
ViTCoD: Vision Transformer Acceleration via
Dedicated Algorithm and Accelerator Co-Design

Haoran You∗, Zhanyi Sun†, Huihong Shi∗, Zhongzhi Yu∗, Yang Zhao†,
Yongan Zhang∗, Chaojian Li∗, Baopu Li‡ and Yingyan Lin∗

∗ Georgia Institute of Technology, Atlanta, GA
†Rice University, Houston, TX ‡Oracle Health and AI, Redwood, CA

{hyou37, eiclab, zyu401, yzhang919, cli851, celine.lin}@gatech.edu, {zs19, zy34}@rice.edu, baopu.li@oracle.com

Abstract—Vision Transformers (ViTs) have achieved state-of-
the-art performance on various vision tasks. However, ViTs’ self-
attention module is still arguably a major bottleneck, limiting
their achievable hardware efficiency and more extensive appli-
cations to resource constrained platforms. Meanwhile, existing
accelerators dedicated to NLP Transformers are not optimal
for ViTs. This is because there is a large difference between
ViTs and Transformers for natural language processing (NLP)
tasks: ViTs have a relatively fixed number of input tokens,
whose attention maps can be pruned by up to 90% even
with fixed sparse patterns, without severely hurting the model
accuracy (e.g., <=1.5% under 90% pruning ratio); while NLP
Transformers need to handle input sequences of varying numbers
of tokens and rely on on-the-fly predictions of dynamic sparse
attention patterns for each input to achieve a decent sparsity
(e.g., >=50%). To this end, we propose a dedicated algorithm
and accelerator co-design framework dubbed ViTCoD for accel-
erating ViTs. Specifically, on the algorithm level, ViTCoD prunes
and polarizes the attention maps to have either denser or sparser
fixed patterns for regularizing two levels of workloads without
hurting the accuracy, largely reducing the attention computations
while leaving room for alleviating the remaining dominant data
movements; on top of that, we further integrate a lightweight
and learnable auto-encoder module to enable trading the dom-
inant high-cost data movements for lower-cost computations.
On the hardware level, we develop a dedicated accelerator to
simultaneously coordinate the aforementioned enforced denser
and sparser workloads for boosted hardware utilization, while
integrating on-chip encoder and decoder engines to leverage
ViTCoD’s algorithm pipeline for much reduced data movements.
Extensive experiments and ablation studies validate that ViTCoD
largely reduces the dominant data movement costs, achieving
speedups of up to 235.3×, 142.9×, 86.0×, 10.1×, and 6.8×
over general computing platforms CPUs, EdgeGPUs, GPUs, and
prior-art Transformer accelerators SpAtten and Sanger under an
attention sparsity of 90%, respectively. Our code implementation
is available at https://github.com/GATECH-EIC/ViTCoD.

I. INTRODUCTION

We have recently witnessed the amazing success and in-
creasing interest of developing attention-based Transformer
architectures for both natural language processing (NLP) and
computer vision (CV) tasks. The powerful performance of
Transformers largely benefits from their self-attention module
that is capable of extracting global context information [10],
[40], [46]. However, the self-attention module comes at a
cost of inefficiency during both training and inference due
to its quadratic complexity dependency on the number of
input tokens, and has been recognized as a major efficiency

10 30 50 70 90 100
Sparsity Ratio of Attention Maps (%)

22
24
26
28
30
32
34
36
38

BL
EU

NLP Trans. (BigBird)
NLP Trans. (Sf. k-means)
NLP Trans. (Reformer)
NLP Trans. (Sf. quant)

NLP Trans. (Routing)
NLP Trans. (Longformer)
DeiT-Base (InfoPruning)
DeiT-Small (InfoPruning)

68
70
72
74
76
78
80
82

Accuracy (%
)NLP Transformer

(Dynamic)
Vision Transformer

(Fixed)

Fig. 1. Comparison between NLP Transformers and ViTs in terms of BLEU-
sparsity or accuracy-sparsity trade-offs. Note that for NLP Transformer, we
collect the results on machine translation task, IWSLT EN → DE, following
[39]; For ViTs, we apply an info-based pruning technique on DeiT-Base/Small
models and classification task (e.g., ImageNet), following [19].

bottleneck for the inference acceleration of Transformers. For
example, the self-attention module of the GPT-2 model [31]
accounts for over 50% of the total latency measured on a
TITAN Xp GPU [42]; This percentage increases to 69% for
LeViT-128 [11] when measured on an EdgeGPU [26]. To
alleviate the bottleneck complexity of self-attention modules,
sparse attention techniques have emerged as a promising
solution and been considered by both algorithm [4], [39], [48]
and hardware acceleration [13], [24], [30], [42] works.

Despite their great promise, existing sparse attention accel-
erators or algorithm-accelerator co-design works (e.g., Sanger
[24]) focus on accelerating NLP Transformers, and adopt hard-
ware designs with on-the-fly sparse attention prediction and
high reconfigurability in order to handle the varying number of
input tokens in NLP. As such, those techniques are not optimal
for accelerating Vision Transformers (ViTs), which feature
stark differences from NLP Transformers. Next, we discuss
the differences and corresponding new opportunities or
challenges for efficient acceleration of ViTs: First, ViTs have
a relatively fixed number of input tokens during both training
and inference (e.g., a commonly adopted token size of 16×16
for an image resolution of 224×224, which leads to a total of
196 tokens), while NLP Transformers adopt input-dependant
varying numbers of tokens across different NLP datasets/tasks.
ViTs’ relatively fixed number of tokens offers an opportunity
to design ViT accelerators, which can potentially avoid on-the-

1

ar
X

iv
:2

21
0.

09
57

3v
2

 [
cs

.L
G

]
 1

1
D

ec
 2

02
2

https://github.com/GATECH-EIC/ViTCoD

Fig. 2. Illustrating the fixed sparse attention mask.

fly sparse attention pattern prediction adapting to each input,
via co-designing with sparse ViT algorithms. Second, as shown
in Fig. 1, ViTs allow their attention maps to be pruned by up
to 90%∼95% with fixed sparse patterns for all inputs without
significant accuracy drops, whereas NLP Transformers often
can only allow a medium level of sparsity ratio (e.g., 50% ∼
70%) even for dynamic sparse attention patterns [39] if aiming
for small/negligible accuracy drops.

The aforementioned differences bring about both new op-
portunities and challenges for accelerating ViTs. On one
hand, the fixed sparse patterns in ViTs can alleviate the
stringent need for adopting on-the-fly sparse attention pattern
prediction and highly reconfigurable processing element (PE)
designs. On the other hand, ViTs’ allowed high sparsity in
attention maps inevitably aggravates the extent of both irregu-
lar data accesses and processing, which could incur severe
workload imbalance problems. Moreover, the high sparsity
can cause undesired under-utilization when processing highly
sparse attention regions, where efficiency is largely bounded
by memory/bandwidth due to decreased computational density
and severe off-chip traffics, as indicated by the roofline model
in Fig. 3. That is because the non-zero elements in sparse
attention maps of ViTs mostly concentrate along the diagonal
lines, as shown in Fig. 2, which is actually the most inefficient
pattern since it requires loading all corresponding Q (query
vectors in attentions) and K (key vectors in attentions) vectors
into the on-chip memory for calculating only a small amount
of attention scores (S = Q ·KT). Hence, such diagonal sparse
patterns cause not only reduced reuse opportunities of loaded
Q/K vectors but also a low PE utilization dilemma, i.e., a
high sparsity ratio can help reduce the computation, but also
causes a large data movement bottleneck, which can greatly
compromise the achievable efficiency of accelerating ViTs.

To better leverage the new opportunities of ViTs’ fixed
sparse patterns and overcome their challenges of workload im-
balance and low utilization, this work targets a dedicated ViT
acceleration solution for maximizing the achievable efficiency.
Specifically, we make the following contributions:
• We propose a ViT algorithm-accelerator Co-Design frame-

work dubbed ViTCoD, aiming to leverage ViTs’ unique
opportunities and to tackle ViTs specific acceleration bottle-
necks to boost ViTs’ acceleration efficiency by harmonizing
algorithm- and accelerator-level innovations. To the best of
our knowledge, ViTCoD is the first co-design framework
dedicated to accelerating sparse ViTs’ inference, offering a
new perspective on efficient ViT solutions.

• On the algorithm level, ViTCoD prunes and polarizes the

Performance
(GOPS)

Comp. Intensity
(Ops/Byte)Computation to Communication Ratio

0.1 1.0 10

256 ViTCoD Comp. Roof

100

10

0

ViTCoD I/O

BandWidth Roof

0.6 3.9

Dense ViTs Sparse ViTs

ViTCoD (Denser/Sparser + Auto-encoder)

Fig. 3. Roofline model analysis for ViTCoD when only accelerating the key
attention bottlenecks (S = Q ·KT). Here Dense ViTs refer to the original
dense attention workload, while Sparse ViTs refer to polarized denser/sparser
attention worloads. Both of them require to load all Q/K vectors and are
limited by the bandwidth (even worse for sparse ViTs due to the reduced
computation). The ViTCoD adopts not only sparse attention but also an auto-
encoder module to largely reduce the communication towards better designs.

attention maps to make them have either denser or sparser
fixed patterns for regularizing two levels of workloads
without severely hurting the accuracy, largely reducing the
dominant attention computations. On top of that, we further
integrate a lightweight and learnable auto-encoder module
to enable trading the dominant high-cost data movements
for lower-cost computations. Specifically, to alleviate the
low PE utilization problem, ViTCoD’s auto-encoder module
helps to reduce the computation-to-communication ratio,
leveraging a hypothesis that Q and K vectors among
different attention heads have similarities and thus can be
recovered from a much compressed representation. Hence,
ViTCoD algorithm enables highly sparse attentions while
enhancing regular and reduced data accesses, pushing mem-
ory/bandwidth bounded scenarios towards optimal designs
(see Fig. 3’s roofline analysis).

• On the hardware level, we develop a dedicated two-
pronged accelerator that can simultaneously coordinate the
aforementioned enforced denser and sparser workloads for
boosted hardware utilization, while integrating on-chip en-
coder and decoder engines to leverage ViTCoD’s algorithm
pipeline for much reduced data movements. Specifically,
one branch accelerates the polarized denser patterns with
enhanced regular data accesses, while the other branch
accelerates (mostly on-chip) the remaining irregular but
largely reduced sparser workloads; The encoder and de-
coder engines are leveraged to compress the Q/K vectors
before transferring them back to off-chip memory and
then recover them when being loaded into the on-chip
memory, trading high-cost data movements for low-cost
computations to boost efficiency.

• Extensive experiments and ablation studies on various ViT
models consistently validate the advantages of our proposed
ViTCoD framework, leading to 235.3×, 142.9×, 86.0×,
10.1×, and 6.8× speedups over both general computing
platforms CPUs, EdgeGPUs, GPUs, and prior-art Trans-
former accelerators SpAtten and Sanger, respectively, while
maintaining the model accuracy.

2

TABLE I
A TAXONOMY FOR CLASSIFYING AND COMPARING REPRESENTATIVE SPARSE ACCELERATORS.

OuterSpace [27] ExTensor [14] SpArch [52] Gamma [49] SpAtten [42] Sanger [24] ViTCoD (Ours)
Application Field Tensor Algebra Tensor Algebra Tensor Algebra Tensor Algebra NLP Transformer NLP Transformer ViT

Workloads SpGEMM SpGEMM SpGEMM SpGEMM Sparse Attention:
SDDMM; SpMM

Sparse Attention:
SDDMM; SpMM

Sparse Attention:
SDDMM; SpMM

Dataflow Outer-product
(Input-stationary)

Hybrid Outer-product
& Inner-product (Input-

& Output-stationary)

Condensed
Outer-product

(Input-stationary)

Gustavson(Row)-
stationary Top-k Selection S-stationary K-stationary;

Output-stationary

Sparsity Pattern Static Static Static Static Dynamic &
Input-dependent

Dynamic &
Input-dependent Static

Pattern Regularity Unstructured Unstructured Unstructured Unstructured Coarse-grained &
Structured

Fine-grained &
Structured Denser & Sparser

Off-chip Traffic High Low ∼ Medium Low ∼ Medium Low Medium High Low
Bandwidth Requirement Medium Medium ∼ High Low Low Medium ∼ High Medium ∼ High Low
Sparsity High ∼ Ultra High High ∼ Ultra High High ∼ Ultra High High ∼ Ultra High Low Medium High
Alg. & HW Co-design 3 7 7 7 3 3 3

II. RELATED WORKS

Vision Transformers (ViTs). Motivated by Transformers’
strong representation capabilities for NLP tasks [41], there
has been a growing interest in developing Transformers for
CV tasks. Specifically, inspired by the self-attention mech-
anism, [17], [50] propose novel attention mechanisms for
CNNs; [3], [44] integrate Transformer and CNN within the
same model; [7], [10] design pure Transformer architectures
for CV tasks. Among these exploration, Vision Transformer
(ViT) [10] adopts a simple and intuitive architecture design by
splitting input images into small patches and directly applying
pure Transformers to those patches [9]. Later, DeiT [37]
proposes an improved ViT training recipe [9], and achieves
a comparable accuracy without the necessity of costly pre-
training. To further improve the accuracy or efficiency on
vision tasks, CrossViT [6], PiT [15], PVT [43], and Swin-
Transformer [23] propose a pyramid-like architecture for de-
signing ViTs, which is commonly used in CNNs [8], [16],
[47]. With the goal of deploying ViT in resource-constrained
devices, prior works have also explored more efficient ViTs
from different perspectives. For example, LeViT [11], CvT
[45], and MobileViT [25] propose more efficient self-attention
implementation or incorporate convolutional feature projection
blocks into ViTs. Different from those works, our ViTCoD
contributes a new systematic way to explore the possibility of
both fixed ViTs sparse attentions and balanced data movements
and computations from both algorithm and hardware levels,
without largely degrading the model accuracy.

Sparse Attention Algorithms. As commonly recognized,
the computational complexity of self-attention in Transformers
is quadratic to the length of the sequences (or the total number
of patches in the input images for ViTs) [21], [53]. To make
the attention module more efficient, there have been a number
of attempts to build sparse attention algorithms. For example,
for NLP Transformers, BigBird [48] constructs attention maps
by merging random-, window-, and global-attentions together
while keeping the remaining parts to be zeros; Reformer [21]
uses locality sensitive hashing to compute the nearest neigh-
bors instead of all tokens in the attentions; BlockBERT [29]
proposes the block sparsity for the attention map to reduce
the complexity; BigBird [48] and BlockBERT [29] propose
the structured or block sparsity for the attention map while
requiring to predict dynamic and input-dependent sparse pat-

terns. While NLP Transformers require to predict dynamic and
input-dependent sparse attention patterns to achieve a medium
sparsity around 50%. For ViTs, [20] is one of the first works to
explore sparse attentions and provides a thorough visualization
and analysis of attention patterns, showing the feasibility of
adopting fixed sparse masks for ViTs while achieving a high
sparsity (e.g., 90%). In contrast, ViTCoD is the first algorithm
and accelerator co-design framework dedicated to accelerate
sparse ViTs, that fully exploits the fixed sparse patterns from
both algorithm and hardware perspectives.

Sparse Tensor Algebra Accelerators. Sparse General Ma-
trix Multiplication (SpGEMM) , commonly used in machine
learning algorithms, is known to be hardware unfriendly to
general-purpose platforms (e.g., CPUs and GPUs), and thus
calls for dedicated accelerators [14], [27], [33], [35], [49],
[52] to explore different dataflows for alleviating poor data
locality and dedicated accelerators, as summarized in Table I.
Furthermore, MatRaptor [33] leverages a row-wise dataflow
to promote data reuses, and a novel sparse storage format to
boost memory bandwidth utilization; Additionally, Tensaurus
[35] proposes a new sparse storage format for sparse tensor
kernels, and develops an accelerator to simultaneously support
sparse/dense tensor factorizations as well as common mixed
sparse-dense matrix operations. Overall, existing sparse tensor
algebra accelerators are mainly dedicated for SpGEMM work-
loads with unstructured patterns. In contrast, ViTCoD algo-
rithm integrates a learnable auto-encoder module to efficiently
alleviate the memory/bandwidth bottleneck of ViTs attentions’
sample-based dense-dense matrix mulitplication (SDDMM),
and our ViTCoD framework contributes the first dedicated co-
design for accelerating ViTs’ sparse attention (denser/sparser)
workloads, of which the overall design space exploration can
provide insights for developing efficient ViT solutions.

Existing Transformer Accelerators. The unique execution
patterns of the costly self-attention modules have motivated
dedicated accelerator designs or algorithm and accelerator co-
designs for Transformers. For example, A3 [12] is the first
work to approximate the attention by greedily searching for
K vectors that are relevant to the current Q vector to reduce
the amount of computations, of which the approximation
hurts the model accuracy at high sparsity levels; ELSA [13]
approximate the attention by directly using binary hashing
maps to estimate the angle between Q and K vectors at a cost

3

26
.4

5
4

.0

5
9

.7

6
3

.2

3
9

.0

3
6.

4

3
8

.9

1
1.

3

0 0 0 1
1.

7

1
6.

7

1
5.

9

2
4

.5

1
4.

3

7
.8

4
.1

1
0 9
.1

7
.1

37
.7

27
.8

30
.1

3
1.

9 3
6

.6

3
7.

9

3
8

.1

0

20

40

60

Strided
Trans.

Deit-Tiny Deit-Small Deit-Base LeViT-128 LeViT-192 LeViT-256

FLOPs Breakdown

30 / (30+15+8+3) = 53%

Fig. 4. The FLOPs (top) and measured latency (bottom) breakdowns of
various ViTs on an EdgeGPU TX2 [26], where the self-attention (SA) module
denoted by middle bars accounts for over 50% of the total latency.

of non-negligible accuracy drops; SpAtten [42] structurally
removes unnecessary attention heads and input tokens, which
is therefore coarse-grained and leads to a low achievable
sparsity ratio; Sanger [24] adopts low precision Q and K
vectors for estimating the sparse attention masks, which are
then packed and split to be more regular and friendly supported
by a reconfigurable architecture. DOTA [30] considers both
low precision and low rank linear transformation to predict the
sparse attention masks, and explores token-level parallelism
and out-of-order execution for locality-aware computing. All
above works focus on NLP Transformers, and thus require
dynamic and input-dependent sparse masks prediction. All ac-
celerators above targeting NLP Transformers require dynamic
and input-dependent sparse masks prediction. For accelerating
ViTs, VAQF [36] designs inference accelerators on FPGAs for
quantized ViTs with binary weights and low precision activa-
tions; In contrast, ViTCoD is the first algorithm and accelerator
co-design framework dedicated to sparse ViTs, aiming to fully
exploit ViTs’ fixed sparse patterns and incorporating an auto-
encoder module to boost sparse ViTs’ utilization.

III. VITCOD: MOTIVATION & OVERVIEW

A. Bottlenecks in ViT Inference

To better understand the bottleneck in ViT inference, we
measure and summarize the FLOPs and end-to-end latency
breakdown for ViT inference measured on commercial edge
devices, as shown in Fig. 4. In this set of profile experiments,
we consider various ViT models, including both (1) standard
DeiT [38], LeViT [11] for mobile scenarios and (2) Strided
Transformer [22] achieving SOTA performance on AR/VR
applications. From Fig. 4, we can see that although the self-
attention module is not as dominant as MLPs in terms of
FLOPs, it consistently accounts for over 50% of the total
latency (as high as 69% in LeViT-128 [11]) when being
executed on real mobile devices. Moreover, the matrix multi-
plications among Q/K/V vectors (i.e., Q · KT and S · V)
and their corresponding reshape/split operations occupy up

to 53% latency of the self-attention module on EdgeGPU
platforms [26]. Note that this set of breakdown statistics is
consistent with that of NLP Transformers as mentioned in
[42], indicating that the self-attention module, especially its
core matrix multiplications among Q/K/V vectors, is indeed
a major bottleneck in Transformer inference acceleration.

The above bottleneck analysis indicates that there exists a
fundamental dilemma associated with ViT inference acceler-
ation: On one hand, to boost ViTs’ inference efficiency, it is
desired that the attention maps are (if not highly) sparse, which
might lead to more irregular data accesses of the Q/K/V
vectors. Moreover, for highly sparse attentions, it is likely
that the acceleration largely bottlenecked by data movements,
causing low utilization of PEs, as also analyzed in Fig. 3. On
the other hand, maintaining ViTs’ dense attention maps and
thus task accuracy is likely to require a higher hardware cost
for ViT inference as discussed in recent studies [13], [24],
[42], limiting their more extensive applications.

B. ViTCoD Overview

Fig. 5 illustrates an overview of the proposed ViTCoD,
which aims to alleviate the aforementioned dilemma and thus
the self-attention bottleneck. Specifically, we leverage (1) a
split and conquer algorithm to prune the attention maps by up
to 90% sparsity and to simultaneously polarize the attention
maps to be either denser or sparser for enhancing more regular
workloads; and (2) an auto-encoder module to compress the
corresponding vectors for calculating attentions to a much
more compact representation, without hurting the model accu-
racy. On top of that, we further design a dedicated two-pronged
accelerator integrating the encoder and decoder engines to
(1) cooperatively handle the denser or sparse workloads and
(2) leverage the auto-encoder module of ViTCoD’s algorithm
pipeline for much reduced data movements. Next, we will
introduce the ViTCoD algorithm and accelerator in detail.

IV. PROPOSED VITCOD ALGORITHM

A. Preliminaries of Self-Attention and ViTs

Self-Attention. Self-attention is a core component of Trans-
formers [40], and consists of a number of heads H with each
capturing different global-context information via measuring
pairwise correlations among all tokens as illustrated in Fig. 6
(a) and defined below:

OAttn=Concat(H1, · · · ,Hh) ·WO, where

Hi=Softmax(
QWQ

i · (KWK
i)T√

dk
) · VWV

i ,
(1)

where h denotes the number of heads, Q,K, V ∈ Rn×d

are the query, key, and value vectors of hidden dimension d
obtained by linearly projecting the input sequence of length
n, respectively. For each head, WQ

i ,W
K
i ,WV

i ∈ Rd×dk are
learnable projection weight matrices, where dk = d/h is the
embedding dimension of each head. In this way, the attention
block first computes dot-products between the key-query pairs,
then scales the dot-product results to stabilize the training,

4

Q K

Self-Attention (Head 1)

=Q K S

Embedded Input
Patches

ViT Multi-head SA

Encoder
(e.g., 4 x 2)

Decoder
(e.g., 4 x 2)

Q or K Reconstructed
Q or K

Reconstruction Loss

Compressed
Q or K

Dense Attention

Split and Conquer Algorithm (Save Computations)

Auto-encoder Module (Save Data Movements)

Sparse & RegularSparse

Denser

Sparser

Co-Design

MAC Line 1

MAC Line 2

MAC Line 3

MAC Line 4

MAC Line 1

MAC Line 2

MAC Line 3

MAC Line 4

Denser Engine

Sparser Engine

(a) ViTCoD Algorithm (b) ViTCoD Accelerator

D
ec

od
er

D
ec

od
er...

...

En
co

de
r

En
co

de
r O

n-
C

hi
p

M
em

or
y

D
R

A
M

Fig. 5. An overview of ViTCoD, the first algorithm-accelerator co-design framework dedicated to sparse ViTs.

Linear Projection

Q K V

MatMul.

SoftMax

S = QKT

MatMul.

Linear Projection

Embedded Input Patches

(a) Multi-head Self-Attention

X X X X X
X
X
X

X
X

=

X X X X
X
X
X
X

X
X

X=

X X X X

X
X
X
X

X
X

X
X=

(a) Multi-head Self-Attention

(b) Sampled-based Dense-
Dense Matrix Multiplication

(SDDMM)

Q K S

X
X X =

S V V'

(c) Sparse-Dense Matrix
Multiplication (SpMM)

X

X
X

X

X
X

Head 1
Head 2

Head 3

Fig. 6. Illustrating the self-attention workflow and its associated matrix
multiplication patterns.

uses Softmax to normalize the resulting attention scores, and
finally computes a weighted sum of the value embeddings
corresponding to different inputs. Finally, the results from all
the heads are concatenated and further projected with a weight
matrix WO ∈ Rd×d to generate the final outputs.

To alleviate the bottleneck computational complexity from
the above self-attention mechanism, sparse attention tech-
niques have emerged as a promising solution, under which
the introduced sparsity results in the following two kinds of
the attention matrix multiplication: (1) the first multiplication
between Q and K becomes a general sampled dense-dense
matrix multiplication (SDDMM) based on the location of the
nonzero samples in the attention maps, as illustrated in Fig. 6
(b); and (2) the following multiplication between the attention
maps and the V matrix becomes a sparse-dense matrix mul-
tiplication (SpMM), as illustrated in Fig. 6 (c). As such, they
inevitably lead to irregular workload patterns when accessing
the Q, K, and V matrices, making it challenging to parallelize
the computation and causing temporal load imbalance if the
non-zero attention scores are not evenly distributed.

M
ul

ti-
H

ea
d

Se
lf-

A
tte

nt
io

n

La
ye

rN
or

m

La
ye

rN
or

m

M
LP

Em
be

dd
ed

 In
pu

t
Pa

tc
he

s

L x

(b) Vision Tranformer (ViT) Models

Class

Dog

Bird
Car

...

(a) Input Patches
Fig. 7. Illustrating the input patches and ViT models.

ViT Models and Variants. As illustrated in Fig. 7 (b), ViT
models (e.g., DeiT [38]) consist of alternating layers of multi-
head self-attention (MHSA) and multi-layer perceptron (MLP)
blocks, where MLP contains two fully-connected layers with
a non-linearity function of Gaussian error linear unit (GELU).
Additionally, LayerNorm (LN) is applied before every block.
During training or inference, the input images are split into
patches of fixed size as shown in Fig. 7 (a), and then each
patch will be linearly projected into embedded patches before
being fed into the ViT models as a sequence of vectors.
Recently, a surge of research works target to build ViT variants
for resource-constrained devices, e.g., LeViT [11] achieves
much higher efficiency by using a multi-stage Transformer
architecture and a few convolution layers that are incorporated
before the ViT blocks. For this paper, we mainly focus on
the ViT blocks as the early convolutions only account for a
negligible amount of FLOPs (i.e., < 7%).

B. ViTCoD’s Split and Conquer Algorithm

Design Considerations. Our ViTCoD’s split and conquer
algorithm aims to alleviate the costly (e.g., over 50% of
total latency as shown in Fig. 4) quadratic computational
complexity to the number of input tokens/patches in self-
attention blocks, by enforcing fixed sparse attention masks
with merely two levels of computation workloads for the ease
of acceleration. Specifically, we adopt both pruning with fixed
masks and attention map reordering:
• Pruning with Fixed Masks: As mentioned, ViTs enjoy a

relatively fixed number of input tokens/patches for all infer-
ence images, while NLP Transformers have to handle inputs
with various sequence lengths. Such a discrepancy makes
previous accelerators not optimal for accelerating ViTs, and

5

Algorithm 1: ViTCoD’s Split & Conquer Algorithm.
Input: Normalized attention map A ∈ Rn×n, pruning

threshold θp, dense threshold θd
Output: Pruned & reordered attention map m�A′,

the number of global tokens Ngt

// Pruning with Fixed Masks
1 Sum = 0; idxp = 0; order = Argsort(A);
2 while Sum < θp and idxp < n2 do . Find

Masks
3 Sum← Sum+ Sort(A)[idxp];
4 idxp ← idxp + 1;
5 end
6 m = order[Argsort(order) <= idxp]. . Masks
// Attention Map Reordering

7 Ngt = 0; idxd ← [1, 2, · · · , n];
8 for i = 0 to n− 1 do . Find Global Tokens
9 if ‖(m�A):,i‖0 > θd then

10 SWAP(idxd[Ngt], idxd[i]);
11 Ngt ← Ngt + 1;
12 end
13 end
14 A′ ← PERMUTE(A, idxd). . Reorder A
15 return m�A′ and Ngt.

leaves room for designing fixed sparse attention pattern of
high sparsity without hurting ViTs’ accuracy. To generate
the desired sparse mask patterns, we first extract averaged
attention maps by forwarding the pretrained models on
all training samples, and then perform pruning according
to a criterion of the remaining information quantity. In
particular, for each query, we select only attentions of high
value by pruning the remaining when the cumulative sum
of the sorted and normalized attention scores of descending
order is equal or greater than θp, where θp is the predefined
threshold for evaluating the information quantity. Such
pruning will generate a binary mask for each attention
map, where “1” and “0” denote the reserved and pruned
attentions, respectively.

• Attention Map Reordering: To reduce the resulting sparse
masks’ irregularity from the above pruning, we identify
and cluster the query-key (Q/K) pairs into two patterns as
shown in Fig. 2, resulting in merely two levels (i.e., either
denser or sparser) of computation workloads for favoring
the acceleration efficiency. Specifically, the denser pattern
embodies global tokens that have high correlations with all
other tokens. On the other hand, the sparser pattern refers
to the remaining sparse masks except for the diagonal lines,
where most locations are of “0” values. This intriguing phe-
nomenon is formed because adjacent input tokens/patches
tend to have a higher correlation than others.
The Split and Conquer Algorithm. We describe the

split and conquer algorithm in Alg. 1. For a given averaged
and normalized attention map A ∈ Rn×n extracted from a
pretrained ViT model on all training samples, we prune and
reorder it into either the denser or sparser patterns. Specifically,

(a) Prune (b) Reorder (c) Prune and Reorder

Fig. 8. Visualizing the attention maps of 144 heads (12 layers×12 heads)
in DeiT-Base after gradually applying our split and conquer algorithm: (a)
pruning only; (b) reordering only; (3) both pruning and reordering, where the
resolution is 197×197 with 197 being the number of input tokens/patches.

we first prune the attention maps based on a predefined
threshold θp to generate the fixed masks (Line 1-6), where the
decreasingly sorted attention scores will be accumulated until
their sum reaches θp (Line 3) and then the indexes associated
with those accumulated attention scores will be kept and set
to “1” in the corresponding binary mask, while leaving the
remaining as “0” (Line 6). The second step is to reorder the
sparse attention map for enforcing the desired patterns (Line
7-14). Specifically, we move those tokens with a larger value
of non-zero elements than a predefined threshold θd (denoted
as global tokens) to the front as the denser pattern (Line 10),
while treating the remaining ones as the sparser pattern. Note
that here the operator with a circle and dot means element-
wise multiplication; SWAP means exchanging the index so
that all global tokens can be moved to the leftmost w.r.t
such indexes by executing PERMUTE. As a result, both the
resulting reordered attention map A′ (Line 14) and the number
of global tokens Ngt favor the ease of hardware acceleration.
Finally, we will finetune the resulting ViT model with pruned
and reordered attentions m�A′ to restore the model accuracy.
Note that the sparse attention masks will remain fixed during
both finetuning and inference for favoring efficient inference.

Visualization of Attention Maps. To validate the effective-
ness of the proposed split and conquer algorithm, we visualize
the resulting attention maps of all 12 layers (12 heads in
each layer) from DeiT-Base [38] in Fig. 8. We can clearly
observe the improved regularity. In particular, there exists a
notably clustered dense block at the left side of most attention
maps, which can be accelerated by a dense computing engine
with high utilization; the remaining attentions are very sparse,
located either on the diagonal lines or uniformly distributed
among the whole attention map. Such patterns create new
opportunities for dedicated accelerators to fulfill the promise
of the extreme sparsity into real-hardware efficiency.

C. ViTCoD Learnable Auto-encoder Module

Design Considerations. Although we have enforced the
two desired workloads from the above split and conquer
algorithm, the sparser workload can still suffer from a low
PE utilization dilemma. That is, a higher sparsity helps to
reduce the amount of attention computations, but a large
data movement bottleneck still exists due to the diagonal
concentration of the non-zero attention values. As analyzed
in the roofline model (See Fig. 3), such a diagonal pattern is
actually the most inefficient, To tackle this issue, if we naively

6

Encoder
(e.g., 6 x 3)

Decoder
(e.g., 3 x 6)

Q or K

6 heads

3
heads Q' or K'

6 heads

(a) Auto-encoder (AE) Module

Reconstruction Loss

(b) Training Trajectory of ViTs with AE Module

Fig. 9. Illustrating (a) the lightweight and learnable auto-encoder module and
(b) the training trajectory of ViTs with such auto-encoder modules, where the
dashed lines denote the corresponding vanilla/original ViTs’ accuracy without
any compression.

shrink the dimension of Q and K, then the resulting attention
maps can suffer from the associated low-rank approximation,
i.e., rank(S) < min(rank(Q), rank(K)), degrading the
achievable accuracy, as widely discussed in [5].

To overcome the above dilemma, we propose to design
a lightweight and learnable auto-encoder module that com-
presses the Q/K vectors to a much more compact represen-
tation before they are moved to the off-chip memory, and
then recover them back after they are loaded into the off-chip
memory. The hypothesis is that although the Q/K dimension
cannot be reduced, there is still a large degree of redundancy
among different heads. As illustrated in Fig. 9 (a), we use a
lightweight encoder to compress the Q/K vectors along the
attention head dimension, and then adopt another decoder to
recover them back as Q’/K’. To enforce the recovered Q’/K’
to be as close to the original Q/K as possible, we leverage
their discrepancy (e.g., ||Q − Q′||0) as a reconstruction loss,
so that the auto-encoder module is learnable and will be jointly
optimized together with the ViT model weights. In this way,
the data movements associated with accessing the Q and K
vectors from the costly off-chip memory are largely alleviated,
while the model accuracy is maintained.

ViT Training with Auto-encoder Modules. After inserting
the aforementioned auto-encoder modules to a pretrained ViT
model, we will finetune the resulting model for jointly training
the auto-encoder and model weights. The overall objective loss
function is as follows:
L = LCE +LRecons = LCE + ||Q−Q′||0+ ||K−K ′||0 (2)

where LCE denotes the cross-entropy test loss while LRecons
denotes the reconstruction loss. We visualize the training
trajectory in Fig. 9 (b), from which we can see that (1) both
the test loss (i.e, LCE) and reconstruction loss are signifi-
cantly reduced, verifying the convergence and effectiveness
of our proposed auto-encoder module; and (2) the accuracy
can be fully recovered after finetuning, validating that our

auto-encoder module helps to compress the Q/K vectors for
reducing the amounts of costly data movements with negligible
overheads and maintained model accuracy.

D. The Unified ViTCoD Algorithm

Pretrained ViTs

Insert AE Modules

Finetuning

Split and Conquer

Finetuning

Step 1:

Step 2:

Input:

Fig. 10. The unified ViTCoD
pipeline.

The split and conquer algorithm
and the auto-encoder module ex-
plore two orthogonal directions
towards efficient ViT inference.
Specifically, the former helps to
reduce the number of attention
computations and polarize imbal-
anced workloads to merely two
patterns, while the latter explores
the opportunity of trading costly
data movements for cheaper com-
putations to overcome the low
PE utilization problem resulting
from pruning unimportant atten-
tions. Our ViTCoD algorithm incorporates both into one
unified pipeline. As shown in Fig. 10, taking pretrained ViTs
as inputs, we first insert AE modules to each attention head in
Step 1, then conduct the split and conquer algorithm in Step 2,
and finally perform finetuning to restore the model accuracy.
We finetune both DeiT and LeViT for 100 epochs using the
same training recipe as [38], and finetune Strided Transformer
for 10 epochs using the same training recipe as [22], except
for adopting a smaller learning rate of 1e-5.

V. PROPOSED VITCOD ACCELERATOR

A. Motivation of ViTCoD Accelerator

Opportunity 1: Fixed and Structurally Sparse Attention.
Our ViTCoD split and conquer algorithm exhibits a great
potential in both reducing the dominate attention computations
and alleviating the irregularity of the resulting sparse attention
masks. However, this potential cannot be fully exploited by
existing Transformer accelerators [24], [30], [42] due to the
fact that (1) they are designed for dynamic sparse attention
which requires both on-the-fly mask generation and highly re-
configurable architecture supports, both of which require non-
trivial overheads, and (2) they are not dedicated for processing
the enforced two distinct workloads, i.e., denser and sparser
patterns, from our ViTCoD algorithm. As such, our ViTCoD
accelerator is motivated to exploit the new opportunities i.e.,
fixed and structurally sparse patterns, resulting from ViTCoD
algorithm to boost ViTs’ inference efficiency.

Opportunity 2: Compact Q and K Representation. Our
ViTCoD auto-encoder (AE) module offers another opportunity
to trade costly data movements for lower-cost computations,
as it compresses both Q and K into a compact representations
(i.e., 50% of the origin size) for reduced data movements at the
expense of a slightly increased computations for recovering
them back for attention calculation. This is an extremely
effective enabler for boosting the PE utilization of sparse
attention accelerators, where computing one attention score
needs to load two complete Q and K vectors of large feature

7

(a) S-stationary Dataflow

Te
m

po
ra

l X =
X

X

X

X

X
X

X

X

X

X
X1

2
3
4
5
6

1 2 3 4 5 6

Attn. Map S
1
2
3
4
5
6

(b) K-stationary Dataflow

Te
m

po
ra

l o
r S

pa
tia

l

K

X =
X

X

X

X

X
X

X

X

X

X
X1

2
3
4
5
6

1 2 3 4 5 6

Attn. Map S
1
2
3
4
5
6

Q
1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

X

X

X

X

X
X

X

X

X

X
X1

2
3
4
5
6

1 2 3 4 5 6

X =

Q
1
2
3
4
5
6

K

X =
X

X

X

X

X
X

X

X

X

X
X1

2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

1
2
3
4
5
6

Fig. 11. Illustrating the S- and K-stationary dataflows.

dimensions. Moreover, the loaded vectors are rarely reused
due to both the high sparsity and diagonal pattern in the
enforced sparser patterns as shown in Figs. 2 and 8, leaving
data movements as a bottleneck and indispensably motivating
our lightweight auto-encoder module.

Design Exploration 1: Micro-architecture. For accelerat-
ing workloads of diverse sparse patterns, two typical designs
can be considered: a single accelerator [28], [34] or mul-
tiple sub-accelerators [32], [51] with each tailoring for one
of the diverse computation patterns. The former simplifies
the control logic but suffering from under-utilization if the
sparsity of diverse patterns become high; the latter favors a
high utilization yet can lead to a nontrivial control overhead
for dealing with the diverse data dependency across sub-
accelerators. Thanks to our proposed ViTCoD algorithm, there
exist mostly two diverse workloads of either denser or sparser
patterns as demonstrated in Sec. IV-B. As such, we consider
the latter design with merely one denser engine and one sparser
engine to efficiently process ViTCoD algorithm trained sparse
ViTs for reducing both the scheduling and control overheads.
Additionally, our ViTCoD accelerator integrates encoder and
decoder engines to support the AE modules.

Design Exploration 2: Dataflows. Here we discuss two
potential dataflows for processing the SDDMM of sparse atten-
tion modules, i.e., S- and K-stationary dataflows, and discuss
their advantages and disadvantages. As shown in Fig. 11 (a),
S-stationary dataflow executes different Q and K vectors
in a parallel manner, where the features of each Q/K are
multiplied sequentially for accumulation. Its advantage is that
both Q and K vectors are fully reused after being loaded from
an off-chip memory. However, such S-stationary dataflow
limits the acceleration efficiency from both the computation
and storage aspects: (1) a low PE utilization for accelerating
sparse attentions, because attention scores are spatially mapped
in the PE array, where each PE corresponds to calculating
one attention score, requiring high reconfigurablity and large
control overhead to support sparse attentions; and (2) large
on-chip register/buffer requirements to hold the intermediate
partial sums of attention scores, which need to be stored
on the registers of PE arrays for intra-PE accumulation. For
example, Sanger [24] adopts such a dataflow. The other K-
stationary dataflow is illustrated in Fig. 11 (b), which loads
K vectors and multiplies them by different Q vectors in a
sequential manner, producing attention scores in a column
by column manner, where feature dimensions of Q/K are

spatially mapped to the PE array for inter-PE accumulation.
Its advantage is that the K vectors are fully reused and only
a small on-chip buffer is needed for holding the intermediate
results. In addition, it is more suitable for sparse attention
acceleration since that only paired Q/K vectors are multiplied
according to the non-zero indexes in S, instead of spatially
mapping and multiplying all Q/K features as the S-stationary
dataflow does. Such benefits, however, come at the cost of
requiring more frequent loading of Q vectors. Given that
our ViTCoD algorithm enables a high sparsity in attentions
without hurting the model accuracy, and its trained ViTs result
in partition between denser and sparser patterns along the
K dimension, the ideal dataflow should favor both sparse
attention computations and supporting a dynamic number of K
vectors. Therefore, the K-stationary dataflow is better suited
for the sparse attention patterns resulting from our ViTCoD
algorithm. Moreover, the disadvantage of the K-stationary
dataflow, i.e., more frequent Q accesses, can be alleviated
thanks to our AE modules, reducing the data movements.

B. ViTCoD Accelerator’s Micro-architecture
Architecture Overview. Fig. 12 illustrates the overall

micro-architecture of the proposed ViTCoD accelerator (Left:
Memory hierarchy; Middle: Denser/Sparser engines; Right:
PE array design). For efficiently processing the aforemen-
tioned two distinct denser and sparse workloads with reduced
off-chip memory accesses and better PE/MAC utilization, our
ViTCoD accelerator consists of two separate computing en-
gines with each consisting of MAC lines and being dedicated
to process the denser/sparser workloads of ViTCoD algo-
rithm’s resulting sparse attentions. In addition, the accelerator
integrates on-chip encoder and decoder engines to leverage
our inserted AE modules in ViTs (See Sec. IV-C) for much
reduced data movements. Specifically, the Denser Engine
handles both the sampled dense Q/K matrix multiplication
during SDDMM (i.e., Q · KT) and the subsequent S/V
matrix multiplication during SpMM (i.e., S ·V). The Sparser
Engine at the same time handles the remaining irregular
but significantly reduced workloads. Such an engine is also
capable of efficiently processing SpMM, SoftMax, and non-
linear activation. We term the proposed micro-architecture
comprising two separate computing engines as two-pronged
architecture hereafter. For minimal controlling overhead and
interruption to the computing flow, these two engines are
equipped with separate output buffers, so that their generated
results can be written into the buffers in parallel. Within
the denser and sparser engines, we further design the En-
coder/Decoder Engines to leverage ViTCoD’s AE module for
trading costly data movements for lower-cost computations.
Finally, our accelerator architecture can also be further reused
for the Q/K/V generation and MLP layers, where all MAC
Lines are reconfigured to process these dense workloads. Next,
we elaborate the design details of each engine.

1) Two-pronged Architecture: Denser Engine. As shown in
Sec. IV-B, the denser attention maps resulting from ViTCoD’s
split and conquer algorithm vary in terms of the number of

8

D
R

A
M Act.

GB0

Act.

GB1

Weight

GB

Q/V Buf.

WBuf.

...
... K/S Buf.

OBuf. PE Array

(MAC Lines)

SoftMax Unit

En/DecoderD
en

se
r E

ng
in

e
Sp

ar
se

r E
ng

in
e Q/V Buf.

Query-based Q Forward.

K/S Buf.

WBuf.

OBuf.

IdxBuf.

PE Array

(MAC Lines)

SoftMax Unit

SpMM Controller

En/Decoder

Input/Interm. Act. Weight/Interm. Act. Out. Act

Const. 0

Intra- or Inter-PE/
M

A
C

 A
ccum

ulation

O
ut. B

uffer

...Const. 0

K/S Buffer

MAC MAC

Q
/V B

uffer

2Intra-PE/MAC Acc.1 Inter-PE/MAC Acc.

...

MAC
0

MAC
1

MAC
7 ...

...

M
A

C
 Line

...

MAC
0

MAC
1

MAC
7 ...MAC 0 MAC 1 MAC 7 ...

M
A

C
 Line

M
A

C
 Line...

10
h

Encoder MAC Lines

D
ec

od
er

 M
A

C
 L

in
es

Fig. 12. Illustrating the micro-architecture of our ViTCoD accelerator.

global tokens among different layers/heads. Thus, to balance
the workload of processing the denser patterns of different
attention heads, we adopt a dynamic PE allocation between
the denser and sparser engines. Thanks to the fixed sparse
attention masks known as a priori, we can easily estimate the
workload size of the two patterns. As such, given the available
hardware resource budgets, e.g., the number of PEs, the off-
chip memory bandwidth, etc, we allocate hardware resource
to each engine proportional to its assigned workload size.
Moreover, the denser engine also supports operations of MLPs,
whose computation falls into general matrix multiplication
(GEMM) that can be divided into multiple chunks and then
processed in parallel. Therefore, we dedicate each PE line (or
MAC line) to the computation of one chunk. Note that here
chunks are divided according to the attention heads, so that
each line’s data and intermediate results are unique to itself,
avoiding unnecessary data movements as well as matrix split
and concatenation among different PE lines.

Since all attention heads are processed in parallel, the
assigned PE lines for each head cannot afford the multipli-
cation between Q and K vectors within one cycle. As such,
we consider fine-grained tiling and carefully design the spa-
tial/temporal mappings during both the SDDMM and SpMM
phases. As illustrated in Fig. 13, for calculating S = Q ·KT ,
we consider K-stationary dataflow, which favors our design
as discussed in Sec. V-A. In particular, we tile the Q/K
vectors along the feature dimension and map them to the PEs
spatially; then ¶ multiply the loaded K with all related Q
vectors temporally and accumulate their partial sums among
different PEs, i.e., inter-PE accumulation as shown in the
lower-right part of Fig. 12 (See ¶), to generate the first
column of attention maps, after which · the next K vector is
loaded with similar mappings until all related attention scores
are calculated. For processing V ′ = S ·V , we consider output
stationary instead to reduce the on-chip buffer requirements
and to avoid frequently loading attention maps. Specifically,
we tile the S/V vectors along the token dimension and map
them to the PEs spatially; then ¶ temporally accumulate the
partial sums along the feature dimension for updating the V

vectors. Such a tiling and computation mapping fully reuses
S and V , and only requires a small on-chip buffer to hold
the calculated outputs, for achieving such benefits, PE lines
need to be reconfigured from inter-PE accumulation to intra-
PE accumulation as shown in Fig. 12 (See ·).

Sparser Engine. Benefiting from our ViTCoD algorithm,
the sparser patterns feature a much reduced data and compu-
tation density (i.e., > 90%). As such, our ViTCoD accelerator
handles this workload by utilizing (1) a CSC data format for
indexing the non-zeros in the sparser areas of the attention
maps; and (2) query-based Q forwarding. For (1), thanks to
the drastically reduced density in the sparser areas, we are
able to pre-load and store the indexes in a CSC data format,
enabling the ViTCoD accelerator to load the required Q/K
more regularly. Also, we consider the CSC format instead of a
Coordinate (COO) format for better matching with the adopted
K-stationary dataflow, which produces attention maps column
by column. For (2), since the denser and sparser engines
operate in parallel, when the sparser branch is working on a
certain Q vectors, it is likely that the denser engine is working
on the same Q. Therefore, instead of directly loading them
from the off-chip memory, we consider to first query the Q
buffer of the denser engine. Such a query is performed in an
on-demand manner. The tiling and spatial/temporal mappings
of the sparser engine are consistent with that of the denser
engine during both the SDDMM and SpMM phases excepts
for that only non-zeros are calculated in the sparser engine
thanks to the pre-stored indexes. To support the computations
and special operations of ViTs, both engines contain multiple
functional units as described below.

Architecture of the Denser/Sparser Engines.
Denser/Sparser engines (see the middle of Fig. 12) have
the following functional units: (1) Dedicated buffers for
outputs (OBuf.), weights (WBuf.), K/S vectors (K/S Buf.),
indexes (IdxBuf.), and Q/V vectors (Q/V Buf.), each of
them is equipped with parallel read/write ports to favor more
local reuses, whose sizes are decided in the the resource
allocation stage mentioned above; (2) Sparse/Dense matrix
multiplication controller which supports both dense and

9

Q
KT

=

S

Te
m

po
ra

l
Spatial

Temporal

Sp
at

ia
l

19
7

To
ke

ns

64 Feature
Dim.

64
 F

ea
tu

re
D

im
.

197 Tokens

1

2

2
1

Temporal

Sp
at

ia
l

S

Te
m

po
ra

l

Spatial

V V'

=

19
7

To
ke

ns

197 Tokens

19
7

To
ke

ns

19
7

To
ke

ns

64 Feature
Dim.

1

1

(a) Tiling and Spatial/Temporal Mapping for Processing Q*KT

(b) Tiling and Spatial/Temporal Mapping for Processing S*V
Fig. 13. Illustrating the tiling and spatial/temporal mappings for processing
Q ·KT and S · V .

sparse workloads. For the dense workload, it loads the
corresponding two vectors and performs multiplication with
either inter-PE or intra-PE accumulation; For the sparse
workload, only non-zero elements and their indexes are
loaded for calculation, thanks to the pre-loaded indexes in
a CSC format; (3) SoftMax units are used after a complete
attention score is computed, we conduct an exponential
operator for the softmax function following [24]; and (4)
Activation units for the non-linear activation functions.
Specifically, we use gating modules for ReLU and lookup
tables to estimate other activation functions; Additionally, we
incorporate the encoder/decoder engines to cooperate with
the inserted AE modules as described below.

2) Encoder and Decoder Engines: Recalling that the in-
serted AE module proposed in our ViTCoD algorithm of-
fers us a new opportunity to trade costly data movements
for lower-cost computations. To leverage such benefits, we
design both the encoder and decoder engines in our ViTCoD
accelerator, where the weights of the AE module are pre-
loaded and stored on chip thanks to their small sizes (e.g.,
6 × 3). As shown in the upper right part of Fig. 12,
encoder and decoder have their own PE/MAC lines and are
used to process the encoder/decoder workloads when needed,
i.e., those PE/MAC lines will also be used to process other
denser/sparser workloads when encode/decode are not needed.
In particular, the encoder engine is enabled right after the
linear projection for generating Q/K/V so as to compress
Q/K before transferring them back to the off-chip memory.
Also, their computation can be fully pipelined to hide the
processing time of the encoder engine; The decoder engine
is then needed before loading Q/K into the PE arrays, which
will be pipelined with the data movements instead.

3) Reconfigurability: To support the potential need of task
change after deployment, e.g., ViT models with different mask
patterns or head numbers, the proposed ViTCoD accelerator
is equipped with a low-cost hardware reconfigurable strategy
for adaptation during the hardware compilation process, which

Hardware
Parameters

Controller

Runtime

CompilerParser

SDDMM; SpMM;
FC; Partition;
Global Tokens;
Q/K/V; S; H; F

Attention;

Linear MLP

ViTCoD Accelerator

 PyTorch

Fig. 14. The algorithm-hardware interface pipeline.

only need one-time compilation cost for each task. Fig. 14
shows the corresponding interface pipeline. The given sparse
ViT layers will first be passed through a network parser for ex-
tracting hardware configurations before feeding the hardware
compiler to generate processing instructions. According to
the configurations extracted from ViTCoD algorithm, e.g., the
number of global tokens, buffer sizes, and dataflows, the hard-
ware compiler helps to generate corresponding instructions to
enable ViTCoD accelerator to be reconfigured to reallocate
on-chip memories and PEs/MACs in both the Denser and
Sparser engines. The compiler generates instructions to control
the ViTCoD accelerator to switch between the inter-PE/MAC
accumulation (w.r.t. K-stationary dataflow during Q ·K) and
intra-PE/MAC accumulation (w.r.t. output-stationary dataflow
during S · V) modes. Moreover, the cost of such reconfigura-
bility is amortized across the execution lifetime of each task.

VI. EXPERIMENTS

A. Experiment Setting

Models, Datasets, and Training Settings. Models: We
consider DeiT-Base/Small/Tiny [38] which are well recognized
ViT models, LeViT-128/192/256 [11] which are ViT variants
targeting mobile devices, and Strided Transformer [22] which
achieves SOTA performance on AR/VR applications. Datasets:
We use ImageNet dataset [9] for evaluating DeiT and LeViT
on the image classification task, and Human3.6M dataset [18]
for evaluating Strided Transformer on the 3D human pose
estimation task. Training Settings: We finetune both DeiT and
LeViT using the same training recipe as [38], and finetune
Strided Transformer with the same recipe as [22], excepts for
adopting a smaller learning rate of 1e-5.

Baselines and Evaluation Metrics. Baselines: To bench-
mark ViTCoD with SOTA attention accelerators, we consider
a total of five baselines, including three general platforms:
CPU (Intel Xeon Gold 6230R), EdgeGPU (Nvidia Jetson
Xavier NX), and GPU (Nvidia 2080Ti), and two attention
accelerators: SpAtten [42] and Sanger [24]. Note that when
benchmarking with GPUs w/ larger batch size, we scale up
the accelerators’ hardware resource to have a comparable peak
throughput for a fair comparison following [30]. Metrics: We
evaluate all platforms in terms of latency speedups and energy
efficiency. In addition, we compared the achieved attention
sparsity and model accuracy for all ViT models.

Hardware Platform Setup. Characteristics: ViTCoD is
designed with a total area of 3 mm2, a DDR4-2400 (w/
multiple banks connected to one unified controller) memory
bandwidth of 76.8GB/s, and power of 323.9mW at a core
frequency of 500MHz, and is equipped with 320KB SRAM

10

(a) Core Attention Speedups (90% Sparsity) (b) End-to-end ViT Speedups
Fig. 15. The normalized speedups (w.r.t. CPU) achieved by ViTCoD over five SOTA baselines on Seven ViT models.

Q/K/S/V or
Input Memory

Output Memory

Weight Memory

Index Memory

MAC Lines Encoder/
Decoder EnginesDenser/

Sparser Engines

Fig. 16. Layout floorplan of our ViTCoD accelerator.

and 512 MACs (64 MAC lines with each having 8 MACs).
The SRAM includes (1) Act. GB0/GB1 of 256KB where
Q/K/S/V or input buffer occupies 128KB, index buffer
occupies 20KB, and the output buffer occupies 108KB; and
(2) Weight GB of 64KB. Evaluation: We develop a cycle-
accurate simulator to simulate the performance of our ViTCoD
accelerator, for which the MAC and memory access cost
are derived from the post-layout simulation. Fig. 16 shows
its corresponding layout floorplan. We verified it against the
RTL implementation to ensure its correctness. Specifically, we
synthesize our RTL design with a commercial 28nm CMOS
technology using Synopsys tools (Design Compiler for gate-
level netlist [1]; IC Compiler II for layout [2]) and the Memory
Compilers from the foundry.

B. Overall Performance Comparison

Fig. 15 shows the overall performance of our ViTCoD
and five baselines. We see that ViTCoD on-average achieves
235.3×, 160.6×, and 86.0× core attention speedups over the
general CPU, EdgeGPU, and GPU platforms, respectively.
Moreover, in terms of benchmarking on end-to-end ViT accel-
erations, ViTCoD on-average achieves 33.8× and 5.6× over
CPU and EdgeGPU, respectively. We further compare the
proposed ViTCoD with SOTA attention accelerators, SpAtten
[42] and Sanger [24], in terms of both core attention speedups
and end-to-end ViT speedups. Note that we implement and
simulate both of them on ViTs with similar hardware config-
urations and areas for fair comparisons; Meanwhile, we test
our simulators with their reported experiment results on NLP
Transformers to ensure the correctness. In particular, for ac-
celerating core attention workloads, i.e., both SDDMM and
SpMM phases, ViTCoD achieves 10.1× and 6.8× speedups
over SpAtten and Sanger, respectively, under 90% sparsity
of attention maps. We also consider to compare them under
80% sparsity, at which time ViTCoD achieves 4.8× and 3.2×
speedups over SpAtten and Sanger, respectively. For acceler-

ating the end-to-end ViT models, the speedups will be 3.1×
and 2.1×. Note that here the end-to-end speedups are larger
than 2× although self-attention only accounts for >= 50%
of the whole ViT model when executed on EdgeGPU, that is
because we are comparing to other accelerators instead of ViT-
CoD’s hardware w/o ViTCoD techniques. If we compare w/
ViTCoD and w/o ViTCoD, the speedups will be around 1.8×
instead. This set of comparisons validate the effectiveness and
superiority of ViTCoD’s dedicated algorithm and accelerator
innovations: (1) the split and conquer algorithm for regular
and fixed sparse attention maps and the corresponding two-
pronged architecture design; (2) the AE module for less data
movements and the related encoder/decoder engines.

Discussion of NLP Models. For NLP models, ViTCoD
algorithm’s enforced static sparse attention patterns can de-
grade the model accuracy, e.g., -1.18% for 60% sparsity vs.
the unpruned counterparts for BERT-Base-NLP-models on
the GLUE-MRPC dataset. For a fair comparison, we further
consider the dynamic attention prediction overhead, under
which ViTCoD’s attention speedups is 1.93×/3.69× for a
sparsity of 60%/90% sparsity, respectively, over Sanger.

C. Evaluation of the ViTCoD Algorithm

As shown in Fig. 17, we compare the accuracy and la-
tency trade-offs of ViTCoD with unpruned baselines when
evaluating the attention layer of six ViT models, i.e., DeiT-
Base/Small/Tiny and LeViT-256/192/128, on ImageNet. Note
that here we evaluate the complete ViTCoD algorithm with
both split and conquer algorithm and inserted auto-encoder
(50% compression ratio, e.g., 12 heads → 6 heads). We
observe that the split and conquer algorithm helps to re-
duce 45.1% ∼ 85.8% and 72.0% ∼ 84.3% latency of at-
tention layers for DeiT and LeViT, respectively, while lead-
ing to a comparable model accuracy (i.e., < 1% accuracy
drop). Also, we preform ablation studies of the split and
conquer algorithm across a wide range of sparsity ratios,
i.e., {50%, 60%, 70%, 80%, 90%, 95%}, and find that ViTCoD
consistently achieves 90% and 80% sparsity on DeiT and
LeViT models at a cost of negligible accuracy drop (i.e., <
1%). We also benchmark ViT models w/ and w/o the auto-
encoder modules (w/o split and conquer algorithm), and show
the training trajectory of DeiT models and LeViT models in
Fig. 9 (b) and Fig. 18, respectively. We observe that (1) both
the test loss (i.e, LCE) and reconstruction loss are significantly
reduced, verifying the convergence and effectiveness of our

11

85.8% Latency 72.0% Latency

Fig. 17. Comparison between ViTCoD with unpruned baselines when
adopting DeiT and LeViT on ImageNet.

0 25 50 75 100
Epochs

40

50

60

70

80

Accuracy

LeViT-256
LeViT-192
LeViT-128
LeViT-256 (AE)
LeViT-192 (AE)
LeViT-128 (AE)

0 25 50 75 100
Epochs

1.0

1.5

2.0

2.5
Test loss

LeViT-256 (AE)
LeViT-192 (AE)
LeViT-128 (AE)

0 25 50 75 100
Epochs

102

103

104

Reconstruction Loss
LeViT-256 (AE)
LeViT-192 (AE)
LeViT-128 (AE)

Fig. 18. Training trajectory of LeViTs with AE modules, where dashed lines
denote vanilla LeViTs’ accuracy.

proposed ViTs incorporating learnable auto-encoder modules;
and (2) the accuracy can be mostly recovered (with < 0.5% ac-
curacy drop) after finetuning, validating that our auto-encoder
module helps to compress the Q/K vectors for reducing the
amounts of costly data movements with negligible overheads
and maintained model accuracy. These experiments validate
the effectiveness of ViTCoD’s algorithm.

Breakdown Pruning and Reordering. For quantitatively
breakdown the benefits of pruning and reordering, we conduct
experiments on DeiT-Base/Small/Tiny models. Compared with
reordering only, pruning makes sparse parts sparser, and thus
enhances the polarization effect (i.e., more regular), offer-
ing on-average 5.14× speedups across 60%/70%/80%/90%
pruning ratio (e.g., 8.14× speedups under 90% sparsity).
Compared with pruning only, reordering makes the sparse
pattern polarized and more regular, offering on-average 2.59×
speedups across 60%/70%/80%/90% pruning ratios (e.g.,
2.03× speedups under 90% sparsity).

D. Evaluation of the ViTCoD Accelerator

We first benchmark ViTCoD against five baselines. In Fig.
19, ViTCoD consistently achieves both improved normalized
efficiency and latency speedups over all baselines. Specifically,
ViTCoD offers on-average (among six DeiT & LeViT models
mentioned in our experiment setting) 235.3×, 142.9×, 86.0×,
10.1×, and 6.8× attention speedups compared with CPU,
EdgeGPU, GPU, SpAtten, and Sanger baselines when eval-
uating on attention layers of 90% sparsity. For comprehensive
evaluation, we evaluate across 60%/70%/80%/90% sparsity
levels, the averaged speedups become 127.2×, 77.0×, 46.5×,
6.8×, and 4.3× over CPU, EdgeGPU, GPU, SpAtten, and
Sanger baselines, respectively. Meanwhile, ViTCoD maintains
a high energy efficiency, achieving 9.8× improvement over the
most competitive baseline Sanger [24]. We attribute its benefits
to two explored opportunities for sparse ViTs: (1) fixed and

(a) Averaged across

60%/70%/80%/90% sparsity

(b) Under 90% sparsity

N
or

m
al

iz
ed

 L
at

en
cy

N
orm

alized Energy
Efficiency

9.8x

Fig. 19. Comparison between ViTCoD and five baselines in terms of latency
breakdown and energy efficiency.

structurally sparse attention maps and (2) compact Q and K
representation, from both algorithm and hardware aspects.

Latency Breakdown Analysis. To further evaluate and
quantify the impact of each ViTCoD’s innovation, we provide
the latency breakdown analysis of both Sanger and ours
ViTCoD as follows. First, we separate the benefits of two
innovations: (1) the split and conquer algorithm; and (2)
the auto-encoder module. As shown in Fig. 19, ViTCoD
with (1) leads to on-average 2.7× speedups over the most
competitive baseline Sanger [24], on top of which adopting
(2) further leads to 2.5× speedups. Moreover, we provide
detailed breakdown in terms of computation, preprocess, and
data movements. Note that here data movements mean the
overlapped computations and data movements. We can see
that: (1) Sanger’s adopted S-stationary dataflow fully reuses
the loaded Q/K vectors, reducing data movements at the cost
of large computation workloads; (2) ViTCoD’s data move-
ments are largely reduced from 50% to 28% after adopting AE
modules, indicating the effectiveness of ViTCoD in alleviating
the performance bottleneck.

VII. CONCLUSIONS

We present ViTCoD, the first algorithm and accelerator co-
design framework for sparse ViTs. On the algorithm level,
ViTCoD integrates (1) a split and conquer algorithm to prune
and polarize the attention maps to be either denser or sparser
with fixed masks and (2) an auto-encoder module to trade
costly data movements for cheaper computations, without
compromising the model accuracy. On the hardware level,
ViTCoD incorporates (1) a dedicated two-pronged accelerator
to process each of the aforementioned denser or sparser
workloads and (2) encoder and decoder engines to cooperate
with auto-encoder modules, boosting the overall utilization
and acceleration efficiency. Extensive experiments consistently
validate the advantages of ViTCoD over other accelerators.

ACKNOWLEDGEMENT

We would like to acknowledge the funding support from
NSF EPCN program (Award number: 1934767) and RTML
(Award number: 1937592) for this project.

12

REFERENCES

[1] “Synopsys design compiler.” [Online]. Available: https://www.synopsys.
com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

[2] “Synopsys ic compiler ii.” [Online]. Avail-
able: https://www.synopsys.com/implementation-and-signoff/physical-
implementation/ic-compiler.html

[3] I. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le, “Attention
augmented convolutional networks,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 3286–3295.

[4] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-
document transformer,” arXiv preprint arXiv:2004.05150, 2020.

[5] S. Bhojanapalli, C. Yun, A. S. Rawat, S. Reddi, and S. Kumar,
“Low-rank bottleneck in multi-head attention models,” in International
Conference on Machine Learning. PMLR, 2020, pp. 864–873.

[6] C.-F. Chen, Q. Fan, and R. Panda, “Crossvit: Cross-attention multi-
scale vision transformer for image classification,” arXiv preprint
arXiv:2103.14899, 2021.

[7] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and
I. Sutskever, “Generative pretraining from pixels,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, H. D. III and A. Singh, Eds., vol.
119. PMLR, 13–18 Jul 2020, pp. 1691–1703. [Online]. Available:
http://proceedings.mlr.press/v119/chen20s.html

[8] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen, Y. Tian,
M. E. Yu, P. Vajda, and J. Gonzalez, “Fbnetv3: Joint architecture-recipe
search using neural acquisition function,” ArXiv, vol. abs/2006.02049,
2020.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in International Conference on
Learning Representations, 2021.

[11] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou,
and M. Douze, “Levit: a vision transformer in convnet’s clothing for
faster inference,” arXiv preprint arXiv:2104.01136, 2021.

[12] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H.
Park, S. Lee, K. Park, J. W. Lee et al., “Aˆ 3: Accelerating attention
mechanisms in neural networks with approximation,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 328–341.

[13] T. J. Ham, Y. Lee, S. H. Seo, S. Kim, H. Choi, S. J. Jung, and J. W.
Lee, “Elsa: Hardware-software co-design for efficient, lightweight self-
attention mechanism in neural networks,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 692–705.

[14] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator for
sparse tensor algebra,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 319–333.

[15] B. Heo, S. Yun, D. Han, S. Chun, J. Choe, and S. J. Oh, “Re-
thinking spatial dimensions of vision transformers,” arXiv preprint
arXiv:2103.16302, 2021.

[16] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1314–1324.

[17] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[18] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m:
Large scale datasets and predictive methods for 3d human sensing
in natural environments,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 7, pp. 1325–1339, 2013.

[19] K. Kim, B. Wu, X. Dai, P. Zhang, Z. Yan, P. Vajda, and S. J. Kim,
“Rethinking the self-attention in vision transformers,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 3071–3075.

[20] K. Kim, B. Wu, X. Dai, P. Zhang, Z. Yan, P. Vajda, and S. J. Kim,
“Rethinking the self-attention in vision transformers,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2021, pp. 3071–3075.

[21] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient trans-
former,” arXiv preprint arXiv:2001.04451, 2020.

[22] W. Li, H. Liu, R. Ding, M. Liu, P. Wang, and W. Yang, “Exploiting tem-
poral contexts with strided transformer for 3d human pose estimation,”
IEEE Transactions on Multimedia, 2022.

[23] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” arXiv preprint arXiv:2103.14030, 2021.

[24] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang, and Y. Liang, “Sanger: A
co-design framework for enabling sparse attention using reconfigurable
architecture,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, pp. 977–991.

[25] S. Mehta and M. Rastegari, “Mobilevit: light-weight, general-
purpose, and mobile-friendly vision transformer,” arXiv preprint
arXiv:2110.02178, 2021.

[26] NVIDIA Inc., “NVIDIA Jetson TX2,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-tx2/, accessed 2019-
09-01.

[27] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace:
An outer product based sparse matrix multiplication accelerator,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 724–736.

[28] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58–70.

[29] J. Qiu, H. Ma, O. Levy, S. W.-t. Yih, S. Wang, and J. Tang, “Block-
wise self-attention for long document understanding,” arXiv preprint
arXiv:1911.02972, 2019.

[30] Z. Qu, L. Liu, F. Tu, Z. Chen, Y. Ding, and Y. Xie, “Dota: detect and omit
weak attentions for scalable transformer acceleration,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 14–26.

[31] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[32] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator effi-
ciency through resource partitioning,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2017, pp. 535–547.

[33] N. Srivastava, H. Jin, J. Liu, D. H. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 766–780, 2020.

[34] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 766–780.

[35] N. Srivastava, H. Jin, S. Smith, H. Rong, D. H. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations,” 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 689–702, 2020.

[36] M. Sun, H. Ma, G. Kang, Y. Jiang, T. Chen, X. Ma, Z. Wang, and
Y. Wang, “Vaqf: Fully automatic software-hardware co-design frame-
work for low-bit vision transformer,” arXiv preprint arXiv:2201.06618,
2022.

[37] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” arXiv preprint arXiv:2012.12877, 2020.

[38] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jegou, “Training data-efficient image transformers & distillation
through attention,” in Proceedings of the 38th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
vol. 139. PMLR, 18–24 Jul 2021, pp. 10 347–10 357.

[39] M. Treviso, A. Góis, P. Fernandes, E. Fonseca, and A. F. Mar-
tins, “Predicting attention sparsity in transformers,” arXiv preprint
arXiv:2109.12188, 2021.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., 2017.

13

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/ic-compiler.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/ic-compiler.html
http://proceedings.mlr.press/v119/chen20s.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[42] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention
architecture with cascade token and head pruning,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2021, pp. 97–110.

[43] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and
L. Shao, “Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions,” arXiv preprint arXiv:2102.12122,
2021.

[44] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka,
J. Gonzalez, K. Keutzer, and P. Vajda, “Visual transformers: Token-
based image representation and processing for computer vision,” arXiv
preprint arXiv:2006.03677, 2020.

[45] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,
“Cvt: Introducing convolutions to vision transformers,” arXiv preprint
arXiv:2103.15808, 2021.

[46] Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han, “Lite transformer with
long-short range attention,” in International Conference on Learning
Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=ByeMPlHKPH

[47] Y. Xiong, H. Liu, S. Gupta, B. Akin, G. Bender, P.-J. Kindermans,
M. Tan, V. Singh, and B. Chen, “Mobiledets: Searching for ob-
ject detection architectures for mobile accelerators,” arXiv preprint
arXiv:2004.14525, 2020.

[48] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang et al., “Big bird:
Transformers for longer sequences.” in NeurIPS, 2020.

[49] G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging
gustavson’s algorithm to accelerate sparse matrix multiplication,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
687–701.

[50] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,
J. Mueller, R. Manmatha et al., “Resnest: Split-attention networks,”
arXiv preprint arXiv:2004.08955, 2020.

[51] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“Dnnbuilder: An automated tool for building high-performance dnn
hardware accelerators for fpgas,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2018, pp.
1–8.

[52] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 261–274.

[53] C. Zhu, W. Ping, C. Xiao, M. Shoeybi, T. Goldstein, A. Anandkumar,
and B. Catanzaro, “Long-short transformer: Efficient transformers for
language and vision,” Advances in Neural Information Processing Sys-
tems, vol. 34, 2021.

14

https://openreview.net/forum?id=ByeMPlHKPH
https://openreview.net/forum?id=ByeMPlHKPH

	I Introduction
	II Related Works
	III ViTCoD: Motivation & Overview
	III-A Bottlenecks in ViT Inference
	III-B ViTCoD Overview

	IV Proposed ViTCoD Algorithm
	IV-A Preliminaries of Self-Attention and ViTs
	IV-B ViTCoD's Split and Conquer Algorithm
	IV-C ViTCoD Learnable Auto-encoder Module
	IV-D The Unified ViTCoD Algorithm

	V Proposed ViTCoD Accelerator
	V-A Motivation of ViTCoD Accelerator
	V-B ViTCoD Accelerator's Micro-architecture
	V-B1 Two-pronged Architecture
	V-B2 Encoder and Decoder Engines
	V-B3 Reconfigurability

	VI Experiments
	VI-A Experiment Setting
	VI-B Overall Performance Comparison
	VI-C Evaluation of the ViTCoD Algorithm
	VI-D Evaluation of the ViTCoD Accelerator

	VII Conclusions
	References

