[7] J. Barnes and P. Hut, “A hierarchical O (N logN) force-calculation
algorithm,” Nature, vol. 324, pp. 446–449, 1986.

[8] A. Boutros, S. Yazdanshenas, and V. Betz, “You Cannot Improve
What You Do Not Measure: FPGA vs. ASIC Efficiency Gaps for
Convolutional Neural Network Inference,” ACM Trans. Reconfigurable
Technol. Syst., vol. 11, no. 3, dec 2018. [Online]. Available:
https://doi.org/10.1145/3242898

[9] T. Callahan, J. Hauser, and J. Wawrzynek, “The Garp Architecture and
C Compiler,” Computer, vol. 33, no. 4, pp. 62–69, 2000.

[10] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Mas-
sengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou,
and D. Burger, “A Cloud-Scale Acceleration Architecture,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–13.

[11] CCIX Consortium, “Cache Coherent Interconnect for Accelerators
(CCIX),” https://www.ccixconsortium.com/.

[12] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne,
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Con-
volutional Neural Networks,” in IEEE International Solid-State Circuits
Conference, ISSCC 2016, Digest of Technical Papers, 2016, pp. 262–
263.

[13] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei,
“A Quantitative Analysis on Microarchitectures of Modern CPU-
FPGA Platforms,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE Press, 2016, p. 1–6. [Online]. Available:
https://doi.org/10.1145/2897937.2897972

[14] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A
DSL Compiler for Accelerating Image Processing Pipelines on
FPGAs,” in Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation, ser. PACT ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 327–338.
[Online]. Available: https://doi.org/10.1145/2967938.2967969

[15] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger, “Serving DNNs in Real Time at Datacenter
Scale with Project Brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20,
2018.

[16] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-Chip
Heterogeneous Computing: Does the Future Include Custom Logic,

FPGAs, and GPGPUs?” in 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010, pp. 225–236.

[17] J. Coole, J. Wernsing, and G. Stitt, “A traversal cache framework for
fpga acceleration of pointer data structures: A case study on barnes-hut
n-body simulation,” in 2009 International Conference on Reconfigurable
Computing and FPGAs, 2009, pp. 143–148.

[18] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Commun.
ACM, vol. 33, no. 10, p. 30–53, Oct. 1990. [Online]. Available:
https://doi.org/10.1145/84537.84545

[19] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx
Adaptive Compute Acceleration Platform: Versal™ Architecture,”
in Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 84–93. [Online].
Available: https://doi.org/10.1145/3289602.3293906

[20] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A Quantitative
Analysis of the Speedup Factors of FPGAs over Processors,” in
Proceedings of the 2004 ACM/SIGDA 12th International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’04. New York, NY,
USA: Association for Computing Machinery, 2004, p. 162–170.
[Online]. Available: https://doi.org/10.1145/968280.968304

[21] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, H. Yang, and W. B. J. Dally, “ESE: Efficient Speech
Recognition Engine with Sparse LSTM on FPGA,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 75–84. [Online]. Available:
https://doi.org/10.1145/3020078.3021745

[22] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Proceedings of the 43rd International Symposium
on Computer Architecture, ser. ISCA ’16. IEEE Press, 2016, p.
243–254. [Online]. Available: https://doi.org/10.1109/ISCA.2016.30

[23] Handel Jones, “Strategies in Optimizing Market Positions for Semicon-
ductor Vendors Based on IP Leverage,” https://www.ibs-inc.net/white-
papers, 2014.

[24] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera Recon-
figurable Functional Unit,” in Proceedings. The 5th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines Cat.
No.97TB100186), 1997, pp. 87–96.

[25] Intel Corporation, “Compute Express Link™ (CXL),” https://www.intel.
com/content/www/us/en/io/cxl-cache-mem-protocol-interface-cpi.html.

[26] ——, “Cyclone V SoC,” https://www.intel.com/content/www/us/en/
products/details/fpga/cyclone/v.html.

[27] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A
Scalable Architecture for Ordered Parallelism,” in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2015, pp. 228–241.

[28] D. Koch, N. Dao, B. Healy, J. Yu, and A. Attwood, “FABulous: An
Embedded FPGA Framework,” in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
45–56. [Online]. Available: https://doi.org/10.1145/3431920.3439302

[29] C. Kumar, A. Seshadri, A. Chaudhary, S. Bhawalkar, R. Singh, and
E. Rotenberg, “Post-Fabrication Microarchitecture,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1270–1281. [Online]. Available: https://doi.org/10.
1145/3466752.3480119

[30] S. Kumar, A. Shriraman, and N. Vedula, “FUSION: Design Tradeoffs in
Coherent Cache Hierarchies for Accelerators,” in 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA),
2015, pp. 733–745.

[31] A. Li and D. Wentzlaff, “PRGA: An Open-Source FPGA Research
and Prototyping Framework,” in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
127–137. [Online]. Available: https://doi.org/10.1145/3431920.3439294

[32] M. Maas, K. Asanovic, and J. Kubiatowicz, “A Hardware Accelerator
for Tracing Garbage Collection,” IEEE Micro, vol. 39, no. 3, pp. 38–46,
2019.

[33] C. A. Mack, “Fifty Years of Moore’s Law,” IEEE Transactions on
Semiconductor Manufacturing, vol. 24, no. 2, pp. 202–207, 2011.

13

https://doi.org/10.1109/ISCA.2018.00031
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://developer.arm.com/documentation/ihi0022/e/
https://developer.arm.com/documentation/ihi0022/e/
https://developer.arm.com/documentation/ihi0050/c/
https://developer.arm.com/documentation/ihi0050/c/
https://doi.org/10.1145/3373376.3378479
http://doi.acm.org/10.1145/2872362.2872414
https://doi.org/10.1145/3242898
https://www.ccixconsortium.com/
https://doi.org/10.1145/2897937.2897972
https://doi.org/10.1145/2967938.2967969
https://doi.org/10.1145/84537.84545
https://doi.org/10.1145/3289602.3293906
https://doi.org/10.1145/968280.968304
https://doi.org/10.1145/3020078.3021745
https://doi.org/10.1109/ISCA.2016.30
https://www.ibs-inc.net/white-papers
https://www.ibs-inc.net/white-papers
https://www.intel.com/content/www/us/en/io/cxl-cache-mem-protocol-interface-cpi.html
https://www.intel.com/content/www/us/en/io/cxl-cache-mem-protocol-interface-cpi.html
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/v.html
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/v.html
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3466752.3480119
https://doi.org/10.1145/3466752.3480119
https://doi.org/10.1145/3431920.3439294

[34] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor, “ASIC
Clouds: Specializing the Datacenter,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp.
178–190.

[35] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors,” ACM Trans.
Comput. Syst., vol. 9, no. 1, p. 21–65, feb 1991. [Online]. Available:
https://doi.org/10.1145/103727.103729

[36] Microchip Technology Inc., “SmartFusion 2 SoC,” https://www.
microsemi.com/product-directory/soc-fpgas/1692-smartfusion2.

[37] Microsemi Corporation, “PolarFire SoC,” https://www.microsemi.com/
product-directory/soc-fpgas/5498-polarfire-soc-fpga.

[38] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High-Performance
CAD and Customizable FPGA Architecture Modelling,” ACM Trans.
Reconfigurable Technol. Syst., vol. 13, no. 2, May 2020. [Online].
Available: https://doi.org/10.1145/3388617

[39] L. E. Olson, M. D. Hill, and D. A. Wood, “Crossing Guard:
Mediating Host-Accelerator Coherence Interactions,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
163–176. [Online]. Available: https://doi.org/10.1145/3037697.3037715

[40] OpenCAPI Consortium, “OpenCAPI™,” https://opencapi.org/.
[41] Oracle Corporation, “OpenSPARC™ T1 Microarchitecture

Specification,” https://www.oracle.com/servers/technologies/opensparc-
t1-page.html.

[42] QuickLogic Corporation, “EOS S3,” https://www.quicklogic.com/
products/soc/.

[43] R. Razdan and M. Smith, “A High-Performance Microarchitecture with
Hardware-Programmable Functional Units,” in Proceedings of MICRO-
27. The 27th Annual IEEE/ACM International Symposium on Microar-
chitecture, 1994, pp. 172–180.

[44] K. Rupp, “48 Years of Microprocessor Trend Data,” https://github.com/
karlrupp/microprocessor-trend-data, 2019.

[45] P. D. Schiavone, D. Rossi, A. D. Mauro, F. Gurkaynak, T. Saxe,
M. Wang, K. C. Yap, and L. Benini, “Arnold: an eFPGA-Augmented
RISC-V SoC for Flexible and Low-Power IoT End-Nodes,” 2020.

[46] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-Based Accelerators
of Deep Learning Networks for Learning and Classification: A Review,”
IEEE Access, vol. 7, pp. 7823–7859, 2019.

[47] Siemens Digital Industries Software, “Catapult High-Level Synthesis
and Verification,” https://eda.sw.siemens.com/en-US/ic/catapult-high-
level-synthesis/.

[48] Silicon Integration Initiative, Inc., “15NM OPEN-CELL LIBRARY
AND 45NM FREEPDK,” https://si2.org/open-cell-library/.

[49] J. E. Smith, “Decoupled Access/Execute Computer Architectures,”
SIGARCH Comput. Archit. News, vol. 10, no. 3, p. 112–119, Apr. 1982.
[Online]. Available: https://doi.org/10.1145/1067649.801719

[50] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R.
Davis, P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and
R. Jenkal, “Freepdk: An open-source variation-aware design kit,” in 2007
IEEE International Conference on Microelectronic Systems Education
(MSE’07), 2007, pp. 173–174.

[51] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo,
D. Dillenberger, and S. Asaad, “Database Analytics Acceleration
Using FPGAs,” in Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
411–420. [Online]. Available: https://doi.org/10.1145/2370816.2370874

[52] N. Weaver, V. Paxson, and J. M. Gonzalez, “The Shunt: An
FPGA-Based Accelerator for Network Intrusion Prevention,” in
Proceedings of the 2007 ACM/SIGDA 15th International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’07. New York, NY,
USA: Association for Computing Machinery, 2007, p. 199–206.
[Online]. Available: https://doi.org/10.1145/1216919.1216952

[53] P. N. Whatmough, S. K. Lee, M. Donato, H.-C. Hsueh, S. Xi, U. Gupta,
L. Pentecost, G. G. Ko, D. Brooks, and G.-Y. Wei, “A 16nm 25mm2 SoC
with a 54.5x Flexibility-Efficiency Range from Dual-Core Arm Cortex-
A53 to eFPGA and Cache-Coherent Accelerators,” in 2019 Symposium
on VLSI Circuits, 2019, pp. C34–C35.

[54] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[55] Xilinx, Inc., “Zynq-7000 SoC,” https://www.xilinx.com/products/

silicon-devices/soc/zynq-7000.html.
[56] ——, “Zynq UltraScale+ MPSoC,” https://www.xilinx.com/products/

silicon-devices/soc/zynq-ultrascale-mpsoc.html.
[57] F. Zaruba and L. Benini, “The Cost of Application-Class Processing:

Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640,
Nov 2019.

[58] F. Zaruba, F. Schuiki, S. Mach, and L. Benini, “The Floating Point
Trinity: A Multi-modal Approach to Extreme Energy-Efficiency and Per-
formance,” in 2019 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2019, pp. 767–770.

[59] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-Based Accelerator Design for Deep Convolutional Neural
Networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p.
161–170. [Online]. Available: https://doi.org/10.1145/2684746.2689060

[60] M. Zuluaga, P. Milder, and M. Püschel, “Streaming Sorting Networks,”
ACM Trans. Des. Autom. Electron. Syst., vol. 21, no. 4, May 2016.
[Online]. Available: https://doi.org/10.1145/2854150

14

https://doi.org/10.1145/103727.103729
https://www.microsemi.com/product-directory/soc-fpgas/1692-smartfusion2
https://www.microsemi.com/product-directory/soc-fpgas/1692-smartfusion2
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3037697.3037715
https://opencapi.org/
https://www.oracle.com/servers/technologies/opensparc-t1-page.html
https://www.oracle.com/servers/technologies/opensparc-t1-page.html
https://www.quicklogic.com/products/soc/
https://www.quicklogic.com/products/soc/
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://si2.org/open-cell-library/
https://doi.org/10.1145/1067649.801719
https://doi.org/10.1145/2370816.2370874
https://doi.org/10.1145/1216919.1216952
http://www.clifford.at/yosys/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2854150

	I Introduction
	II Architecture
	II-A Overview
	II-B Memory Hub
	II-C Proxy Cache
	II-D Memory Protection and Virtualization
	II-E Control Hub
	II-F Shadow Registers

	III Applications
	III-A Fine-Grained Acceleration
	III-A1 Overview
	III-A2 Example

	III-B Hardware Augmentation
	III-B1 Overview
	III-B2 Example

	IV Dolly
	V Evaluation
	V-A Overview
	V-B Area and Typical Frequency of the Hard Components
	V-C CPU-eFPGA Communication Latency and Bandwidth
	V-D Application Benchmarks

	VI Related Work
	VI-A Standalone FPGA-Based Accelerators
	VI-B Same-Package CPU-FPGA Hybrids and FPSoCs
	VI-C Near- and In-Processor Reconfigurable Computing
	VI-D Coherence Protocols for Accelerators

	VII Conclusion
	References

