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Abstract—We propose overcoming the memory capacity limita-
tion of GPUs with high-capacity Storage-Class Memory (SCM)
and DRAM cache. By significantly increasing the memory ca-
pacity with SCM, the GPU can capture a larger fraction of the
memory footprint than HBM for workloads that mandate mem-
ory oversubscription, resulting in substantial speedups. However,
the DRAM cache needs to be carefully designed to address the
latency and bandwidth limitations of the SCM while minimizing
cost overhead and considering GPU’s characteristics. Because the
massive number of GPU threads can easily thrash the DRAM
cache and degrade performance, we first propose an SCM-aware
DRAM cache bypass policy for GPUs that considers the multi-
dimensional characteristics of memory accesses by GPUs with
SCM to bypass DRAM for data with low performance utility.
In addition, to reduce DRAM cache probe traffic and increase
effective DRAM BW with minimal cost overhead, we propose a
Configurable Tag Cache (CTC) that repurposes part of the 1.2
cache to cache DRAM cacheline tags. The L2 capacity used for
the CTC can be adjusted by users for adaptability. Furthermore,
to minimize DRAM cache probe traffic from CTC misses, our
Aggregated Metadata-In-Last-column (AMIL) DRAM cache orga-
nization co-locates all DRAM cacheline tags in a single column
within a row. The AMIL also retains the full ECC protection,
unlike prior DRAM cache implementation with Tag-And-Data
(TAD) organization. Additionally, we propose SCM throttling
to curtail power consumption and exploiting SCM’s SLC/MLC
modes to adapt to workload’s memory footprint. While our
techniques can be used for different DRAM and SCM devices,
we focus on a Heterogeneous Memory Stack (HMS) organization
that stacks SCM dies on top of DRAM dies for high performance.
Compared to HBM, the HMS improves performance by up to
12.5x (2.9 overall) and reduces energy by up to 89.3% (48.1%
overall). Compared to prior works, we reduce DRAM cache
probe and SCM write traffic by 91-93% and 57-75%, respectively.

I. INTRODUCTION

Rapidly-increasing data size in various domains [49], [115]
has created huge challenges for the memory system of GPUs.
Although High-Bandwidth Memory (HBM) has been adopted
to meet the high memory bandwidth (BW) requirements
of GPUs, it fails to fulfill the memory capacity needs of
critical workloads, such as deep learning and large-scale graph
analytics. Moreover, the memory capacity of GPUs has grown
much slower than the compute throughput (Fig. 1a).

When data size exceeds GPU memory capacity, the data
must be migrated repeatedly between the CPU and GPU,
either manually or automatically. However, manual migration
can be laborious for programmers, and it is infeasible for
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Fig. 1. (a) Improvement in compute throughput (with Tensor Core [2] and
Matrix Core [7] when applicable) and memory capacity of GPUs over time [4],
[5], [8], [11], [16]-[19]. (b) Cost-effectiveness of different GPU architectures
under memory oversubscription.

irregular workloads because the data access pattern is unpre-
dictable. On the other hand, demand paging approaches (e.g.,
NVIDIA Unified Memory [120]) can automatically manage
data movement, but it can significantly degrade performance
due to high page fault-handling latency and limited PCle
BW [46], [52], [121]. This overhead can be particularly severe
for irregular workloads since prefetch/eviction policies become
ineffective [14]. For example, the runtime of bfs can increase
by ~4.5x with only 125% oversubscription (i.e., exceeding
memory capacity by 25%) compared to when the GPU is not
oversubscribed [47].

To avoid oversubscription, multiple GPUs can be used or
bigger GPUs with more memory devices can be created.
However, they superlinearly increase system cost due to high-
speed link interface/switches [6] required and/or sublinear pin
BW scaling with area [96]. Thus, these approaches lower
memory capacity per GPU cost compared to the baseline GPU
with oversubscribed HBM (shaded region in Fig. 1b). Using
multiple GPUs can also require significant programmer efforts
(811I-C).

Meanwhile, emerging Storage-Class Memory (SCM) offers
a potential solution to the capacity limitations of DRAM with
its higher memory density. Recent improvements in the device
characteristics of the SCM, in terms of endurance [75], [76],
reliability [56], performance [56], and capacity [141], have
also made it an even more attractive choice. In addition, albeit
slower than DRAM, SCM access is still much less expensive
than accessing host memory through PCle. SCM is also known
to have a lower per-bit dollar cost than DRAM [104].

However, entirely replacing GPU’s DRAM with SCM



would be inefficient due to the lower performance and higher
energy consumption of SCM [83], [131]. Thus, DRAM has
to be used together to mitigate the disadvantages of SCM. In
particular, HW-managed DRAM cache is suitable for GPUs as
SW-managed scheme would incur high overhead from GPU
page table update by the host-side driver [46].

To this end, we propose a novel DRAM cache design for
GPUs with SCM. By significantly increasing the memory ca-
pacity with SCM, the GPU can avoid memory oversubscription
entirely or capture a larger fraction of the memory footprint. At
the same time, the performance impact of SCM is mitigated
with an effective DRAM cache design. As a result, higher
performance and memory capacity per cost can be achieved
to approach the ideal GPU (Fig. 1b).

We design a bandwidth-effective DRAM cache optimized
to meet GPU’s high BW demands by minimizing the BW
overhead from DRAM caches. In particular, a large number
of concurrent memory accesses from 100,000s of threads can
easily thrash the DRAM cache and waste BW for cache fills
and write-backs. Prior work [25], [35], [147] on DRAM cache
for CPUs proposed bypassing based on random sampling
or access frequency for higher DRAM cache hit rate and
lower latency. However, our DRAM cache requires a different
bypass mechanism that considers GPU workload’s access
patterns (e.g., inter-thread spatial locality) and SCM properties,
especially its long write latency and high write energy [83],
[131]. In addition, simply maximizing DRAM cache hit rates
may not enhance performance due to reduced parallelism
across DRAM and SCM. Thus, we propose an SCM-aware
DRAM cache bypass policy for GPUs that captures the multi-
dimensional characteristics of SCM and GPU workload’s
access patterns (i.e., spatial locality, read/write access type,
and access frequencies of pages) for effective caching.

Despite the bypass, excessive DRAM cache probe traffic can
still result from tag accesses that contend with data accesses.
To reduce the BW overhead, caching DRAM cache tags on-
chip can be considered. However, blindly provisioning large
amounts of SRAM to filter out tag accesses for large DRAM
caches increases GPU cost without benefiting workloads that
do not use the DRAM cache well (e.g., due to bypassing).

Thus, we propose a Configurable Tag Cache (CTC) to
enable adjustment of SRAM capacity used for caching DRAM
cache tags. The CTC repurposes some of the L2 cache ways
to store DRAM cache tags. The user can configure the number
of ways used for L2 cache and CTC, similar to configuration
of L1 data cache and shared memory [8]. The CTC incurs low
overhead by exploiting the existing L2 cache’s data array.

However, when a CTC miss occurs, multiple tags of DRAM
cachelines in a row need to be fetched. Thus, to minimize the
DRAM BW overhead for tag accesses, we propose an Ag-
gregated Metadata-In-Last-column (AMIL) organization that
co-locates all tags from a DRAM row in the last column’s
data portion. The last column is used because it tends to
be underutilized when data placement is done in an aligned
manner. Although the SCM data that maps to the last column
has to always bypass the DRAM cache, it accounts for a very

small fraction of data (e.g., only 1.56% of a 2048 KiB row with
32 B column of HBM) and incurs only 1.7% performance loss
according to our study. The AMIL also retains the full ECC
protection in the DRAM cache in contrast to prior work [35],
[113], [125], [145] that has to repurpose ECC bits to store
tags.

Among different approaches to combine SCM and DRAM
for a GPU, we focus on the study of a Heterogeneous Memory
Stack (HMS), which integrates SCM and DRAM in a 3D-
stacked memory using Through-Silicon Vias (TSV). As SCM
and DRAM share the same bus in this design, the bus BW
can be flexibly utilized across varying DRAM cache hit rates
($III-A). However, our DRAM cache is also effective even
if SCM is integrated as separate devices or external SCM
attached with high-speed links [10], [42].

We additionally propose power management and perfor-
mance optimization to address SCM’s device characteristics.
When memory power consumption is high, the SCM can be
throttled to reduce power by adjusting the timing parame-
ters. Consequently, the HMS power can remain below the
maximum power of an ideal high-capacity HBM, while still
outperforming an oversubscribed HBM. In addition, when
workload’s footprint is small, the DRAM can be used as part
of memory rather than a DRAM cache, to hold the majority
of the data. The remaining data can be held in the SCM that
operates in the performance-oriented SLC mode instead of
capacity-oriented MLC mode. As a result, the performance of
HMS can approach that of HBM for small memory footprint.

We demonstrate the effectiveness of the HMS using various
GPU workloads that include multi-GPU large language model
(LLM) training.

To summarize, we make the following contributions:

o To the best of our knowledge, this work is the first
to explore the design space of the DRAM cache
for GPUs with SCM. Our proposed GPU memory
system can overcome the limited memory capacity and
resulting performance degradation from oversubscription
of DRAM-only GPUs.

o Our Aggregated Metadata-In-Last-column (AMIL)
DRAM cache organization minimizes tag probe
overhead by keeping all tags in a single row without
compromising ECC protection as in prior works.

o We propose SCM-aware DRAM cache bypass policy for
GPUs to minimize the performance penalty of SCM by
considering the memory access patterns of GPUs and the
device characteristics of DRAM and SCM.

e Our Configurable Tag Cache (CTC) repurposes a user-
specified portion of the L2 cache ways to store DRAM
tags, substantially reducing DRAM tag probe overhead.

o We show that our DRAM cache can significantly improve
performance by up to 12.5x (2.9x overall) and reduce
energy consumption by up to 89.3% (48.1% overall)
compared to HBM, with low hardware overhead.

o We propose simple techniques to mitigate SCM’s power
consumption and performance impact by adjusting the
operation modes of the SCM and DRAM.



II. BACKGROUND AND MOTIVATION
A. Unified Memory

Modern GPUs support Unified Memory (UM) [120] that
provides a single virtual address space for the host and device
and automates data transfers between them without explicit
copies. UM also enables GPU memory oversubscription, al-
lowing kernel’s memory footprint to exceed GPU memory
capacity. It is especially useful for large irregular workloads
under oversubscription (Fig. 2a), as manual memory copy is
infeasible for unpredictable access patterns.

When a GPU accesses data in the host memory, a page fault
occurs to initiate page transfers or swaps between the host and
device, in 4 KiB page granularity on x86 [15]. This process
involves CUDA runtime and GPU driver on the host, and the
data transfer goes through PCle with limited BW, leading
to low performance [15], [121]. To recover performance,
prior works [46], [73], [90] proposed prefetch, eviction, and
data transfer schemes. For example, Tree-Based Neighborhood
(TBN) prefetch and pre-eviction policies of NVIDIA GPUs
adaptively migrate data in larger granularity of up to 1 MiB for
high PCle BW utilization [46]. The vDNN [117] exploits the
access patterns of activations known a priori for prefetching
and eviction in DNN training. However, their effectiveness
can be limited for irregular workloads due to unpredictable
access patterns. Some recent GPUs [9] support host connec-
tivity through NVLink with a high BW of 900 GB/s, but
oversubscription still hurts performance as we show in §IV-B.

B. Modeling Unified Memory

As computer architecture research is often done using
simulators, prior work on HW-assisted UM [45], [46] modeled
UM by modifying GPGPU-sim [23]. However, due to the
slowdown from page faults by the GPU, the simulation speed
is also slowed down significantly (up to 5x in our evaluation)
by oversubscription. Based on our estimation, simulating a
full A100 GPU (80 GiB) that is oversubscribed to hold
75% of the memory footprint would take up to 57 years.
Consequently, to our knowledge, all prior work on UM used
scaled-down configurations for simulation, using footprints
between 15-74 MiB on average [46], [73], [79], [90], [156].
To validate the methodology, we analyzed the impact of
oversubscription on a real NVIDIA RTX 2080 Ti GPU and
a simulated GPU [45] for representative workloads. For the
real GPU, we induced oversubscription by pinning dummy
data on the GPU, thereby limiting available memory to 75%
of the workload’s memory footprint. Input data were generated
using [26], [30]. Results in Fig. 3 show that real GPU exhibited
similar or even higher slowdown from oversubscription than
in simulation. This discrepancy can be attributed to the simu-
lator’s optimistic page-fault handling latency of 20us, which is
known to be a lower bound [73], [156]. Also, larger footprints
under the same oversubscription ratio further slowed down the
real GPU. The simulation results for oversubscribed GPU are
also consistent with measurements on real GPU [48], [121].
Although not shown here due to space constraints, compute-
bound workloads tested — 2mm [51] and lavamd [30] — also
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Fig. 2. (a) Graph500 benchmark’s data size example [1]. (b) Row buffer
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Fig. 3. (Left) Validation of UM simulation at a fixed oversubscription ratio
(log scale plot). (Right) Workloads’ memory footprints used for validation.

showed the same behavior, with little slowdowns. Thus, we
adopt the simulator to model UM.

C. Challenges of Multi-GPU Programming

If a workload’s data do not fit in a GPU, multiple GPUs
can be used to partition the data. However, currently CUDA
or OpenCL cannot automatically scale a single-GPU workload
to multiple GPUs. Thus, in general, the programmer has to
manually modify the code to split the data and computation
even for regular workloads. Moreover, additional kernels often
have to be created to process data shared between GPUs
and communication has to be manually optimized for best
performance [103]. For irregular (e.g., graph) workloads, the
code often has to be entirely rewritten using frameworks for
the target domain (e.g., WholeGraph [139] for GNN and
Pangolin [31] for graph pattern mining). Due to the overhead
of graph pre-processing, load-imbalance, and inter-GPU com-
munication, the performance often scales poorly with GPU
count and may even be degraded [21], [63], [109]. Therefore,
reducing the number of GPUs for large-scale workloads by
increasing GPU memory capacity can often not only reduce
system cost but also improve performance. In addition, higher
GPU memory capacity widens the range of workloads that a
single GPU can execute.

D. SCM Characteristics

SCM refers to a set of non-volatile memory (e.g., Phase
Change Memory or PCM) located between DRAM and flash
devices in the memory hierarchy in terms of latency, BW,
and density. PCM uses phase-change material that switches
between a high-resistance amorphous state (logical “0”) and a
low-resistance crystalline state (logical “1”) [83] and is mature
enough to be commercialized [41], [134]. For state transition,
the cell is heated up to crystallization (melting) point for a SET
(RESET) operation. PCM can also provide Multi-Level Cell
(MLC) capability [83] and multiple decks in a die for higher
capacity [41], [141]. Moreover, PCM can realize high 10-year
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Fig. 4. Memory channel BW utilization from memory devices with HBM
organization for synthetic access patterns (configuration details in §IV-A).

data retention temperature [135]. Recent SCM also uses less
power than conventional 3D XPoint memory [56] and several
works showed high endurance of 10'! — 102 programming
cycles [75], [76].

Although SCM has longer row activation latency, the col-
umn access latency (i.e., tcr) is the same as that of DRAM
since the row buffer access mechanism is orthogonal to
memory technology [83], [131]. Thus, when the row buffer
locality is high, even slow memory devices can saturate the
memory channel. In addition, current DRAM devices, such as
HBM and GDDR, have channel BW significantly lower than
the internal BW from multiple banks in a die. Thus, even if
each bank’s BW is lowered by replacing the DRAM arrays
with SCM arrays, the channel BW can still be saturated with
high row buffer locality.

Synthetic traffic results in Fig. 4 show that, for sequential
read accesses over 16 banks, different SCM devices can
achieve similar channel BW utilization as DRAM, even though
single-bank BW of SCM is considerably lower than that of
DRAM. The SLC SCM even achieves slightly higher BW than
DRAM by eliminating refresh operations. Recent work [141]
also demonstrated that SCM can provide a high capacity of
256 Gib (cf. 24 Gib DDRS5 DRAM chip [82]) while providing
high 15 GB/s BW from a single chip, although its interface
was not disclosed (cf. 51.2 GB/s peak BW from 8 chips
in a consumer DDR5-6400 DIMM). However, for streaming
writes, high SCM write latencies result in lower overall BW
even with 16 banks. Furthermore, for random accesses, SCM
BW reduces further due to very low locality.

While Optane DIMM with PCM exhibits low BW even for
streaming accesses [61], it can result from its multiple levels of
SRAM and DRAM buffers within the DIMM, internal address
translation, and intra-PCM data migration that can severely
degrade PCM performance [84], [133], rather than the raw
performance of PCM. Using PCMCSim [84] and synthetic
streaming access pattern, we confirmed that, without such
overhead, the PCM chip’s 2 xDDR4-2666 interface BW can be
saturated. LENS [133] also reported a consistent result (4KiB
data access from PCM in 100ns, achieving ~40 GB/s BW).

E. Considerations in DRAM Cache Design for GPU with SCM

While GPUs require high memory BW, SCM throughput
varies substantially based on access type (i.e., read or write)
and locality (Fig. 4). GPU workloads also have varying access
locality (Fig. 2b). Thus, characteristics of GPU workloads

and SCM should be carefully considered for DRAM cache
to hold hot data with low spatial locality, while cold data
with high spatial locality resides in SCM. By filtering writes
to SCM, DRAM cache can also mitigate the high write
latency and energy [131]. However, choosing which data to
cache in DRAM is challenging because of multi-dimensional
access characteristics (i.e., spatial locality, hotness, and write
intensity).

Most prior work on DRAM cache targeted CPUs and
focused on minimizing latency [35], [64], [113], [124], [143],
[148], so they can be suboptimal for GPUs, which are more
sensitive to memory BW than latency [22]. In addition,
prior works on bandwidth-efficient DRAM cache assumed on-
package DRAM cache backed by off-package DRAM [35],
[143], [148], rather than DRAM cache backed by SCM that
we assume. Furthermore, DRAM caches are often managed
in page granularity [13], [66], [70], [88], [114], [133], [138],
[148], [155], but GPUs can suffer from the resulting waste of
BW. Also, the spatial locality that GPU exhibits across threads
in a warp or thread block is different from the intra-thread
spatial correlation in CPU workloads from complex data
structures or control-flow [126]. Thus, footprint caching [62],
[64], [65] proposed for CPUs can be ineffective for GPUs. We
discuss prior work further in §V.

To our knowledge, no prior work incorporated spatial lo-
cality across GPU threads in designing the DRAM cache as
we do in determining the DRAM cache design, bypass policy,
and on-chip DRAM cache metadata caching mechanism.

F. Feasibility of TSV-based 3D Stack of SCM and DRAM

In TSV-based 3D integration, each die is fabricated sep-
arately, using different processes if needed. It avoids the
manufacturing difficulties of sequentially fabricating a top die
directly on a bottom die in monolithic 3D [50]. 3D-stacking of
heterogeneous dies with TSV has been extensively studied and
demonstrated for PCM [97], DRAM [3], CMOS sensors [53],
flash devices [85], and MEMS [132]. Here, we examine key
considerations regarding the feasibility of HMS.

In general, TSVs can pose signal integrity issues due to
coupling between a TSV and nearby TSVs or circuitry, as well
as reliability issues arising from the high-temperature manu-
facturing process [97]. The mass production of HBMs since
2015 [99] demonstrates that these challenges have been well
understood and overcome for 3D-stacked DRAM. Because
the HMS places TSVs in the same peripheral 10 circuitry
region as in HBM (Fig. 5a) [67], apart from the memory
cell array, we do not introduce any new challenges in these
aspects compared to HBM. In addition, SCM media, such as
typical PCM with ovonic threshold switch (OTS) [32], [141],
are compatible with back-end-of-line (BEOL) process and can
withstand high-temperature TSV fabrication process [59].

Additionally, power delivery network (PDN) with
TSVs [97] should provide sufficient power for SCM.
Considering ~10x difference in access energy between
DRAM (~1 pl/bit [28], [108]) and PCM (~10 pJ/bit [60],
[83]) and that PCM accesses are 10-100x slower than



DRAM [60], [83], [131], PCMs can consume similar or less
power than DRAM per bank (i.e., power=energy/delay) [83].
However, compared to DRAM, multiple SCM row accesses
from more banks can overlap due to its longer delays, using
more power per channel. Recent DRAM with processing-in-
memory capability has shown that 4-5x higher power can
be supplied within HBM [86] and that ¢g 4y constraint can
be removed [81]. Thus, the PDN issue can be addressed
similarly for SCM.

In addition, heat dissipation from SCMs in an HMS can
be an issue for temperature-sensitive DRAM [93]. It is a
fundamental challenge in 3D stacks, including HBMs, and
HBMs can be throttled by the memory controller at high
temperatures [12]. Similarly, we show that a simple SCM
throttling technique can effectively mitigate the thermal issue
($III-E), and even without throttling, the worst-case peak HMS
temperature differs from that of HBM by less than 0.1%
(§8IV-E) as SCMs are placed in the upper rank of the stack,
close to the heat sink. Recent cooling solutions (e.g., liquid
immersion cooling adopted in production datacenters [20],
[119]) are also proven to be more energy-efficient while
allowing processors to operate at higher power in comparison
to air cooling. Thus, they can allow for more aggressive SCM
devices. The energy and heat issues of SCM can also be
mitigated by device scaling because the energy of SCMs, such
as PCM, decreases with the cell material volume [43], [137].

I1I. DRAM CACHE FOR GPUS wiTH SCM
A. Design Space of Heterogeneous Memory

To improve GPU’s memory capacity under fixed pin BW,
the DRAM cache and SCM can be integrated in a 3D-stack
to create a Heterogeneous Memory Stack (HMS) shown in
Fig. 5a or as separate memory devices (Fig. 5b). The separate
SCM devices can also be attached using external NVLink [42]
or CXL [10]. The designs differ in how the devices are mapped
to memory channels. In HMS, the DRAM and SCM can share
the same channel as different ranks (Fig. 6a) similar to [136],
[143], whereas separate devices inevitably use separate buses
(Fig. 6b) similar to [64], [65], [125], [144].

However, for flexible channel BW utilization for varying
traffic patterns, each channel should be shared by both the
DRAM cache and SCM. For example, if a workload shows a
high DRAM cache hit rate, the SCM-only channel in Fig. 6b
can become idle while the DRAM-only channel experiences
high contention, resulting in only 50% utilization overall. In
contrast, in Fig. 6a, both channels can be fully utilized by the
DRAM caches in each channel (Fig. 6¢). Optane DIMM is
also placed on the same channel as DRAM DIMM [133].

Thus, we focus on the HMS design with DRAM and SCM
ranks sharing the same channel implemented using TSVs in a
3D stack, but we show that our DRAM cache is also effective
for SCM integrated with separate channels (§IV-B). HMS
retains the HBM’s high-level design and interface, including
TSV connectivity, the number of banks and bank groups, and
the base die’s I/O buffers for signal integrity [68]. The key
difference is replacing the upper-rank DRAM dies in HBM
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Fig. 5. Design space of a GPU with SCM and DRAM cache with (a) 3D-
stacked DRAM and SCM and (b) separate DRAM and SCM stacks.
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Fig. 6. Integration of SCM and DRAM cache using (a) shared channels
and (b) separate channels. (c) Peak memory BW for varying DRAM-to-SCM
traffic ratios.

with SCM dies in HMS (Fig. 5a). Thus, each channel has a
DRAM cache rank and an SCM rank. Although the DRAM
cache is not addressable by the programmer, HMS has a
larger addressable capacity than HBM due to SCM’s higher
bit density; HMS provides 2x addressable memory capacity
than HBM, assuming SCM has 4x bit density compared
to DRAM [33], [114]. We use PCM as SCM due to their
maturity [134], but other SCM devices can also be used.

Due to GPU’s high memory BW demand, maximizing the
effective BW is a key consideration for our DRAM cache.
HW-managed DRAM caches for CPUs typically use 64 B
cachelines [25], [61], [95], [113]. In contrast, in this work, we
assume a 256 B DRAM cacheline! to achieve high memory
bus utilization, amortize the long activation latency of SCM,
and exploit the high spatial locality of memory accesses from
GPUs. In addition, to reduce the BW overhead of fetching
DRAM cache tags (hereafter, tags) and metadata (e.g., LRU
bits), we make the DRAM cache direct-mapped and reduce
the tag size. Combined with the large cacheline size, the
small tag size enables capacity-effective on-chip tag caching
(§1I1-D) that further reduces the BW overhead of DRAM cache
probes. To track DRAM cache misses, we use SRAM-based
MSHR for each channel of the DRAM cache located near the
memory controller. DRAM cache operations (e.g., probe, fill,
and eviction) are translated by a DRAM cache controller into
DRAM or SCM requests, which are then scheduled by the
memory controller, considering timing parameters.

B. Aggregated Metadata-In-Last-Column (AMIL)

Our CTC (§III-D) keeps all tags of a DRAM cache row in
a single L2 cache sector to exploit the high spatial locality
of GPU workloads. Thus, we propose AMIL to minimize the
tag access overhead by fetching all tags in a row with a single
column access. Prior work on DRAM cache with conventional

IFor L1 and L2 caches, we still assume 128 B line with 32 B sectors [72].
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cacheline sizes [95] proposed a highly set-associative (e.g., 29-
ways) organization that places tags in the first few columns and
data in the remaining columns, requiring multiple columns to
be accessed to fetch all tags in a row as shown with a double
arrow in Fig. 7a. Alloy cache [113] proposed a direct-mapped
DRAM cache that fetches a Tag-And-Data (TAD) with a single
access (Fig. 7b). However, TAD distributes the tags across all
columns, so the entire row has to be accessed to fetch all tags.
In addition, to comply with DRAM standards, DRAM caches
with TAD [25], [35], [113], [143]-[146] have to repurpose
some ECC bits to store tags, degrading reliability.

To minimize BW overhead, AMIL places all metadata (tags,
valid, dirty, and DRAM-affinity bits described in §III-C2) of a
row in the last column’s 32 B data portion (Fig. 7c). Although
the last column cannot be used to cache SCM data, it accounts
for a very small fraction (only 1.6% for a 32 B column in a
2 KiB row) of a row. Thus, AMIL effectively overcomes the
reliability limitation of prior DRAM caches based on TAD.

The AMIL is enabled by the high DRAM/SCM capacity
ratio and large cacheline size we propose, unlike prior DRAM
caches [35], [95], [113], [143], [144] with a few GiBs of
DRAM cache for 10s-100s of GiBs of main memory. As-
suming SCM has 4 x the capacity of a DRAM die and using
a direct-mapped DRAM cache, the DRAM cache tag is 2-bit.
With valid/dirty bits and 2-bit DRAM-affinity, each cacheline
only requires 6-bit metadata. With the 256 B DRAM cacheline
and a 2 KiB row, each row includes 8 cachelines, needing only
48 bits for metadata. This metadata is also protected with ECC.

C. SCM-aware DRAM Cache Bypass Policy

Our SCM-aware DRAM cache bypass policy considers
the multi-dimensional characteristics of accesses (§1I-D), i.e.,
spatial locality, hotness, and write intensity, to keep useful data
in DRAM and avoid DRAM cache thrashing from 100,000s
of GPU threads. The key insight is that we can quantify
the combined effects of these three-dimensional characteristics
with a one-dimensional score metric. First, our SCM penalty
score accounts for the spatial locality and write intensity by
comparing the latency penalty of SCM versus DRAM for
given requests. Then, the score is multiplied by hotness (i.e.,
per-page activation counter) to obtain the final DRAM-affinity
score. The scores can be calculated during runtime at a low
cost (§III-F), without any separate profiling phase.
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Fig. 8. Example timing diagrams contrasting the SCM penalty score calcu-
lated when a row is accessed with (a) multiple read accesses and (b) a single
write access. Not drawn to scale.

1) SCM Penalty Score: The SCM penalty score reflects
the latency penalty of SCM per column access. High-penalty
accesses cache data in DRAM, while others bypass the DRAM
cache to access SCM directly. The score considers the spatial
locality within the row buffer and differentiates writes from
reads. The spatial locality is essential to consider, as memory
accesses with many row buffer hits can amortize the long
SCM activation latency. Consequently, accessing such data
from SCM has a lower performance impact than when few
row buffer hits occur. On the other hand, write-intensive data
should be cached in DRAM because the write latency is higher
for SCM than for DRAM and SCMs can have limited write
endurance [131].

For the bypassing decision, the latency of memory accesses
to an SCM row is first calculated based on timing parame-
ters for required operations such as row activation, column
accesses, write recovery, and precharge. Similarly, the latency
required to serve the same memory accesses from DRAM (i.e.,
as if they were all accessed from DRAM) is also calculated.
The difference between these two latencies is then divided by
the number of column accesses to obtain SCM’s per-access
penalty.

Latencyscoyr — Latencypram
SCM PenaltyS = - 1
enastyocore NumColumnsAccessed M

For example, when there are no writes and SCM’s long acti-
vation delay is well amortized over multiple column accesses,
the SCM penalty score is low (Fig. 8a). In contrast, when
there is a write without spatial locality, the latency discrepancy
between SCM and DRAM is large, and the SCM penalty score
is high (Fig. 8b). With the scores, our policy (§1II-C3) can
bypass the DRAM cache for the access pattern in Fig. 8a and
cache data accessed in Fig. 8b. Thus, DRAM contention can
be reduced while keeping data in DRAM when it is beneficial.

The SCM penalty score can be computed at a low cost.
Because column access latency is identical between SCM
and DRAM [131], it will be canceled out in the numerator
of Eq. 1. Thus, the numerator can be approximated and
statically pre-computed as (trcp,scm —trep,pram) if the
accesses include only reads or as (tRCD,SCM —trCD,DRAM +
twr,scm — twr,.pram) if writes are included. Then, it is
simply divided by the number of columns accessed, which
can be recorded in the DRAM cache’s MSHR along with the
presence of write. This implementation requires two 32-bit
registers for the pre-computed values and an ALU.
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2) DRAM-Affinity Score: The SCM penalty score incorpo-
rates the spatial locality and presence of writes but ignores
data’s access frequency, which requires historical information
and cannot be inferred from current requests. Thus, we propose
another score metric called DRAM-affinity score, calculated by
multiplying a request’s SCM penalty score with its per-page
activation counter. The activation counter is incremented when
a DRAM or SCM row is activated. The DRAM-affinity score
is discretized into Nje,eis levels with a fixed interval and kept
in the DRAM cache as metadata (Fig. 7(c)) for bypass policy.

3) SCM-aware DRAM Cache Bypass Policy: Because ac-
cessing the victim DRAM cacheline’s DRAM-affinity level
for every DRAM cache miss would incur very high BW
overhead, we propose a two-level bypass policy to minimize
this overhead. The first-level comparison is done to filter the
majority of the requests without any DRAM BW overhead. If
the comparison is passed, the second-level comparison is done
using the victim’s metadata in DRAM.

First, as shown in Fig. 9, when a DRAM cache miss
occurs, the SCM penalty score for the requests mapped to
the same row is calculated and discretized to Nje,ers levels
between 0 and the maximum value observed so far (@). This
discretization prevents inconsistent bypass decisions due to
small fluctuations in the score. The discretized score is then
compared to a similarly-discretized moving average of the
SCM penalty score maintained by the memory controller (@).
If the request’s score level is less than or equal to the average
level, the DRAM cache is bypassed (i.e., no miss fill is done).

Otherwise, the current request’s DRAM-affinity level is
compared with the victim cacheline’s DRAM-affinity level (@,
@). If the current request has a higher level, the victim is
replaced (@), and the affinity level is stored. If the victim
is invalid, the miss fill is done without this comparison.
If the replacement is not done, the victim’s score level is
decremented with a probability pg.. to adapt to changing
working set. pge. is calculated as the accessed page’s activation
counter divided by the maximum activation counter observed
by this memory controller. The intuition is that the victim’s
DRAM-affinity level should be more likely to be decremented
if hot data bypassed the DRAM cache. Score calculations can
be done with an FPU with six 32-bit registers to hold average,
maximum, and current request values for SCM-penalty score
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Fig. 10. Configurable Tag Cache in L2 cache, assuming the Tag Cache (TC)
can use up to 4 L2 cache ways and each L2 cache way can hold 4 TC ways.

and DRAM-affinity scores. The activation counters can be
tracked in 2 MiB granularity with low overhead as 160 GiB
GPU memory requires only 80 KiB from 80-kilo entries of
8 bits counters. To address counter saturation, a 3-bit register
indicates the position of the MSB bit to implement low-cost
right-shifts. The LSB bits can be zeroed over time and ignored
until the shifts are finished. Depending on the workload’s
characteristics, the activation counters can be used selectively
(e.g., use a constant value of 1 if its benefit is not high).

D. Configurable Tag Cache (CTC)

Our bypass policy reduces DRAM traffic for DRAM cache
misses. However, determining a hit or miss also requires a tag
access from DRAM [113] for every L2 cache miss, incurring
high overhead. Using an additional on-chip tag cache to hold
DRAM cacheline tags [35] can incur high overhead for our
DRAM cache, due to its significantly larger capacity. The
MissMap [95] approach statically partitions the LLC to hold
only DRAM cache presence information with low overhead,
instead of the full tags. However, such static partitioning can
degrade the performance when high LLC capacity is required.
For example, recent GPUs support L2 cache resident control,
whereby programmers can specify some data to persist in the
L2 cache for high performance [130]. To meet the varying
demands of workloads, flexible partitioning is necessary.

Thus, we propose a Configurable Tag Cache (CTC) to
reduce the DRAM cache probe traffic and support flexible
partitioning between the L2 cache and tag cache without a
separate SRAM for caching tags (Fig. 10). The programmer
can specify the number of tag cache ways out of the total L2
cache ways, similar to how the user chooses the split between
the L1 data cache and shared memory [8]. In general, work-
loads with high DRAM BW demand can benefit more from
additional CTC ways, as a CTC miss generates DRAM cache
probe traffic that contends with the demand DRAM traffic. The
number of CTC ways can also be determined by profiling [80]
or set-dueling [112]. For iterative workloads [30], [106], [129],
it can be changed across kernels by flushing dirty lines, but
we leave such a study for future work. If DRAM is configured
as part of memory [125], all ways are used for L2 cache.

A single L2 cache way is divided into four 32 B Tag Cache
ways, assuming a 128 B L2 cacheline. The size of the DRAM
tags for a row is 4 B, excluding the DRAM-affinity bits not
kept in CTC (§III-B). Thus, a Tag Cache line is further divided
into eight 4 B sectors that are mapped to eight DRAM rows.
To minimize area overhead, we assume that up to four L2
cache ways can be used for tag caching. The CTC requires



modification of L2, but its overhead is low as it adds only
8+8+22=38 bits (per-sector valid and dirty bits, and per-line
tag) per cacheline and 4-bit pseudo-LRU metadata per set. The
storage overhead is 612 bits per set or only 2.5% of L2 cache.

E. Power Management and Performance Optimization

Accessing SCM cells can require higher energy and power
consumption than DRAM, leading to higher temperatures.
Especially, SCM power consumption needs to be managed for
HMS that stacks SCM on DRAM. Thus, we propose a simple
SCM power throttling technique that monitors the memory
stack’s temperature [3] and adjusts SCM’s timing parameters.
If the temperature increases too high, the timing parameters
for SCM activation (tgrcp) and/or write recovery (twgr)
are doubled to limit power consumption. In our evaluation,
throttling is rarely required, but it can effectively curtail SCM’s
power and temperature increase if needed.

In addition, when the memory footprint is small (e.g., based
on the memory allocation for UM), GPU’s DRAM can be used
as part of memory along with SCM, rather than a cache. For
high performance, data can initially be placed in DRAM, with
the remaining data mapped to SCM. Additionally, SCM can
operate in SLC mode, instead of MLC mode, for enhanced
performance. As a result, the GPU can minimize performance
impact for small workloads and our evaluation results show
that HMS can provide high performance for varying memory
footprints.

F. Putting It All Together

The operations of our DRAM cache can be summarized
as follows. When an L2 cache miss occurs, the CTC is first
looked up. If a CTC hit, it is immediately determined whether
the request hits the DRAM cache. If not, the DRAM cache
must be probed to access the tag and fill CTC. With AMIL,
tags for the entire row are fetched with a single DRAM access,
amortizing the probe overhead for subsequent accesses. If a
DRAM cache hit occurs, the request accesses DRAM and
the average SCM penalty score is updated. Otherwise, the
requested address is first accessed from SCM to serve the
demand access, and then, the DRAM cache bypass policy
($III-C3) determines if the DRAM cache fill should be done.
With 128 B L2 cacheline and 32 B sectors, all L2 fills are
done in 32 B size whether it is fetched from DRAM cache
or SCM, whereas data movement between DRAM and SCM
uses 256 B DRAM cacheline size.

IV. EVALUATION

A. Methodology

We integrated Accel-sim [72] with a UM model [46] and
Ramulator [77] for simulation (Table I). Due to the very long
simulation time of the oversubscribed baseline (§II-B), we
downscaled an NVIDIA A100 GPU by 1/5 while keeping
constant ratios between SM count, L2 cache capacity, memory

TABLE I
SIMULATED SYSTEM CONFIGURATION.

SMs
21 SMs, 64 warps/SM, 65536 regs/SM, clock frequency: 901 MHz
L1+shared memory: 192 KiB/SM, 128 B line (32 B sectors), LRU
L1 SRAM latency and BW: 15 cycles and 17 GB/s/SM

L2 cache and CTC parameters
L2(Baseline): 128 B line (32 B sectors), 16 ways, 8 MiB capacity, LRU
L2(HMS): 128 B line (32 B sectors), 12 ways, 6 MiB capacity, LRU
CTC(HMS): 32 B line (4 B sectors), 16 ways, up to 2 MiB capacity, LRU
Freq: 901MHz, latency:120 cycles, peak BW: 402GB/s from 16 banks
Memory organization (for both DRAM and SCM)
row buffer: 2 KiB, bus width: 128 bit (BL 2, DDR), # of channels: 8, # of dies: 8,
# of bank groups per ch.: 4, # of banks per bank group: 4, FR-FCFS scheduler
Bus frequency: 1 GHz, Bus peak BW: 256 GB/s from 8 channels

Timing parameters

DRAM [77] CL: 14, RCD: 14, RAS: 33, WR: 16, RP: 14

(row hit:15ns, row miss(closed page):43ns)
SCM [74], [131] CL: 14, RCD: 120, RAS: 120, WR: 1000, RP: 14

(row hit:15ns, row miss(closed page):149ns)
[ Unified Memory-related latency and BW |
PCle link BW: 12.8 GB/s (i.e., 1/5 of PCle 4.0 x16) or 64 GB/s (§IV-C)
NVLink Latency for CPU memory access (cacheline size): 0.135 ps [47]
(where applicable) BW: 76.8 GB/s (CPU memory BW of 46.6 GB/s)
Other Page fault handling latency: 20pus [73]

Memory energy (pJ/bit) [83], [140]

DRAM [ ACT: 1.17, PRE: 0.39, RD: 0.93, WR: 1.02
SCM [ ACT: 2.47, PRE (WR): 16.82, RD: 0.93, WR: 1.02

channel count, and PCle (or NVLink) lanes.” In addition, we
also show results using the full 64 GB/s PCle BW (§1V-C).
We used AccelWattch [69] to model GPU energy and 8 pJ/bit
PCle or NVLink energy [37].

We used 22 workloads [29], [30], [51], [106], [129] with
memory footprints ranging from 19 to 135 MiB (68 MiB on
average), excluding those with smaller footprints. We define
Ryrpas as the relative capacity of HBM compared to the mem-
ory footprint and assume Ry p=75% (i.e., HBM holds 75%
of the workload’s memory footprint) unless otherwise stated.
To model oversubscription, we adjusted HBM’s capacity (i.e.,
the number of page frames available) as in all prior works [46],
[73], [79], [90], [156] for simulation feasibility (§II-B). Other
memory stacks were also configured to have the same capacity
per DRAM die, and 4 X capacity per SCM die compared to
a DRAM die. For instance, for a 100 MiB workload, HBM
has a 75 MiB capacity while the DRAM cache and SCM
have 37.5 MiB and 150 MiB capacities, respectively. We also
evaluated SCM-only 3D-stack (“SCM”) and an ideal HBM
(“Infinite HBM” or “InfHBM”) with unlimited capacity (i.e.,
never oversubscribed). The SCM timing parameters we assume
are conservative, considering real SCM device [141] has
demonstrated shorter latencies. The SCM energy parameters
are also conservative as we assume a higher energy than the
energy reported in a recent study of SCM [128].

For our DRAM cache, we focus on HMS due to its high
speedups but also present results with separate DRAM/SCM

2Simulating a single workload took up to 24 days even with the downscal-
ing. To simulate a full A100 GPU, the workloads’ problem sizes needed to be
scaled up accordingly to prevent a significant portion of the memory footprint
from fitting in the 40 MiB L2 cache, which would substantially increase the
simulation time.
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buses (§IV-B). We assumed Fpqqte=100 and Nicyeis=4 for
HMS. For the moving average, a new value has a weight of
1%. We disabled the activation counter for simplicity although
an ideal activation counter’s speedup is up to 7.6% (0.4%
overall). To understand the impact of each technique, we also
evaluated HMS without bypass and CTC (HMS-BP-CTC or
HMS-B-C) as well as HMS without bypass (HMS-BP or
HMS-B). For conservative evaluation of CTC, its size was
reduced to hold only a quarter of the total tags in the DRAM
cache and ranged between 1-4 KiB across workloads. The total
DRAM cache tags of a full A100 GPU that replaces 40 GiB
HBMs with equivalent HMSes is 40 MiB — equal to the L2
cache capacity. Thus, we configure the CTC to use a quarter
of the 16 L2 ways to hold a quarter of all DRAM cache tags.

We also evaluated prior works on BW-efficient DRAM
caches (with 64 B DRAM cachelines) adopted for the DRAM
cache within HMS. For BEAR [35], we modeled an ideal
DRAM Cache Presence bit such that the DRAM cache pres-
ence is known without LLC lookup or DRAM cache probe
overhead, and refer to it as BEAR;; for its Neighboring Tag
Cache, we assumed the same 704 B/channel as in [35]. For
RedCache [25], we assumed an ideal gamma update without
DRAM BW overhead and refer to it as RedCache;. For the
mostly-clean DRAM cache [124], we assumed a perfect cache
predictor and zero-cost tag probes, referring to it as McCache;.

We assumed input data were initially in host memory, and
we used the TBN prefetcher and pre-eviction policies for
UM [46] (§II-A), which migrate data in 4 KiB to 1 MiB
granularity adaptively, as in NVIDIA GPUs.> We also studied
replacing PCle with high-BW NVLink for host connectivity.
We kept the BW ratios of CPU/GPU memory and NVLink the
same as in NVIDIA Grace Hopper Superchip [9] (Table I).
We modeled the dynamic access counter scheme for NVLink,
which considers the amount of free memory capacity and
access frequency to migrate hot pages to the GPU while
cold data is accessed directly from the remote memory in
cacheline granularity [47], [120]. For several plots, we only
show representative workloads due to space constraints, but
the average values reported are always calculated over all
workloads.

3Using a first-touch policy instead of the NVIDIA UM scheme significantly
degraded performance by 2.75x overall.
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Fig. 12. DRAM cache hit rates with different designs.

B. Performance

Compared to the oversubscribed HBM, HMS can hold the
entire memory footprint and achieved a significant speedup
of up to 12.5x (2.9x overall) by reducing data transfers
over PCle by up to 159x for stencil (7.3x on average)
(Fig.11). The speedup was especially pronounced for graph
workloads with irregular access patterns, for which UM page
prefetchers are ineffective. Despite having a smaller DRAM
capacity than HBM, our DRAM cache effectively filters out
requests to SCM. For example, SCM resulted in up to 2.25x
longer runtime than HBM for sssp_ttc, as the SCM was
frequently accessed with little row buffer locality for writes.
In contrast, HMS reduced its performance impact using the
DRAM cache with write hit rates of 99.6% (Fig. 12). Because
sssp_ttc has a relatively smaller working set per kernel, it
did not suffer significantly from oversubscription with HBM.
For some graph workloads (e.g., bfs_tu, bfs_ta, gc_x, clr_x,
etc.) with a relatively higher row buffer locality and/or low
write-intensity, DRAM cache hit rates for HMS were relatively
low at 10-30% due to bypass, but write requests still had high
hit rates of 49-89%. For some workloads with high row buffer
locality and read-intensity, SCM achieved similar performance
as InfHBM as the long activation latency was amortized.

For regular workloads, HBM’s performance varied depend-
ing on the working set size and the effectiveness of the
UM prefetcher. While it had similar performance as InfHBM
for some workloads (e.g., pathfnd and 2DConv), it suffered
significantly for others (e.g., stencil and hsp3D). In contrast,
HMS reduced the performance gap between the HBM and
InfHBM from 15.55x (14.21x) to 1.40x (2.15x) for hsp3D
(stencil) with higher capacity. Overall, HMS outperformed
HBM and SCM by 2.9x and 12.1% on average, respectively,
achieving within 11.3% of the performance of the InfHBM.
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Fig. 14. DRAM cache bypass breakdown.

Impact of bypass and CTC. Disabling bypass (HMS-BP vs.
HMS) increased DRAM writes by 5.5x and SCM writes
by 3.2x for write-backs, resulting in 2.4x more memory
traffic overhead than InfHBM because all DRAM cache misses
caused 256 B cacheline fills. As a result, runtime was increased
by up to 60% for hsp3D (10.8% overall). However, enabling the
bypass reduced the traffic overhead to only 1.23x (Fig. 13),
reducing DRAM and SCM demand access latencies by 58.5%
and 27.2%, respectively. Most bypasses (88.1%) were done
with the first comparison using the SCM penalty level without
accessing the DRAM-affinity level of the victim in DRAM
(Fig. 14). Nevertheless, the second comparison is essential in
preventing evictions by cachelines with a smaller or equal
DRAM-affinity level. Disabling it increased runtime by up
to 49% for stencil (4.8% overall). Compared to HMS-BP-
CTC, enabling CTC (i.e., HMS-BP) provided speedups of up
to 40% (3.9% overall), thanks to high CTC hit rates of 91%
overall (59% at minimum), which reduced DRAM probes.
CTC reduced memory traffic overhead over the InfHBM from
2.93x to 2.45x (Fig. 13), and DRAM demand access latency
by 45%. Reserving four L2 ways for CTC only had 0.9%
impact overall over an ideal full L2 cache with zero-cost CTC.
Comparison to prior work. HMS outperformed BEAR; and
RedCache; by up to 62.0% (11.2% overall) and 77.1% (20.2%
overall), respectively, as these designs did not consider SCM’s
low performance. Thus, they had very low DRAM cache
write hit rates overall than HMS (Fig. 12), resulting in higher
demand SCM write traffic — e.g., 1.76x (3.97x) for bfs
with Bear; (RedCache;). In particular, RedCache; had zero
DRAM cache hits for several workloads as it bypassed DRAM
caching for pages with low access counts. With CTC, HMS
also reduced DRAM cache probe traffic by 93.1% (90.6%)
overall compared to BEAR; (RedCache;). Although CTC in-
creased L2 miss rate by 5.4%, overall memory traffic of HMS
was 40.5% (23.6%) lower than that of BEAR; (RedCache;).
McCache; showed high SCM write traffic (1.85x more than
HMS overall) due to its partial write-through DRAM cache
and lack of SCM-awareness, and underperformed BEAR;.
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Fig. 15. (a) Performance of alternative integration of our DRAM cache and
SCM. (b) Memory traffic breakdown of HMS.

HMS design space exploration. We also evaluated alter-
native integration of DRAM and SCM, including CXL in-
terface. For CXL, we assumed GPU used integrated CPU
cores [105] as CXL host. Using separate DRAM and
SCM devices (“Sep._DRAM&SCM”) or CXL-attached SCM
(“CXL_SCM”) still outperformed HBM by 2.6x and 2.2x,
respectively (Fig. 15a). However, HMS outperformed them by
flexibly utilizing the bus across varying DRAM/SCM traffic
ratios (Fig. 15b) and avoiding the external link bottleneck.

Host interface impact. With high-BW host memory access
(in cacheline granularity for cold data), HBM(NVLink) out-
performed InfHBM with PCle by up to 96.4% for workloads
(e.g., 2DConv, pathfnd) that did not thrash HBM (Fig. 11).
However, when HBM was thrashed (e.g., stencil, kcore), it
suffered from high page migration overhead. Overall, HMS
with PCle outperformed HBM(NVLink) by 45%. Since HMS
is orthogonal to host interface choices, HMS(NVLink) was
also evaluated and outperformed HBM(NVLink) by 2.11x.

BERT inference. With HMS, GPUs can execute large lan-
guage models that do not fit in HBM with high performance.
We evaluated inference of an enlarged BERT [38] with 24.16 B
parameters from 480 layers, which would fit in a GPU with
80 GiB HMS but not in the HBM of A100 40 GiB GPU.
Thus, HBM GPU would fetch the model from the host with
UM. We evaluated its single middle encoder layer since all
layers are identical except for the first and last layers, using
TensorFlow XLA v2.4 and SQuAD [116]. HMS outperformed
HBM by 45.4%, with only 1% degradation than InfHBM. The
DRAM cache hit rate of the HMS was 58% overall and 96%
for writes, effectively reducing SCM writes.

LLM training. The high capacity of HMS can also benefit the
training of LLMs such as GPT [27] on single or multi-GPU
systems by enabling larger batch sizes, which reduces the opti-
mizer runtime overhead and increases compute utilization [36],
[107]. Due to prohibitively long runtime, a single decoder
layer was simulated for comparison as all layers are identical.
Maximum possible batch sizes were used for each memory
type, assuming 40 GiB HBM and 80 GiB HMS. Single-GPU
training used GPT-3 XL and 2-GPU training used GPT-3 2.7B
with model parallelism [122]. For proper normalization of
runtime, 2-iteration runtime with batch size of 1 for HBM was
compared with single-iteration runtime with batch size of 2 for
HMS. The HMS outperformed capacity-constrained HBM by
15.1% (15.4%) for 2-GPU (1-GPU) system (Fig. 16a).
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TensorFlow XLA. (b) Performance impact of DRAM cacheline size (64 B
vs. 256 B) with different DRAM caches. HMS~ is a variant of HMS with
TAD instead of AMIL.

C. Sensitivity Study and Additional Results

DRAM cacheline size impact. Compared to using 64 B line,
256 B line provided 4% speedups overall for HMS due to
improved CTC caching and the amortization of SCM latency
(Fig. 16b). HMSt benefited more from 256 B line (19.4%
speedup overall), as TAD generates more DRAM traffic than
AMIL from a CTC miss, and a larger line results in fewer
tags. BEAR; improved little with 256 B line (0.9% on average)
while the performance of RedCache; and McCache; degraded
with 256 B line, as they are unaware of SCM and increased
SCM traffic further. In addition, for HMS, reducing cacheline
size from 256 B to 128 B degraded performance by up to 11%
(1.7% overall), while increasing it to 512 B had a negligible
impact. 1 KiB cacheline degraded performance by up to 6%
due to increased data movement.

Memory footprint impact. Even for workloads with relatively
small memory footprints, HMS showed competitive perfor-
mance (within 1%) compared to HBM by using DRAM as
a part of memory and SCM in SLC mode (Fig. 17a).* As
the relative memory footprint increases, HMS can use the
SCM in TLC mode for higher capacity, achieving even greater
speedups (up to 52.3x for sssp_dtc). Even when the HMS
was oversubscribed with a relative footprint of 4.0, it still
outperformed HBM by up to 108.8x (2.85x overall) by
reducing page faults. Thus, HMS can better serve diverse
workloads than HBM. Additionally, for varied R gy, HMS
also consistently outperformed Bear; (RedCache;), by up to
62% (87%), except for bckprp for which Bear; outperformed
HMS by only 1.2% (Fig. 17b).

CTC and AMIL sensitivity. To analyze the impact of CTC
size and AMIL, we varied the number of L2 cache ways
used for CTC from 4 to 1 for AMIL and TAD (Fig. 18).
We assumed the same 256 B DRAM cacheline size to isolate
its effect. With AMIL, reducing the CTC size by a quarter
had a low performance impact of only 1.5% overall, whereas
TAD showed higher performance impact of 5.9%. AMIL
outperforms TAD in handling the increased CTC miss, as
AMIL needs a single DRAM access for a CTC miss, whereas
TAD needs eight accesses due to distribution of tags in a row.
As a result, TAD_CTCI resulted in up to 5.6x (2.6 x overall)
more DRAM accesses than AMIL_CTCI.

4For SLC (TLC) SCM, we assumed RCD = 60 (250), RAS = 60 (250),
and WR = 150 (2350) cycles [131].
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Fig. 17. (a) Speedup with HMS over HBM for varying relative memory

footprint over HBM capacity. The symbols in the legend indicate the mode
of HMS’s SCM among SLC, MLC, and TLC. Error bars show the maximum
and minimum across workloads. (b) Runtime of BEAR; and RedCache;
normalized to HMS for varying relative memory footprint for all workloads.

DRAM vs. SCM capacity ratio impact. We evaluated the
effects of different capacity ratios between DRAM and SCM
by varying their row counts. For a configuration of 2 SCM dies
and 6 DRAM dies (“2SCM-6DRAM”), runtime increased by
up to 12.4x for kcore (2.9x overall), and energy increased
by 1.99x compared to 4SCM-4DRAM due to smaller GPU
memory capacity and frequent page faults. 6SCM-2DRAM
showed 6.5% (10.4%) higher runtime (energy) than 4SCM-
4DRAM, as the DRAM cache hit rate decreased by 20.6%
overall due to smaller DRAM capacity. For example, hsp3D’s
DRAM cache hit rate fell by 49% and the SCM activation
increased by 35%, resulting in a 29% increase in runtime.

PCIe BW and other sensitivities. With 64 GB/s PCle BW,
HMS still outperformed HBM and SCM by 2.21x and 16.28%
overall, respectively. HMS also still outperformed BEAR;
(RedCache;) by 16.13% (19.89%) overall. Increasing Njcqeis
from 4 to 8 slightly degraded performance by 0.3% overall due
to increased traffic to probe victim’s DRAM affinity level.

D. Energy and Power

HMS substantially reduced energy consumption by up to
89.3% (48.1% overall) compared to HBM (Fig. 19°) by reduc-
ing data movement and runtime. Compared to SCM, HMS also
considerably reduced energy by up to 68.0% (16.5% overall)
as our DRAM cache effectively mitigated the high energy cost
of SCM accesses. SCM-agnostic BEAR; and RedCache; did
not measurably reduce energy, consuming 10.7% and 76.8%
more energy on SCM access than HMS, respectively. They
also consumed 74.7% and 7.4% more energy on DRAM access
overall than HMS due to frequent DRAM cacheline move-
ments and tag probes. HMS(NVLink) also reduced the energy
by up to 80.1% (22.7% overall) compared to HBM(NVLink).

While SCM can increase power usage, our simple SCM
throttling technique (§1II-E) can effectively prevent the power
usage of HMS from exceeding the maximum power of HBM
(Fig. 20). In our evaluation, stencil showed the highest power
consumption for InfHBM. While HMS without throttling
consumed more power for stencil, using throttling effectively
reduced the power to 54.5% below that of InfHBM. It resulted
in 55% performance loss but still outperformed the baseline

SIn AccelWattch [69], “Static” refers to energy from leakage currents of
inactive components, and “Const” refers to peripheral component energy such
as GPU board fans and other auxiliary circuitry.
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Fig. 18. Performance impact of CTC ways. Fig. 19. Energy consumption with different memory designs normalized to HBM.
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Fig. 20. Average power usage by different memory stacks for representative
workloads. For HMS, a+ (w¢) indicates power throttling by doubling the
corresponding timing parameters for activation (write recovery).

TABLE I
THERMAL MATERIAL PROPERTIES.

GPU: Conductivity: 141W/m-K, Die size: 166mm?, Power: 80W [8] l

Memory (a single stack with 8 memory dies and a base die)
Conductivity(W/m-K): 141(base/DRAM [100], [153]), 106(SCM [71]), 1.5(bonding)
Base die power: 10W [89], [149], Die size: 96mm?

HBM: 8 DRAM dies, HMS: 4 DRAM (bottom) + 4 SCM (top) dies

l Convection resistance: 0.143K/W, Heat spreader: 400W/m-K, Ambient: 50°C l

HBM by 7.1x. In addition, even without throttling, HMS did
not show high temperature (§IV-E) and other workloads did
not require throttling. Thus, power and temperature of HMS
can be safely managed.

E. Thermal Model

As SCM can consume more energy than DRAM [83], we
evaluated the thermal behavior of different memory stacks
using HotSpot thermal modeling tool [153] (Table II). The
thermal model includes a silicon interposer, GPU die, base
die, memory dies, bonding layers (between memory dies), and
cooling solution with a general heat spreader and air-cooling
heat sink. We conservatively assumed that the GPU consumes
the TDP (i.e., maximum sustainable power) of the scaled-down
NVIDIA A100 and that the base die of HBM consumes the
TDP of 10W [89], [149].

For stencil, which showed the highest power usage, HMS
showed similar thermal behavior to InfHBM, while RedCache;
exceeded the 95°C critical temperature due to high DRAM
traffic (Fig. 21). In 3D memory, the bottom die has the poorest
heat dissipation as it is farthest from the heat sink. Despite
consuming more power in the SCM dies than the DRAM dies
in HBM, HMS had a lower DRAM power usage that resulted
in a negligible increase in peak temperature. In addition, HMS

Inf. HBM BEAR; RedCache;

i ; HMS a
(Peak: 361.1K) (Peak: 362.3K) (Peak: 368.5K) (Peak: 361.4K)

343

Fig. 21. Thermal maps for stencil (worst-case thermal behavior among
evaluated workloads). The GPU, base die, and bonding layers of the stacks
are included in the thermal model but omitted in the figure for brevity.
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Fig. 22. Peak and average temperatures of different DRAM caches and
InfHBM.

resulted in lower average and peak temperatures than prior
works for all workloads in our evaluation (Fig. 22).

FE. Hardware Overhead

HMS requires a 128-entry MSHR per channel, and each
entry requires 51 bits (37-bit address, 8-bit mask to record
columns accessed in a cacheline, entry valid bit, read/write
bit, 2-bit DRAM affinity level, and the DRAM cacheline valid
and dirty bits from CTC). Using CACTI [24] and assuming
12nm, the MSHR and 256-bit storage for our bypass logic
is estimated to use 0.0006 mm? per memory channel. The
overhead of CTC per memory partition, including comparators
and muxes, is estimated to be 0.014 mm?2. An integer ALU
(§II-C1) and an FPU per channel have an area of 0.022 mm?
in 12 nm [98]. Overall, the overhead with 40 memory channels
in an NVIDIA A100 GPU is estimated to be 1.46 mm? or a
0.18% increase. This area estimation with 12nm is conserva-
tive given that the A100 GPU used 7nm technology [8].

V. RELATED WORK
A. DRAM Cache

Many DRAM cache designs have been proposed, espe-
cially for CPUs with both high- and low-BW DRAM. Alloy
Cache [113] proposed direct-mapped DRAM cache with TAD
organization that trades off hit rate against hit latency in



comparison to Loh-Hill cache [95]. Timber [102] and AT-
Cache [58] proposed a fixed-size on-chip SRAM storage for
DRAM cache tags while our CTC allows size configuration
by users. ACCORD [144] mitigated high BW overhead of
set-associative DRAM caches by coordinating way install and
prediction. Tag Tables [44] modifies page table to compress
DRAM cache tags and cache them in LLC. Footprint-based
DRAM caches [62], [64], [65] exploits intra-thread spatial
locality of CPU threads (§1I-E). BEAR [35] addressed DRAM
cache’s BW bloat with probabilistic bypassing, write probe
filtering with metadata in LLC, and fetching/caching neighbor
DRAM cacheline tags for demand accesses. RedCache [25]
bypasses DRAM cache with dynamic access count thresholds
to identify hot data. DICE [146] is a dynamic cacheline
indexing scheme for compressing DRAM caches. Baryon [91]
uses compression and sub-blocking to efficiently utilize fast
memory capacity with low BW overhead. These compres-
sion schemes can be adopted in our DRAM cache to fur-
ther improve effective BW. Several works [57], [79], [145]
proposed DRAM cache for remote data in other GPUs or
CPUs. PoM [123] and CAMEO [34] proposed using stacked
DRAM to expand address space, rather than as a cache.
Page-granularity DRAM cache management has also been
proposed [88], [101], [148]. Sim et al. [124] proposed keeping
DRAM cache mostly clean. However, they did not consider
SCM'’s characteristics.

B. Hybrid and Adaptive Memory Hierarchy

Several prior works [114], [142], [154] proposed mem-
ory systems with DRAM and PCM, optimizing for page
management and endurance. Yoon et al. [142] and Zhao et
al. [155] proposed data placement mechanisms considering
row buffer miss frequency similar to our hotness metric,
but they did not consider the inter-thread spatial locality
of GPUs. They also managed the DRAM cache in a large
row-granularity, but smaller DRAM cachelines are more ef-
fective for GPUs (§IV-C). 3D-Xpath [87] proposed a 3D
memory stack combining density-optimized and performance-
optimized DRAM. Memory hierarchies using sub-ranks [118]
or sub-channels [28] can improve energy efficiency by finer
granularity accesses. These approaches are orthogonal to our
design and can be combined. Ohm-GPU [151] proposed a
silicon photonics-based optical network for GPU, DRAM,
and 3D XPoint memory for high BW. However, our work
focuses on a more practical near-term solution. ZnG [150]
and FlashGPU [152] integrated flash devices in the memory
hierarchy, which can be effective for read-intensive, regular
access patterns. However, for frequent irregular writes, the
high (~100us) write latency and granularity would require
an effective DRAM cache. Our DRAM cache design can
be adopted in their designs to improve performance. Ther-
mostat [13] is a SW scheme to manage data placement
between SCM and DRAM under user-specified performance
constraints. Kim et al. [78] and Liu et al. [94] also proposed
hybrid memory systems managed by the OS. However, for
GPU workloads, SW-managed DRAM caches can become a

bottleneck. Several works [55], [133], [136] analyzed Optane
PM DIMM and proposed SW optimizations to improve perfor-
mance. Optane DIMM does not necessarily represent the SCM
we assume, as it includes a hierarchy of buffers that access
3D XPoint memory with a large 4 KiB granularity. Moreover,
requests can be reordered by an on-DIMM queue. Recent key-
value stores [39], [40], [127] exploited heterogeneous memory
hierarchy. Harmony [92] proposed scheduling of tasks and data
movement for training large DNNs on a GPU. GPM [110]
exploits the persistency of CPU-attached Optane from GPU.
MMS [111] proposed HW/OS support for adapting between
high-density and low-latency PCM modes. Power token [54]
was proposed to manage PCM power with fine-grained write.

VI. CONCLUSION

We propose an effective DRAM cache for GPUs with
SCM to overcome the memory capacity wall while achieving
high memory BW. Our AMIL organization fetches all tags
in a row with a single access to reduce the tag probe BW
overhead, while retaining full ECC protection in contrast to
prior DRAM caches with TAD organization. Furthermore, to
prevent DRAM cache thrashing from a massive number of
threads while considering the characteristics of SCM, we pro-
pose an SCM-aware DRAM cache bypass policy. This policy
leverages the SCM penalty score and DRAM-affinity score,
which captures the multidimensional characteristics of access
patterns (i.e., access frequency, row buffer locality, and write
intensity) in a single score, for simple yet effective bypassing.
In addition, because DRAM cache probe traffic can interfere
with data access from DRAM, we propose CTC to reduce the
probes with little overhead while enabling flexible capacity
adjustment between CTC and L2 cache. Consequently, we
reduce DRAM cache probe and SCM write traffic by 91-
93% and 57-75%, respectively, over prior works. Our SCM
throttling can effectively curtail SCM power usage below the
maximum HBM power while still achieving high speedups
over HBM. Using SCM’s SLC and MLC modes, the GPU can
also adapt to workload’s memory footprint and performance
demand. The results show that our proposed GPU with SCM
and DRAM cache significantly outperforms the oversubscribed
baseline GPU with HBM by up to 12.5x (2.9x overall).
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