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Abstract— Deep Neural Network (DNN) inference based
on quantized narrow-precision integer data represents a
promising research direction toward efficient deep learning
computations on edge and mobile devices. On one side, recent
progress of Quantization-Aware Training (QAT) frameworks
aimed at improving the accuracy of extremely quantized
DNNs allows achieving results close to Floating-Point 32
(FP32), and provides high flexibility concerning the data sizes
selection. Unfortunately, current Central Processing Unit (CPU)
architectures and Instruction Set Architectures (ISAs) targeting
resource-constrained devices present limitations on the range of
data sizes supported to compute DNN kernels.

This paper presents Mix-GEMM, a hardware-software co-
designed architecture capable of efficiently computing quantized
DNN convolutional kernels based on byte and sub-byte data sizes.
Mix-GEMM accelerates General Matrix Multiplication (GEMM),
representing the core kernel of DNNs, supporting all data size
combinations from 8- to 2-bit, including mixed-precision
computations, and featuring performance that scale with the
decreasing of the computational data sizes. Our experimental
evaluation, performed on representative quantized Convolutional
Neural Networks (CNNs), shows that a RISC-V based edge
System-on-Chip (SoC) integrating Mix-GEMM achieves up to
1.3 TOPS/W in energy efficiency, and up to 13.6 GOPS in
throughput, gaining from 5.3× to 15.1× in performance over
the OpenBLAS GEMM frameworks running on a commercial
RISC-V based edge processor. By performing synthesis and
Place and Route (PnR) of the enhanced SoC in Global Foundries
22nm FDX technology, we show that Mix-GEMM only accounts
for 1% of the overall area consumption.

I. INTRODUCTION

Deep Neural Networks (DNNs) are currently the preferred
choice for artificial intelligence and computer vision tasks
in both research and industrial applications. DNNs are
composed of a stack of layers, whose execution time is
typically dominated by the computation of large linear algebra
operations like General Matrix Multiplications (GEMMs).
Optimizing DNNs represents a major challenge in many fields,
in particular when targeting the deployment to hardware
architectures designed for edge and mobile segments, requiring
high performance but presenting tight constraints in terms of
area, memory, and energy consumption.

A widespread solution aimed at decreasing this burden is
quantization, a family of techniques designed to reduce the
numerical precision required to represent the parameters of
a DNN and the data computed by its layers. In particular,
integer quantization focuses on deploying trained DNNs with
narrow-integer formats, typically ranging from 8- down to 2-bit
[35], [43], [75], rather than with the standard Floating-Point
32 (FP32) data size. Quantizing DNNs exposes a large design
space, as each layer can be quantized to its own precision.
Moreover, input data and parameters can also be quantized dif-
ferently within a layer, resulting in mixed-precision operations.
Exploring this design space allows to trade-off computational
requirements against quality of results, which is a key enabler of
deployment in resource-constrained devices. Indeed, reducing
the precision of highlighted parameters and data decreases the
memory and the bandwidth required to store and load them,
allowing resource-constrained devices to support larger models,
or to relax constraints around the sizing of their memory hierar-
chy and power envelope. Quantization also enables computing
operations like GEMM at low precision, with a consequent
improvement in terms of performance and energy efficiency.
However, in practice, most of the current general-purpose
Central Processing Unit (CPU) architectures lack adequate
support for efficiently handling narrow-precision formats, as
most of the Instruction Set Architectures (ISAs) neither support
data sizes smaller than 8-bit, nor support mixed-precision
computations. Although modern Single Instruction Multiple
Data (SIMD) extensions [60] and hardware accelerators [27],
[52] are increasing their support for narrow-precision data sizes
and mixed-precision computations on CPU architectures, they
only consider a small subset of data sizes granularities. As a
result, exploiting fine-grained quantization of DNNs on modern
processors does not always provide a real benefit to the actual
computation performance, as quantized data have to be either
saved in memory in a sub-optimal format (i.e., with data sizes
supported by the processor ISA), or decompressed before the ac-
tual computation exploiting costly bit-manipulation operations.
Therefore, investigating hardware and software architectures
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capable of leveraging quantization not only to save memory
space, but also to efficiently compute quantized data in terms
of performance and energy efficiency, while respecting the tight
area and power caps of resource-constrained devices, represents
a critical research challenge for the computer architecture field.

In this paper, we propose Mix-GEMM, a hardware-software
architecture capable of efficiently performing GEMM-based
computations targeting narrow-integers. The hardware microar-
chitecture of Mix-GEMM, hosted in the processor execution
stage, is built upon the binary segmentation technique, which al-
lows computing high-performance SIMD operations on narrow-
integer, reusing the processor Functional Units (FUs) with a neg-
ligible impact on area overhead. The key novelty of Mix-GEMM
lies in supporting computations based on all the data size
combinations between 8- and 2-bit, including mixed-precision,
while exploiting high performance, that scales with the decrease
of the data sizes involved in the computation. This feature
allows tuning the performance of quantized DNNs inference
on edge devices with high flexibility, accounting for latency,
energy consumption, model accuracy, and memory footprint.

The main contributions of this paper are listed as follows:
• We design an area and energy efficient hardware accelerator,

integrated into an edge processor pipeline and capable
of computing mixed-precision GEMM kernels based on
narrow-integers. The proposed architecture, called µ-engine,
leverages the binary segmentation technique to perform from
3 to 7 MAC/cycle while reusing the processor multiplier;

• We extend the RISC-V ISA with custom instructions used to
design a high-performance GEMM software library handling
the µ-engine, allowing a fine-grained selection of the data
sizes and a balance of the overall DNNs performance in terms
of throughput, energy efficiency, and memory footprint;

• We integrate our µ-engine into a RISC-V based edge System-
on-Chip (SoC), and we benchmark the performance of
Mix-GEMM on six Convolutional Neural Networks (CNNs),
namely AlexNet, VGG-16, ResNet-18, MobileNet-V1,
RegNet-x-400mf, and EfficientNet-B0. For these networks,
Mix-GEMM reaches performance ranging from 4.8 GOPS
to 13.6 GOPS, and from 477.5 GOPS/W to 1.3 TOPS/W
energy efficiency;

• We investigate the considered quantized CNNs in terms of
TOP-1 accuracy, exploring an exhaustive set of data size
combinations exploiting Quantization-Aware Training (QAT).
Our evaluation shows that narrow and mixed-precision
quantized CNNs can be Pareto optimal in terms of
computational requirements, and show minimal accuracy
losses (i.e., up to 1.5%) for data sizes larger than 4-bit;

• We implement the RISC-V SoC integrating our hardware
accelerator, in the Global Foundries 22nm FDX technology
node, past the Place and Route (PnR) phase, showing that
the proposed µ-engine only accounts for 1% of the total SoC
area, and for an overall 2.3% on its total power consumption;

The remainder of the paper is laid out as follows. Section II
introduces DNNs and the main techniques at the base of this
work. Section III details Mix-GEMM. Section IV presents the
experimental evaluation. Section V compares the main features
and performance of Mix-GEMM with the most relevant related
work. Finally, Section VI discusses the conclusions.

II. BACKGROUND

A. Deep Neural Networks

In the past few years, DNNs have encountered ample
success in a multitude of fields, including but not limited to
computer vision, speech, and language [40] [21] [51]. We
broadly define a DNN as a computational graph, where each
node represents a layer.

The various types of functions computed by each layer can
be typically organized in two classes: linear layers, such as
convolution or fully-connected, and non-linear operations, such
as relu, sigmoid, or tanh, with DNNs typically alternating
between the two from one layer to the next one. The
computation of linear layers typically represents the majority
of the operations performed in a DNN. Computing DNNs
normally involves two phases, training and inference. During
training, the values of parameters belonging to each layer
are learned from data by minimizing a loss function. During
inference, the parameter values are set, and the DNN is
adopted to execute the task it was designed to perform.

CNNs are a class of DNNs dominated by the computation of
convolutions. Convolutions can be accelerated in a variety of
ways depending on the layer dimensions [2], such as the size of
the convolution kernel or the stride. While the direct approach
implements it as a series of nested loops, fast algorithms like
FFTs [47] or Winograd [38] exploit a numerical transformation
of the input and the weights to reduce the overall number
of operations. On the other hand, GEMM-based algorithms,
such as the im2row or the im2col approaches [15], maps a
convolution to a highly-optimized GEMM implementation.

Direct approaches typically require tuning each kernel with
respect to the layer dimensions, either by providing optimized
kernels for common choices of dimensions, as in libraries like
cuDNN [18], or by generating code just-in-time, as in libraries
such as MKL-DNN [28]. Fast algorithms are efficient only for
certain dimensions of the layer, and have additional limitations
when applied to quantized values [49]. On the other hand,
GEMM-based approaches retain better generality, since they
all call into the same pre-compiled backend for any dimensions
of the layer, and thus they represent the focus of this work.

In the im2col GEMM-based approach, input activations and
weights are reshaped and duplicated to fit into the GEMM input
matrices, namely A and B. Each row of A is composed of the
flattened input values that contribute to that pixel, potentially
taken from a batch of multiple input images, while each column
of B corresponds to flattened parameters computing a single
output pixel. A direct implementation of im2col incurs a non-
trivial overhead in terms of memory and bandwidth, because
activations and weights are duplicated across A and B. However,
as modern im2col approaches [22], [48], [72], [79] remove
this overhead by implicitly composing A and B in memory,
this work only focuses on the compute aspect of GEMM.

A widespread method to reduce DNNs complexity is
quantization. DNNs quantization reduces the numerical
precision required to represent activations and weights values.
We give a brief overview of the topic in terms of what is
relevant to the work presented. A more in-depth review can
be found in [29] and [44].



The acceleration strategy presented in this work applies to
uniform affine integer quantization at inference time, which
is defined as:

y=q(x)=clamp
(

round
(x

s
+z
)
,ymin,ymax

)
(1)

where x is the tensor to quantize, s is the scale, z is the
zero-point, while ymin and ymax are defined as:

[ymin,ymax]=

{
[0,2nb−1] if unsigned
[−2nb−1,2nb−1−1] if signed

(2)

where nb is the bit width to quantize to. Depending on
how s, z, and b are defined, different variants emerge. The
case where z = 0 is referred to as symmetric quantization,
while z 6= 0 is asymmetric quantization. Quantization is
named channel-wise if s is a 1-dimensional tensor, while it
is layer-wise or tensor-wise in case s is a scalar value.

Quantization is typically adopted in a DNN through either
Post-Training Quantization (PTQ) or QAT. PTQ starts from
a pre-trained model in floating-point, and relies on a small
amount of calibration to determine appropriate values for
scales and zero-points. QAT instead models quantization at
training time, allowing to compensate for quantization errors
during training. While PTQ requires limited extra computation
and data, and is effective at higher precisions like 7- and
8-bit, QAT carries the cost of full training, but can scale
down to narrower data sizes. For this reason, QAT represents
an excellent candidate to optimize DNN computations on
resource-constrained devices, and it is the technique adopted
in this work (see Section IV-A for more details).

B. Binary Segmentation
Binary segmentation [53] is a mathematical technique

that allows reducing the arithmetic complexity of Basic
Linear Algebra Subprogram (BLAS) computations based on
narrow-integers data [9], [14], [62]. This technique abstracts
the computation of BLAS kernels based on narrow-integers
as simpler arithmetic operations, by properly representing sets
of narrow-integer elements as single wider data, called input-
clusters. Specifically, this technique allows performing SIMD
computations of kernels featuring narrow-integers, exploiting
the unmodified processor FUs, such as scalar multipliers
and adders. As a result, binary segmentation is an excellent
candidate to optimize the inner-product of narrow-vectors,
representing the core computation of the GEMM kernel.

Binary segmentation computes the inner-product of two
vectors a and b (henceforward called µ-vectors), having
bitwidths bwa and bwb, as a set of multiplications among
input-clusters. Specifically, a and b are cleverly packed to
compose the input-clusters, whose multiplication results in the
µ-vectors inner-product. This packing strategy follows the rule
defined in Equation (3), which specifies the bitwidth of the
elements packed into each input-cluster, called clustering-width
(cw). Defining the number of elements in an input-cluster as
input-clustersize, we determine the cw as:

cw≥1+bwa+bwb+dlog2(input-clustersize+1)e (3)

100 111 1110
4 7 2 3

00000111
1031 515

00000100 0000001100000010 011 110 0001
3 6 1 0

00000110
774 256

00000011 000000000000000110000001101000010101

00110000011000000000
198144

530965

10000001101000010101

00110000011000000000
6

26

011010

26

100 111 011 110
4 7 3 6

 a = 11 10 00 01
3 2 0 1

b =

 a’=  b’r = 

 b’’r =  a’’= 

100000

32

Ti
ck

 0
Ti

ck
 1

Ti
ck

 2
Ti

ck
 3

Ti
ck

 4
Ti

ck
 5

In
pu

t

Read μ-vectors Create input-cluster
Multiply input-clusters

Filter multiplication result
Accumulate partial resultPrepare sub-μvectors

Fig. 1. Example of inner-product computation (i.e., 4×3+7×2+3×0+
6×1=32) evaluated via binary segmentation through a pipelined approach.
Each color represents a step required by binary segmentation to compute
the inner-product. Each tick depicts the pipeline status over time.

The input-clustersize value is thus constrained by both the
cw and the multiplier bitwidth mulwidth:

input-clustersize=
⌊mulwidth

cw

⌋
(4)

Therefore, the mulwidth and the µ-vectors bitwidths determine
the input-clustersize, which translates into the arithmetic
complexity reduction achievable through binary segmentation.

Figure 1 details the steps required by binary segmentation
to compute the inner-product of two µ-vectors a = [4, 7, 3, 6]
and b = [3, 2, 0, 1] composed of n = 4 elements and having
bitwidths bwa and bwb equal to 3- and 2-bit, respectively.
Supposing that the example in Figure 1 exploits a multiplier
having mulwidth equal to 16-bit, Equation (3) and Equation (4)
allow evaluating a cw equal to 8-bit, and a input-clustersize
of 2 elements per input-cluster. As the number of elements
of each µ-vector (i.e., n) is twice as input-clustersize, the
complete inner-product computation requires applying binary
segmentation on two separate a and b slices. To ensure
continuity with the Mix-GEMM hardware architecture depicted
in Figure 5, the example in Figure 1 express the inner-product
of a and b via binary segmentation as a computational pipeline,
whose stages follow the same color scheme of Figure 5.

In the first computational step of Figure 1 (highlighted
in green), a and b are partitioned into sub-µvectors, having
a number of elements equal to the input-clustersize, and the
elements order of each b sub-µvector (i.e., br

’, and br
”) is

reverted, according to binary segmentation first principles [54].
A second step (pink) converts each sub-µvector element to a
cw-bit element, and packs it in the respective input-cluster. As
Figure 1 shows, each input-cluster can be seen as a single wide
integer (i.e., 1031, 515, 774, and 256) having bitwidth equal
to the mulwidth (i.e., 16 bit). The third step (blue) performs
the input-clusters multiplication. A fourth step (orange) filters



a slice of the multiplication output, holding the input-clusters
inner-product, according to the following expression:

input-clusterip=Mulout [slicemsb ; slicelsb] (5)
where:

slicelsb=(input-clustersize−1)×cw (6)
slicemsb=slicelsb+cw−1 (7)

Figure 1 applies Equation (5) by extracting the partial
inner-products (i.e., 26 and 6). Finally (grey), the partial
results are accumulated to obtain the final inner-product (i.e.,
32). As Figure 1 shows, an inner-product of 4 elements can
be performed via binary segmentation with only 2 16-bit
multiplications and a single addition, with a consequent 2.33×
arithmetic complexity reduction. Applying binary segmentation
to a 64-bit architecture implies a computational arithmetic
decrease of 5× and 13× for 8- and 2-bit data sizes, allowing
thus computing inner-products with performance ranging
from 3 Multiply-Accumulate (MAC)/cycle to 7 MAC/cycle
exploiting a single 64-bit multiplier.

C. Efficient Matrix-Matrix Multiplication

The GEMM software library proposed in this paper is
built upon the Double-precision General Matrix Multiplication
(DGEMM) kernel of BLAS-like Library Instantiation Software
(BLIS) [74], a state-of-the-art framework for high-performance
BLAS computations [39]. BLIS exploits different compile-
time strategies to improve data reusage (e.g., blocking) and to
optimize data movements across the memory hierarchy during
the GEMM computation, guaranteeing optimal performance by
minimizing the number of cache misses. Specifically, DGEMM
computes a block-based multiplication between two 64-bit
dense matrices A and B, with sizes m×k, and k×n, respectively.
The multiplication result is stored in the output matrix C, having
dimensions m×n. To improve cache efficiency, BLIS partitions
the matrices into blocks of smaller dimensions, called panels,
stored in contiguous memory arrays. Specifically, a panel of
the input matrix A is composed of mc×kc elements, arranged
as µ-panels having size mr×kc. Similarly, each panel of B
holds nc×kc elements, divided into µ-panels holding nr×kc
elements. Panels and µ-panels are constrained such that nc≤n,
mc≤ m, kc≤ k, nr ≤ nc, and mr ≤ mc. This specific panels
reorganization assures that their elements are accessed with
unit stride during the µ-panels computation. Each C µ-panel,
having dimension nr×mr, is evaluated in the so-called µ-kernel,
computing the matrix-matrix multiplication between single A
and B µ-panels. BLIS performance are optimal if its parameters
(mc, nc, kc, mr, and nr) are correctly set. Their optimal values
can be found analytically [45], and mainly depend on the
target processor characteristics, such as the number of cache
levels, sizes, and associativities. According to the methodology
presented in [45], the C µ-panel is kept in the processor Register
File (RF), by assigning to mr and nr values whose product
does not exceed the number of RF registers. Indeed, each µ-
kernel execution updates a different C µ-panel element multiple
times, and therefore its partial results must be kept in memories
featuring low latencies. Similarly, the kc dimension is set to
allow storing the whole A and B µ-panel in the L1 cache,
as their elements are reused for different µ-kernel iterations.
Finally, mc is set to ensure that the A panel fits in the L2 cache.
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Fig. 2. Data flow and allocation of the proposed MACRO-KERNEL and
µ-KERNEL procedures, built upon the BLIS implementation of DGEMM.
Note that both kca and kua are twice as kcb and kub, indicating that the data
size of A is two times larger than the one of B.

III. MIX-GEMM HW-SW ARCHITECTURE

This section details Mix-GEMM, a hardware-software
architecture that allows fast GEMM computations based on
narrow-integers. On the one hand, as detailed in Section III-A,
the proposed software library modifies the BLIS framework to
support narrow-precision integers, including all granularities
of mixed-precision computations from 8- to 2-bit data sizes,
supporting the complete range of bitwidths typically exploited
in quantized DNNs. On the other hand, Section III-B describes
the Mix-GEMM hardware microarchitecture, called µ-engine.
The µ-engine exploits the binary segmentation technique to
perform SIMD MAC operations through the unmodified 64-bit
processor scalar multiplier, and to efficiently handle narrow
mixed-precision GEMM computations, at a negligible cost
in terms of area and power consumption.

A. µ-engine GEMM Software Library
We build our narrow-precision GEMM software library

on top of the DGEMM algorithm implemented in the BLIS
framework, described in Section II-C. The proposed library
leverages BLIS to efficiently move vectors of narrow-precision
data through the processor cache hierarchy. Our GEMM library
keeps the input matrices A and B compressed over their com-
mon k dimension, in chunks ranging from 8 to 32 elements, for
8- and 2-bit data sizes, respectively. Each chunk of compressed
elements composes a µ-vector, introduced in Section II-B.

As a result, the proposed software library leverages
cache-friendly data movements of the BLIS-based DGEMM
algorithm, abstracting each µ-vector as a single 64-bit element.
This data organization allows handling non-standard data
sizes without extending the processor ISA, increasing the
efficiency of quantized DNN computations from different



Algorithm 1 Mix-GEMM pseudo-algorithm
1: procedure µ -KERNEL(Aµ p,Bµ p,C)
2: for kca/kua iterations do . same as kcb/kub
3: for i=0→ nr−1 do
4: for j=0 → mr−1 do
5: for k=0 → kua−1 do
6: Aµvector =Aµ p[k+mr∗ j]
7: Bµvector =k<kub ? Bµ p[i+nr∗k] :0
8: bs.ip(Aµvector,Bµvector)

9: LoadNextAddress(Aµ p) . next kua×mr elements
10: LoadNextAddress(Bµ p) . next kub×nr elements
11: for i=0→ nr−1 do . Get output from AccMem
12: for j=0 → mr−1 do
13: Cµ p[i, j]=bs.get( j+i∗mr)
14: U pdateC(Cµ p,C)

15: procedure MACRO-KERNEL(Ap,Bp,C)
16: for nc/nr iterations do
17: Bµ p =CreateµPanel(Bp)
18: for mc/mr iterations do
19: Aµ p =CreateµPanel(Ap)
20: µ -KERNEL(Aµ p,Bµ p,C)
21: procedure M-GEMM
22: bs.set(aX−wY ) . Load X-bit Y-bit configuration
23: for n/nc iterations do
24: for ka/kca iterations do . same as kb/kcb
25: Bp =CreateBPanel()
26: for m/mc iterations do
27: Ap =createAPanel()
28: MACRO-KERNEL(Ap,Bp,C)

perspectives. First, it enables keeping the DNN activations
and weights compressed in main memory (even if their data
sizes are not supported by the processor ISA), thus allowing
to deploy bigger DNNs on resource-constrained devices.
Second, it significantly reduces the number of memory
instructions required to perform the GEMM computation,
directly impacting performance and energy consumption.

Figure 2 details the dimensions and the memory locations
of the matrices used in the µ-engine GEMM software library.
In Figure 2, we follow the approach proposed in [45] and
detailed in Section II-C to partition panels and µ-panels into
a specific level of the processor memory hierarchy. Blocks
of elements featuring fewer data reuse are kept in main
memory or in the L2 cache, while the ones reused more often
are sized to fit either the L1 cache or the processor RF. To
further improve data locality, Mix-GEMM defines a further
level in the memory hierarchy, called Accumulator Memory
(AccMem) and held inside the µ-engine. The AccMem locally
stores an entire C µ-panel having dimension mr×nr elements,
allowing to further increase data locality, and to free the RF
registers formerly reserved to the C µ-panel, which are instead
allocated to slices of the A and B µ-vectors, avoiding thus to
load the same data from cache multiple times.

Algorithm 1 shows the pseudo-code of the proposed BLIS-
based library implementation, whose top-function is represented
by the M-GEMM procedure. The M-GEMM procedure loads
the current µ-engine configuration through a custom RISC-V
instruction called bs.set() (line 22), and then splits the A
and B input matrices in panels, holding mc×kca and nc×kcb
µ-vectors, respectively (line 25 and 27). Note that we introduce
two separate k-dimensions for the A and B panels, (i.e., kca and
kcb), to account for mixed-precision computations, where the
input matrices show different k values. Specifically, in Figure 2,
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Fig. 3. Mix-GEMM training and inference workflow diagram.

kca is two times kcb, implying that the compressed elements
stored in A have twice the data size as the compressed elements
of B. While the M-GEMM procedure is used to partition the
A and B matrices in panels, the MACRO-KERNEL procedure
of Algorithm 1 splits each panel into µ-panels (lines 17 and
19), which are then forwarded to the µ-KERNEL procedure
(line 20). The µ-KERNEL computes the actual matrix-matrix
multiplication between an A µ-panel, composed of mr×kca
µ-vectors, and a B µ-panel, composed of kcb×nr µ-vectors,
thus creating a C µ-panel of mr×nr elements. Each innermost
iteration of the µ-KERNEL loads a µ-vector pair from the µ-
panels (lines 6 and 7), and forwards it to the µ-engine through a
bs.ip() instruction (line 8), that computes its inner-product.
Each inner-product is stored in the AccMem and, once the entire
µ-panels have been issued to the µ-engine through bs.ip()
instructions (lines 2 to 10), the result is collected from the
AccMem using mr × nr bs.get() instructions (lines 11
to 13), and accumulated in the output matrix C (line 14).
The bs.set(), bs.ip(), and bs.get() instructions are
implemented as single-cycle instructions, and exploited in the µ-
engine GEMM library as intrinsics extending the RISC-V ISA.

Note that in case of mixed-precision computations, each
µ-vector pair holds a different number of narrow-elements.
For example, for a mixed-precision configuration where the
A and B input matrices are composed of 8- and 2-bit data
(i.e., 8 and 32 elements per µ-vector, respectively), a single
B µ-vector requires four A µ-vectors to issue the same number
of narrow-elements to the µ-engine. As a result, to balance
the number of elements effectively computed by each inner-
product, the number of A and B µ-vectors sequentially issued
to the µ-engine could differ for some data size configurations.
Therefore, we extend BLIS with two parameters, namely kua
and kub, aimed at selecting the actual number of subsequent
µ-vectors on each innermost µ-kernel iteration.

Examples of mixed-precision computations requiring
different combinations of kua and kub are reported in Figure 4.
Each example considers a different combination of A and B
data sizes (e.g., the data sizes of DNN activations aX and
weights wY). As the a8-w8 configuration is composed of
µ-vectors holding 8-bit for both input matrices, kua and kub
are equal (e.g., set to 4). As a result, each µ-KERNEL innermost
execution (lines 5 to 8 in Algorithm 1) issues 4 µ-vector pairs
(i.e., 32 narrow-elements) to the Mix-GEMM µ-engine, which
computes their inner-product. On the other hand, in both the
a8-w6 and a6-w4 configurations of Figure 4, the number
of narrow-elements held in a single A µ-vector is not equal
to the one stored in a single B µ-vector. Consequently, kua
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Fig. 4. Representation of three activation-weight configurations. Each
µ-vector holds a different number of elements, depending on the element
data size. Different colors represent different µ-engine execution cycles (i.e.,
different selected sub-µvectors).

and kub are set to guarantee a match in the overall number
of narrow-elements issued to the µ-engine. Specifically, the
a8-w6 configuration features kua and kub equal to 4 and 3,
while the a6-w4 example sets kua and kub equal to 3 and 2.

The proposed software library can be easily integrated as
an additional backend in the ONNX framework [7], and used
to accelerate DNN inference through the ONNX Runtime
engine. Figure 3 reports the workflow diagram of Mix-GEMM.
The target Pytorch model is trained exploiting QAT, gradually
increasing activations and weights data sizes (either per-layer
or per-network depending on the selected granularity) until the
target accuracy is met. The quantized model is then converted
to an ONNX model, and deployed through ONNX Runtime
exploiting Mix-GEMM as a backend to accelerate the model
layers based on BLAS computations.

B. µ-engine Hardware Architecture
The µ-engine architecture, depicted in Figure 5, is composed

of a computational pipeline, whose stages perform a specific
binary segmentation step. The µ-engine is fully integrated in
the scalar processor execution stage as an additional FU, and
its functionalities are completely integrated with the processor
pipeline. Note that, to graphically describe the functionality
of each µ-engine component, we adopt the same color scheme
for Figure 5 and the binary segmentation example of Figure 1.

As discussed in Section III-A, we extend the RISC-V ISA
with three R-type instructions, named bs.set(), bs.ip(),
and bs.get(). The bs.set() instruction is issued to the µ-
engine once for the entire GEMM computation, and it is used to
configure its Control Unit. The parameters used to configure the
Control Unit either provide details about the incoming µ-vectors,
such as their data sizes and computation type (i.e., signed or
unsigned), or specify binary segmentation related constraints,
such as the input-clustersize, the cw, the inner-product length,
and the slice of data to extract from the multiplication output.

The Control Unit requires a single clock-cycle to be reconfig-
ured, and thus introduces a negligible overhead in the computa-
tion with respect to the complete GEMM execution. As a result,
the data sizes of weights and activations can be easily tuned for
each layer of the model, providing a further degree of freedom
when exploring the data size configurations, and allowing
selecting the best trade-off between performance and accuracy.

Once the Control Unit is properly configured, the µ-engine
GEMM library starts issuing multiple bs.ip() instructions
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to perform the computation. The source operands of each
bs.ip() instruction (i.e., a µ-vector pair) are buffered in
two separate Source Buffers, and then handled by the Data
Selection Unit (DSU), whose main purpose is to select the
appropriate number of narrow-elements (i.e., the sub-µvectors)
on every clock cycle. Figure 4 reports three examples of DSU
activity. For each configuration, different colors represent
different execution cycles. On each cycle, sub-µvectors starting
from the element with ID 0 are selected by the DSU. The
maximum number of elements selected per cycle is equal to
the input-clustersize of the corresponding configuration. For
example, according to Equation (4), the a8-w8 and the a8-w6
configurations in Figure 4 can perform up to 3 MAC/cycle,
while the a6-w4 configuration, featuring a input-clustersize of 4
elements, can perform up to 4 MAC/cycle. When the number
of elements left in one of the µ-vectors is less than the input-
clustersize, the DSU selects a smaller chunk of elements, and
reads a new µ-vector from the corresponding Source Buffer.

Data selected by the DSU are then forwarded to the Data Con-
version Unit (DCU), which converts them to the appropriate cw,
according to Equation (3). The main DCU purpose is to create
the input-clusters, and to forward them to the 64-bit processor
multiplier. The DCU also performs operand sign extensions
before the actual multiplication in case of signed computations,
or zero-extends each data in case the Control Unit flags
an unsigned computation. Note that the DSU and the DCU
modules apply the first two binary segmentation steps (colored
in green and pink in Figure 1 and Figure 5, respectively).

The processor multiplier computes the input-cluster pair
inner-product on each execution cycle, thus performing SIMD
computations whose throughput ranges from 3 MAC/cycle
to 7 MAC/cycle depending on the selected configuration.

The multiplication output is then filtered by the Data
Filtering Unit (DFU) which, according to Equation (5), extracts
the input-clusters inner-product, which is then accumulated
into the AccMem through the internal adder. The Control
Unit selects the suitable AccMem address among its mr×nr
available slots, depending on the number of execution cycles



TABLE I
Mix-GEMM OPTIMAL PARAMETERS OBTAINED IN THE DSE. NUMBER OF

ELEMENTS (N); ACCMEM (AM), SOURCEBUFFERS (SB).

MACRO-KERNEL µ-KERNEL µ-engine

mc nc kc mr nr kua kub AM SB
N 256 256 256 4 4 4 4 16 16

required by the loaded configuration. For example, in the
a8-w8, a8-w6, and a6-w4 configurations in Figure 4, the
Control Unit increments the AccMem address after 12, 12, and
9 accumulations, respectively, as these represent the number
of execution cycles required to compute their inner-products.

The AccMem facilitates data reuse by updating the C
µ-panel elements multiple times during the µ-kernel execution,
thus avoiding increased latency, instruction count and memory
traffic. Once the whole matrix-matrix multiplication between
the mr×kca A µ-panel and the kcb×nr B µ-panel has been
computed by the µ-engine, a series of mr× nr bs.get()
instructions collect the AccMem elements holding the C
µ-panel, which are then accumulated into the output matrix C.

The processor treats the bs.set(), bs.ip(), and
bs.get() as single-cycle latency instructions. Therefore, the
processor does not wait for the bs.ip() instructions comple-
tion before moving forward with the pipeline execution. As a
result, while the µ-engine processes the µ-vectors, independent
memory and branch instructions can make forward progress by
utilizing the address generation and branch resolution FUs. The
extra cycles the µ-engine needs to compute the entire µ-vectors
are partially compensated by the instructions latencies
interleaving bs.ip() instructions, and in part alleviated
by the Source Buffers. This paradigm allows overlapping
computational and memory operations, saving a high number
of execution cycles from the baseline GEMM algorithm.

Using the binary segmentation technique as a base pillar
of the µ-engine allows to dynamically select the number
of elements computed per cycle (i.e., the input-clustersize)
depending on the computation data sizes. This feature allows
higher flexibility than traditional SIMD FUs on the supported
data sizes combinations, as with the proposed methodology
mixed-precision data are anyhow converted to a common data
size (i.e., the cw) and computed in clusters (i.e., from 3 to
7 elements per cycle).

A key strength of Mix-GEMM relies on its scalability. For
processors hosting SIMD units, the µ-engine can be properly
sized to sustain a higher throughput. Indeed, the Source
Buffers can store wider µ-vectors (e.g., based on 128-bit load
operations), while the DSU and DCU units can select and
convert a wider cluster of elements, partitioning them through
all the multipliers composing the processor arithmetic FUs.
Similarly, the performance benefits of Mix-GEMM also apply
to processors hosting multiple cores. Indeed, our BLIS-based
library can easily enable multi-threading support [73] while
retaining performance-per-core close to the single-threaded im-
plementation [67], and a µ-engine can be instantiated on every
processor core with a negligible impact on area and power.

C. Design Space Exploration

As detailed in Section III-A and Section III-B, Mix-GEMM
defines several parameters, that need to be fine-tuned to
guarantee minimal overheads during the GEMM computation.
Therefore, we conduct a Design Space Exploration (DSE) to
select the Mix-GEMM parameters allowing the best trade-off
between area and performance. The optimal value of the
parameters obtained during the proposed DSE, considering
both the Mix-GEMM software library and the µ-engine, are
reported in Table I.

We follow the analytical approach proposed in [45]
and detailed in Section II-C to find the best panels and
µ-panels dimensions, according to the main SoC characteristics.
Following [45], we find the optimal mc, nc, and kc values equal
to 256, while the optimal mr and nr equal to 4. Accordingly,
we set the µ-engine AccMem dimension to 16 elements, as
it holds the entire C µ-panel composed of mr×nr elements.

We then analyze the memory overhead introduced by the µ-
vectors zero-padded elements with respect to the maximum the-
oretical memory compression improvements (i.e., from 1× to
4× for 8- and 2-bit data). Our analysis shows that the memory
overhead introduced by the padded elements with kua and kub
equal to 4 is 2.4% on average, considering all the supported con-
figurations. As 4 is the maximum ratio among the data sizes sup-
ported by Mix-GEMM (i.e.8- and 2-bit), it represents the lower
bound for kua and kub. Further increasing kua and kub would
benefit the memory footprint, as it would increase the number of
solutions requiring less zero-padded elements on each µ-vectors
set. However, increasing kua and kub would be sub-optimal
from a performance perspective. Indeed, according to Figure 2,
the GEMM kernel needs to store kua×mr A µ-vectors and
kub×nr B µ-vectors in the processor RF to minimize the num-
ber of load operations during the µ-kernel execution. As the RF
leveraged by the target processor holds 32 registers, and since
the optimal value for both mr and nr is equal to 4, setting kua
and kub equal to 4 elements leads to an optimal RF utilization.

Another key parameter we explore is the Source Buffers
depth, as small Source Buffers can fill too quickly, stalling
the processor pipeline and preventing it from moving forward
with the execution of subsequent instructions, while too deep
Source Buffers could increase the µ-engine latency, forcing the
processor to stall the bs.get() completion until the whole
C µ-panel has been completely computed. We equip the µ-
engine with a Performance Monitoring Unit (PMU) to collect its
metrics during execution, and we benchmark GEMM tasks con-
sidering all the supported data sizes configurations, exploring
Source Buffers depths of 8, 16, and 32 µ-vectors. Our analysis
shows that the number of cycles where the processor is stalled
because of full Source Buffers accounts for the 17.8%, 14.3%,
and 11.2% for Source Buffers having depths of 8, 16, and 32
µ-vectors. The PMU also registered stalls due to bs.get()
instructions only for Source Buffers of 32 µ-vectors, accounting
for 2.3% of the total execution time, closing the overhead gap
between Source Buffers holding 16 and 32 µ-vectors. Moreover,
post-synthesis results show an area increase of the µ-engine
of 67.6% when passing from 16 and 32 elements. For these
reasons, we set the Source Buffers depth equal to 16 µ-vectors.



IV. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of Mix-
GEMM in terms of throughput, energy efficiency, and area. We
also perform an in-depth evaluation of representative quantized
image classification CNNs, namely AlexNet [36], VGG-16
[66], ResNet-18 [31], Mobilenet-V1 [32], RegNet-x-400mf
[78], and EfficientNet-B0 [70]. Our analysis focuses on CNNs
since computer vision is a major driving task for artificial
intelligence at the edge, which is the focus of this work.
However, Mix-GEMM can be applied to all the DNNs quantized
with any uniform affine quantization technique, and as such, any
advancement in that area can be potentially leveraged by Mix-
GEMM. For example, recent works [24], [65], [69] have demon-
strated competitive quality of results for low mixed-precision
quantization of BERT for Natural Language Processing (NLP),
whose compute expansive kernels based on matrix-matrix
multiplications could be accelerated exploiting Mix-GEMM.

The proposed experimental evaluation aims to find the best
trade-offs in terms of accuracy and throughput, showing the po-
tential of combining quantization and efficient narrow-precision
inference acceleration. Indeed, the main novelty of Mix-GEMM
is its ability to support all combinations of precisions between
8- and 2- bit, while guaranteeing performance that increase with
the decrease of activations and weights bitwidths. This feature
enables a new degree of freedom in deploying DNNs on edge
devices. Indeed, the large number of configurations supported
by Mix-GEMM widen the design space used to trade-off perfor-
mance, memory, energy, and accuracy, which is of fundamental
importance when targeting resource-constrained devices.

A. Experimental Setup

To benchmark Mix-GEMM in terms of performance
and energy efficiency, we integrate its hardware µ-engine
on an edge RISC-V SoC [68]. The target edge processor,
implementing the RV64G instruction set, features a single-core,
7-stage, in-order, single-issue pipeline, while the memory
hierarchy features L1 and L2 data caches having sizes of
32KB, and 512KB, respectively. The Mix-GEMM performance
results have been compiled with the RISC-V GNU compiler
toolchain [59] extended with the proposed custom instructions,
and emulated on a Field Programmable Gate Array (FPGA)
integrating the whole SoC. All the throughput results report
the average performance over 10 subsequent runs. We extract
area and energy consumption through the Cadence toolset,
using Genus 19.11 for the synthesis and Innovus 20.1.2 for
the PnR. Energy estimations have been evaluated post-PnR
to have an accurate activity factor for each gate.

For QAT, we adopt PyTorch 1.8 [56], a popular deep learning
framework, and Brevitas 0.7.1 [55], a neural networks quan-
tization library. All experiments are retrained with QAT from
post-training quantization of FP32 models [1], [46], which we
also consider as the accuracy baseline of the target CNNs. We
train on the ImageNet training dataset [19] with four NVIDIA
V100 Graphics Processing Units (GPUs), reporting the best
TOP-1 validation accuracy obtained for each configuration. We
experiment with multiple separate precisions for activations and
weights, except for the first and last layers, which are kept at
8-bit to preserve accuracy. Weights are quantized per-channel
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Fig. 6. Speed-up of Mix-GEMM over the baseline BLIS-based DGEMM
algorithm on square input matrices. Configurations sharing the activations
data size (a) are represented with the same color, with different line patterns
differentiating the weights data size (w).

with scale computed from the absmax of the weight tensor [4],
while activations are quantized per-tensor with scale learned
in log domain [34]. Quantization scales and biases are left in
floating-point. To simplify training, both activation and weights
are trained with zero-point equal to zero. ResNet-18, AlexNet,
MobileNet-V1, VGG-16, RegNet-x-400mf, and EfficientNet-
B0 retrain with Stochastic Gradient Descent (SGD) featuring
momentum of 0.9, weight decay 1e−4, and initial learning rate
of 1e−3, 1e−4, 1e−2, 1e−3 4e−2, and 3.2e−3. We respec-
tively employ 90, 90, 120, 45, 150, and 90 epochs, lowering
the learning rate by 0.1 every 30, 30, 30, 15, 30, and 30 epochs,
with a batch size of 256, 128, 128, 32, 128, and 64 per GPU.
An exception is made for combinations of 8- and 7-bit, where
models are fine-tuned for 5 epochs at the lowest learning rate
they would reach in the normal training schedule, and for the
EfficientNet-B0 configurations showing data sizes lower than
4-bits, that are trained employing 270 epochs. The initial acti-
vation post-training quantization is performed by averaging the
99.999 percentile of the activation absolute values for 8 batches
[76], and then performing bias correction [50] for 8 more
batches (except for VGG-16, where bias correction would lead
to overflow). To improve convergence at low precision without
overhauling the whole approach to quantization, AlexNet,
ResNet-18, MobileNet-V1, RegNet-x-400mf, and EfficientNet-
B0 a4-w3 and a3-w3 are retrained from a4-w4 instead of FP32,
with the same training settings as above except for weight
decay at 5e−5. Similarly, a3-w2 and a2-w2 are retrained from
a3-w3 results. For VGG-16, only a3-w2 and a2-w2 are handled
separately, by first replacing relu with relu6 in the pretrained
FP32 network, and then retraining with the settings above.

B. Performance

We first highlight the Mix-GEMM scalability by analyzing
its performance on general GEMM tasks, exploiting a dataset
composed of square input matrices with 64 to 2048 elements
per dimension. Figure 6 shows the performance increase of
Mix-GEMM with respect to the BLIS-based DGEMM baseline,
running on the same RISC-V SoC integrating the proposed µ-
engine, for a subset of 12 activations and weights combinations.
This first evaluation allows quantifying the performance benefits
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Fig. 7. Performance vs. accuracy Pareto frontier for the selected CNNs. Labels represent activations and weights data sizes (a and w), respectively. We measure the
quantized networks performance exploiting Mix-GEMM, while the FP32 performance is measured exploiting OpenBLAS running on the SiFive U740 processor.

of the proposed hardware microarchitecture with respect to the
BLIS-based DGEMM baseline. As Mix-GEMM keeps narrow-
precision elements compressed in 64-bit data (i.e., from 8 to 32
narrow-elements), it allows reducing the problem size from 8×
to 32× with respect to the DGEMM implementation of BLIS.
However, reducing the computation data sizes is not sufficient
to guarantee high benefits in terms of performance. Indeed,
BLIS running with 8-bit data only reaches an average 2.5× per-
formance improvement with respect to the DGEMM baseline.
On the other hand, as Figure 6 shows, the experimental steady-
state performance of Mix-GEMM over the DGEMM baseline
ranges from 10.2× to 27.2×, for the a8-w8 and a2-w2 data size
configurations. Different motivations allow Mix-GEMM running
at 8-bit to perform 10.2× and 4.1× averagely faster than the
baseline running at 64- and 8-bit. First, Mix-GEMM keeps data
compressed until the operands are issued to the µ-engine, thus
reducing the overall number of operations, while increasing the
throughput in terms of elements fetched from memory on each
cycle. The µ-engine, computationally sustains this throughput
by performing multiple MAC operations per cycle through
the processor multiplier. The AccMem allows then to locally
accumulate data, avoiding execution overhead due to additional
store and add operations. Finally, the pipelined structure of the
µ-engine provides a further increase in the overall throughput, as

it allows to hide the bs.ip() operations latency without wait-
ing for their completion. As Figure 6 also highlights, these Mix-
GEMM benefits remain valid for any data type configuration,
allowing it to actually scale its performance with the decrease of
the computation data types. Specifically, the a8-w8 performance
shows a 21.6% performance improvement with respect to the
theoretical lower bound of 8×, as Mix-GEMM exploits its Ac-
cMem to reduce the number of operations needed to update the
output matrix. On the other hand, a2-w2 shows a performance
penalty of 15% with respect to the theoretical upper bound,
mainly due to the high ratio between µ-vector size and input-
clustersize (i.e., 32 elements per µ-vector and 7 MAC/cycle of
input-clustersize), which implies a higher number of cycles to
process the complete µ-vector (i.e., 5 cycles). However, this
overhead is only noticeable in a few configurations, and does
not prevent the performance scaling of Mix-GEMM. Indeed, the
a4-w4 configuration in Figure 6 shows a 16× speed-up with
respect to the baseline, which is in line with the theoretical one.

Aiming at evaluating Mix-GEMM also on SoCs tight by
higher area and power constraints, we explore its performance
exploiting smaller L1 and L2 caches. Our exploration,
performed on all the supported data sizes and considering
the same benchmark proposed in Figure 6, shows a small
performance decrease when reducing the L1 cache from 64KB
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Fig. 8. Post-PnR layout, targeting the Global Foundries 22nm FDSOI technol-
ogy node, of the SoC integrating the proposed µ-engine (highlighted in green).

to 16KB or the L2 cache from 512KB to 64KB, accounting
for 5.2% and 7% on average, respectively. Decreasing both
the L1 and L2 sizes (i.e., 16KB and 64KB) allows reducing
the SoC area by 53%, and still allows Mix-GEMM to achieve
high performance, with an average penalty of 11.8%.

Figure 7 reports the most performant combinations of each
network TOP-1 accuracy and the corresponding Mix-GEMM
throughput, accounting for the execution time spent on each
convolutional layer. We also highlight the Pareto-optimal curve
representing the best trade-offs between performance and net-
work accuracy for each network. Configurations that are not on
the Pareto frontier are not reported in Figure 7, with the excep-
tion of the a8-w8 configuration. The FP32 performance baseline
has been measured with the well-known OpenBLAS library
[77], exploiting single-threading and running on the SiFive
U740 RISC-V processor, featuring a 64-bit dual-issue in-order
pipeline running at 1.2 GHz. As Figure 7 shows, Mix-GEMM
outperforms the FP32 baseline on all the benchmarked CNNs
by a factor ranging from 5.8× to 15.1× for AlexNet, from 5.8×
to 14.6× for VGG-16, from 5.7× to 13.8× for ResNet-18,
from 5.3× to 10.6× for MobileNet-V1, from 5.7× to 11× for
RegNet-x-400mf, and from 5.7× to 14.5× for EfficientNet-B0.

Accuracy-wise, Figure 7 shows that all the considered
networks maintain a TOP-1 accuracy close to or better than the
FP32 baseline for data sizes larger than 4-bit on both activations
and weights, showing accuracy losses below 1.5%. This result
demonstrates the benefits of the proposed solution in supporting
non-standard data sizes. For example, Mix-GEMM can exploit
the a5-w5 configuration and reach a 60% performance improve-
ment with respect to the a8-w8 configuration on the selected
networks, while guaranteeing similar accuracy and saving 60%
in memory usage. Figure 7 also shows minimal accuracy drops,
with respect to the FP32 baseline, on configurations exploiting
4-bit as minimum data size, with losses ranging from 0.01%
for AlexNet, up to 4.2% on EfficientNet-B0.

For more aggressive quantizations, exploiting 3- and 2-bit
data sizes, the considered networks show accuracy losses
ranging from 0.5% to 5.1% for AlexNet, from 1.2% to 6.5%
for VGG-16, from 2.2% to 8.6% for ResNet-18, from 7.6%
to 34.5% for MobileNet-V1, from 2.6% to 13% for RegNet-

TABLE II
µ-engine AREA BREAKDOWN

Component Area [µm2] SoC Overhead [%]

Src Buffers 4934.63 0.36
DSU 1094.45 0.08
DCU 2832.46 0.21
DFU 1842.25 0.13
Adder 741.58 0.05

AccMem 1214.35 0.09
Control Unit 981.43 0.08

Total: µ-engine 13641.14 1.00

x-400mf, and from 10.3% to 32.8% for EfficientNet-B0. Note
that, to minimize complexity and support reproducibility, all
results have been obtained by applying the same quantization
techniques across all networks and data sizes, with limited
hyperparameter tuning. We expect lower losses at 3- and
2-bit data sizes applying more tailored low mixed-precision
techniques, such as [6], [8], [64]. Nonetheless, our results show
that Mix-GEMM can extend the Pareto frontier to additional
data sizes, capable of providing speed-up for a given accuracy
target. This feature is particularly useful for edge deployment
scenarios, where a trade-off between performance and quality
of results typically has to be reached.

C. Physical Design and Energy Efficiency
To present the physical layout and extract the main physical

design metrics regarding area, timing, and power, we implement
the RISC-V SoC including the proposed hardware µ-engine in
the Global Foundries 22FDX 22nm FDSOI technology. We set
the target frequency to 1.2 GHz for both synthesis and PnR,
using 8-track standard cells without exploiting body-biasing.
The SoC layout, depicted in Figure 8, features a total area of
1.96 mm2, and includes the RISC-V in-order core, the µ-engine
(highlighted in green and circled in black), the IO pad-ring,
and the uncore composed of L2, L1d, and L1i caches of size
512KB, 32KB, and 16KB, respectively. The µ-engine occupies
a total area of 0.014 mm2, and adds an overhead of 1% on the
total chip area. Table II highlights the area breakdown of the
proposed hardware µ-engine, and reports the area overhead of
every µ-engine component on the SoC. The main area contribu-
tion is given by the Source Buffers, implemented as 64-bit wide
registers holding 16 entries. The other µ-engine components
introduce an area overhead in the SoC smaller than 0.3%. Our
synthesis and PnR evaluation evidence that the µ-engine does
not add critical paths in the design, and introduces a post-layout
estimated power consumption overhead of 2.3%. We compute
the energy efficiency of Mix-GEMM by performing a post-PnR
gate-level simulation of the SoC executing the selected CNNs,
and considering the total power consumption of the µ-engine
and the processor multiplier. Our evaluation shows that Mix-
GEMM achieves from 522.1 GOPS/W to 1.3 TOPS/W for the
computation of AlexNet, from 524.3 GOPS/W to 1.3 TOPS/W
on VGG-16, from 509 GOPS/W to 1.2 TOPS/W on ResNet-
18, from 477.5 GOPS/W to 944.1 GOPS/W on MobileNet-V1,
from 503.3 GOPS/W to 982 GOPS/W on RegNet-x-400mf, and
from 509.7 GOPS/W to 1.3 TOPS/W for EfficientNet-B0.



TABLE III
COMPARISON WITH STATE-OF-THE-ART: PERFORMANCE AND EFFICIENCY RANGES ORDERED ACCORDING TO THE SUPPORTED DATA SIZES (e.g., 8B – 2B).

RESULTS GATHERED FROM PUBLISHED PAPERS.

Benchmarks
Architecture Convolution* AlexNet VGG-16 ResNet-18 MobileNet-V1 RegNet EfficientNet-b0

Data sizes SoC Freq Tech. Area Perf. Eff. Perf. Eff. Perf. Eff. Perf. Eff. Perf. Eff. Perf. Eff. Perf. Eff.
Supported Mixed [GHz] [nm] [mm2] [GOPS] [GOPS] [TOPS/W] [GOPS] [TOPS/W] [GOPS] [TOPS/W] [GOPS] [TOPS/W] [GOPS] [TOPS/W] [GOPS] [TOPS/W]

Baseline FP32 7 RV64 1.2 - - - - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 -
[33] 8b 7 ARMv8# 1.2 - - - - 5.6 - 5.1 - 4.7 - 5.5 - 4.8 - 5.8 -
[12] 8b 7 8×RV32† 0.26 - - - - - - - - - - 4.2 0.02§ - - - -
[13] 8b/4b/2b 3 ARMv7 0.48 - - - - - - - - - - 0.3–0.5 0.001–0.002§ - - - -
[26] 8b/4b/2b 7 RV32† 0.17 - - 0.6–0.2 - - - - - - - - - - - - -
[11] 8b/4b/2b 3 8×RV32† 0.17 - - 6.1–2.4 - - - - - - - - - - - - -
[52] 8b/4b/2b 3 RV32† 0.25 22 0.002 ‡ 1.1–3.3 0.2–0.6 - - - - - - - - - - - -
[27] 8b/4b/2b 7 8×RV32† 0.6 22 0.04‡ 19.8–47.9 0.7–1.1 - - - - - - - - - - - -
[58] 8b/4b/2b 7 RV64 0.6 22 0.000419 - - 0.4–1.3 0.01–0.5§ 0.6–2.5 0.01–0.03§ - - - - - - - -
[17] 16b 7 Decoupled 0.25 65 12.25 - - 74.7 0.3 21.4 0.09 - - - - - - - -
[41] a16, w1-w16 7 Decoupled 0.2 65 16 - - 461.1 1.6 567.3 1.9 - - - - - - - -

This work All 8b-2b 3 RV64 1.2 22 0.0136 4.2–7.9 0.4–0.8 5.2–13.6 0.5–1.3 5.3–13.1 0.5–1.3 5.1–12.4 0.5–1.2 4.8–9.5 0.5–0.9 5.1–9.9 0.5–1.0 5.1–13.1 0.5–1.3
* Considers an input tensor of shape (H × W × Fin) 16×16×32, and a filter of shape (Fout × Kdim × Kdim × Fin) 64×3×3×32
† Equipped with custom ISA extension exploiting hardware loops, post-increment load and store, and 4×8-bit MAC FUs
‡ Area only includes extension for 4- and 2-bit MAC FUs
§ Energy efficiency refers to the entire SoC
# Exploits the Neon SIMD extension

V. COMPARISON WITH STATE-OF-THE-ART SOLUTIONS

Accelerating quantized DNNs represents a widespread
research topic [16], [20], [30]. Although several representative
works targeting GPUs [42] and FPGAs [10], [57] are present
in the literature, this section mainly considers related research
works targeting CPU architectures in the edge domain. We
divide the related work into three main categories proposing
different approaches to optimize quantized DNNs computations
on edge devices.We first consider DNN software libraries
exploiting existing edge processors to efficiently compute
GEMM kernels based on quantized data. We then analyze
hardware-software co-designed architectures computing DNNs
on edge processors adopting ISA extensions and custom FUs.
We finally list the most relevant works proposing decoupled
DNN accelerators for edge devices. A detailed comparison with
the most relevant related works is then presented in Table III.

Optimized Software Libraries. Application-specific libraries
targeting commercial edge processors, such as Facebook QN-
NPack [23], Arm CMSIS-NN [37], and Google GEMMLowp
[33] are often used to boost the performance of quantized DNNs
on edge processors. To compare the performance of Mix-GEMM
with respect to these State-of-the-Art (SoA) software libraries,
we execute the considered CNNs exploiting GEMMLowp,
adopted in TensorFlow Lite [3], and highly optimized for
computations based on 8-bit quantized data. The GEMMLowp
benchmarks have been performed on an Arm Cortex-A53 pro-
cessor, one of the most widely used architectures targeting the
edge, in single-threaded mode. The Arm Cortex-A53 features a
64-bit, 8-stages, dual-issue in-order pipeline running at 1.2GHz
and exploiting the NEON SIMD extension. As Table III shows,
the GEMMLowp performance [33] are comparable with Mix-
GEMM when computing the same networks considering its a8-
w8 configuration. However, as GEMMLowp does not currently
support less than 8-bit based computations as a consequence
of the underlying ISAs limitations, Mix-GEMM allows for
better performance, while guaranteeing comparable accuracy.
For example, from Figure 7 it can be noted that the a5-w5
configuration of Mix-GEMM is capable of providing up to

70% better performance than GEMMLowp, while losing only
0.22% of accuracy on average among the selected networks.

A remarkable solution targeting the RISC-V ISA is
Dory [12], a framework to deploy DNNs on the GAP-8
processor [25], reaching up to 4.2 GOPS performance to
compute the convolutional layers of MobileNet-V1 at 8-bit on
eight cores running in parallel. Compared to Dory, our solution
achieves up to 2.6× better performance on MobileNet-V1,
even running on a single core.

Although these libraries feature high performance on 8-bit
computations, they do not support computations targeting sub-
byte operands, as compressed data in memory need to be con-
verted to 8-bit to exploit the SIMD operations offered by current
commercial ISAs. These limitations are highlighted in CMix-
NN [13], proposing an inference library for DNNs optimized for
Arm processors and targeting 8-, 4-, and 2-bit mixed-precision
computations. CMix-NN [13] demonstrates the benefits of sup-
porting mixed-precision computations based on narrow-integers
to compute DNNs inference, as they are able to scale their
performance up to 2× in energy efficiency and 1.7× in through-
put with respect to their 8-bit implementation. However, their
MobileNet-V1 implementation latency is dominated by the lack
of mixed-precision and sub-byte SIMD instructions at the ISA
level. As a result, Mix-GEMM offers roughly one order of mag-
nitude speedup on MobileNet-V1 when compared to CMix-NN.

Specialized Arithmetic Units. As off-the-shelf architectures
and ISAs are inefficient in deploying quantized DNNs targeting
data sizes lower than 8-bit, several works propose specialized
FUs and custom ISA extensions to enable efficient narrow
mixed-precision GEMM computations on edge devices. In this
context, PULP-NN [26] exploits 8-bit SIMD MAC units and
inner-product RISC-V based custom instructions to compute up
to 16 8-bit MAC operations concurrently. PULP-NN proposes
casting instructions to pack and extract vectors composed of
lower data sizes (i.e., 4- and 2-bit) while reusing the same SIMD
MAC units. Although their experimental evaluation shows per-
formance improvements against their 8-bit baseline, their cast-
ing instructions introduce overheads on 4- and 2-bit based com-



putations, hence decreasing their performance improvement for
lower bitwidths. Indeed, their performance reaches 0.6 GOPS
for 8-bit computations, while it is limited to 0.2 GOPS for 2-bit
data. Bruschi et al. [11] extend PULP-NN to support mixed-
precision combinations for 8-, 4-, and 2-bit data sizes on an
eight-cores RISC-V processor. As in PULP-NN, however, their
work suffers from the same overheads on sub-byte data sizes,
responsible for a 2.5× performance degradation when compar-
ing 8- against 2-bit computations, as they also require additional
pack and extract instructions. These limitations do not affect
Mix-GEMM, which is capable of scaling its performance by
1.9× when targeting the same Convolution benchmark. Ottavi
et al. [52] extend a RISC-V core with 4- and 2-bit based MAC
units and custom controllers to enable narrow mixed-precision
computations based on 8-, 4-, and 2-bit data. Performance-
wise, Mix-GEMM is from 2.4× to 3.8× faster than [52], while
supporting a greater number of data size combinations. A set of
custom RISC-V ISA instructions and custom FUs to boost the
performance of GEMM computations on edge devices are also
proposed in XpulpNN [27]. Their hardware microarchitecture
comprises SIMD units supporting from 4 8-bit to 16 2-bit MAC/-
cycle, but it is not supporting mixed-precision computations.

Note that the works in [11], [26], [27], [52] only consider a
small convolutional kernel fitting the L1 cache as their exper-
imental evaluation, which is not representative of real DNNs.
Also, they neither provide performance results considering
entire networks, nor explore how their ISA extensions can
be integrated into high-performance software libraries such as
BLAS, or how larger convolutional kernels introducing misses
in the cache hierarchy would affect the performance of their pro-
posal. Moreover, their baseline processor leverages on custom
ISA extensions capable of introducing up to 3.1× performance
improvement in the GEMM computation with respect to the
standard RISC-V ISA [63]. These optimizations (e.g., zero over-
head hardware-loops) are orthogonal to Mix-GEMM, and can be
implemented in the processor integrating Mix-GEMM to allow
for a further performance improvement on DNN computations.

In Bison-e [58], the authors propose an area-efficient
hardware microarchitecture that enables support for binary
segmentation on RISC-V based edge processors. Although
both Mix-GEMM and Bison-e exploit binary segmentation to
reduce the arithmetic complexity of narrow-integer operations,
we identify four critical weaknesses of Bison-e when compared
to Mix-GEMM. First, Bison-e does not support mixed-precision
data sizes. Second, it requires multiple instructions to compute
the same µ-vectors, as it neither includes the input Source
Buffers, nor the DSU. Third, it does not exploit data locality
through the AccMem, with a consequent increase in the number
of store operations. Finally, it does not include a tailored
software library to compute dense matrix-matrix multiplications,
but only defines a set of custom instructions extending the
RISC-V ISA. All combined, these weaknesses allow Mix-
GEMM to perform better than Bison-e, for factors ranging from
10.5× to 13× on AlexNet, and from 5.4× to 8.8× on VGG-16.

Table III also shows that most related works do not support
computations based on mixed-precision data sizes that, as
demonstrated in Section IV-B, are essential to enable efficient
computations on the edge, as they have the potential to extend
the Pareto frontier of modern deep learning models.

Decoupled DNN Accelerators. DNN decoupled accelerators
represent a well-studied topic [5], [17], [41], [71], [80]. The
high performance characterizing these accelerators are however
counterbalanced by their lack of flexibility, as a large portion
of the SoC has to be dedicated to the computation of a single
kernel. Moreover, the software stack required by decoupled
accelerators is typically more complex than the one proposed in
Mix-GEMM, as they require specific offloading mechanisms and
coherence managements handled at the hardware or software
level. In Eyeriss [17], the authors exploit a bi-dimensional
array of 16-bit processing elements and a custom multi-level
hierarchical memory, optimized for both dense and sparse com-
putations, exploiting a total area of 12.25 mm2 in 65 nm CMOS
technology. Aiming to address more aggressive quantization,
UNPU [41] explores bit-serial MAC units supporting a fixed
activations data size and from 16-bit to 1-bit weights data sizes.

Mix-GEMM achieves 0.2× and 0.6× in performance
compared to Eyeriss on the AlexNet and VGG-16 computations,
and exploits an energy efficiency comparable to UNPU when
exploiting 8-bit data sizes. Moreover, leveraging on DeepScale-
Tool [61] to scale their area from 65 nm to 22 nm, we observe
that Mix-GEMM requires 96.8× and 126.5× less area than
Eyeriss and UNPU, respectively. Consequently, Mix-GEMM
computing at 8-bit reaches a core area efficiency improvements
(i.e., GOPS/mm2) ranging from 6.7× to 24× with respect to
Eyeriss, and from 1.2× to 1.4× when compared to UNPU, on
the computation of AlexNet and VGG-16. As such, we believe
that Mix-GEMM represents a valid alternative to decoupled
DNN accelerators targeting resource-constrained devices.

VI. CONCLUSION

This paper presents Mix-GEMM, a hardware-software
co-designed architecture capable of accelerating quantized
DNNs inference on resource-constrained devices. Mix-GEMM
is capable of scaling the performance and the memory
requirements of narrow-precision GEMM computations
depending on the target data sizes, showing comparable or
better performance than state-of-the-art GEMM libraries
running on commercial processors. Our experimental evaluation
shows that Mix-GEMM reaches from 4.8 GOPS to 13.6 GOPS
on the computation of relevant CNN workloads, and up to
1.3 TOPS/W energy efficiency, while accounting for a neg-
ligible 1% of the total processor area. We believe our solution
represents a step forward to fill the gap between the needs
of quantized DNNs, requiring high-performance and flexibility
in the data sizes involved in the computation, and edge-based
architectures, demanding tight area and energy constraints.
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