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Abstract—Processing-in-memory (PIM) has been explored for
decades by computer architects, yet it has never seen the light of
day in real-world products due to its high design overheads and
lack of a killer application. With the advent of critical memory-
intensive workloads, several commercial PIM technologies have
been introduced to the market, ranging from domain-specific PIM
architectures to more general-purpose PIM architectures. In this
work, we deepdive into UPMEM’s commercial PIM technology,
a general-purpose PIM-enabled parallel computing architecture
that is highly programmable. Our first key contribution is the
development of a flexible simulation framework for PIM. The
simulator we developed (aka uPIMulator) enables the compilation
of UPMEM-PIM source codes into its compiled machine-level
instructions, which are subsequently consumed by our cycle-
level performance simulator. Using uPIMulator, we demystify
UPMEM’s PIM design through a detailed characterization study.
Finally, we identify some key limitations of the current UPMEM-
PIM system through our case studies and present some important
architectural features that will become critical for future PIM
architectures to support.

I. INTRODUCTION

“We’ve investigated applying PIM to our workloads
and determined there are several challenges to using
these approaches. Perhaps the biggest challenge of
PIM is its programmability. It is hard to anticipate
future model compression methods, so programma-
bility is required to adapt to these. PIM must also
support flexible parallelization since it is hard to
predict how much each dimension (of embedding
tables) will scale in the future.”

“First-Generation Inference Accelerator Deploy-
ment at Facebook”, Facebook, 2021 [1]

Emerging workloads in the areas of scientific computing,
graph processing, and machine learning pose unprecedented
demand for larger data. However, the well-known memory
bandwidth wall causes a critical performance bottleneck
for these memory-bound workloads, due to the widening
performance gap between processor and memory. Processing-
in-memory (PIM) architectures have been explored extensively
for decades [2], [3], [4], [5], as they help alleviate the memory
bandwidth bottleneck by moving compute logic closer to
memory. Unfortunately, the computing industry has so far been
lukewarm in commercializing PIM architectures, primarily
because of their high design overheads (e.g., regression in
DRAM density, thermal issues [6]) and their intrusiveness to
the software stack (e.g., programming model [7], [8], [9], [10],

managing address space and data coherence [11], [12], [13]),
rendering PIM mostly an academic pursuit.

Interestingly, such sentiment towards PIM has changed
dramatically over the past couple of years with several
commercial PIM systems introduced to the market. These
PIM designs can broadly be grouped into two categories: 1)
domain-specific PIM and 2) general-purpose PIM. Domain-
specific PIM designs have been driven by key memory vendors
like Samsung [14], [15], [16], [17] and SK Hynix [18], [19],
which focus on specializing their PIM design by supporting
key compute primitives for a targeted application domain (e.g.,
matrix multiplication for accelerating deep neural networks),
reigniting people’s interest in PIM designs [14], [17], [18], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44]. At the other end of the spectrum, the PIM solution
offered by UPMEM [45] (henceforth referred to as UPMEM-
PIM) takes a different approach by providing a general-
purpose parallel programming language with an LLVM-based
compiler stack [46], [47], providing application developers
the flexibility to write any parallel program to be executed
using PIM. Thanks to its high programmability and flexibility,
several recent work studied the applicability of UPMEM-
PIM for accelerating a variety of application domains, e.g.,
graph algorithms, machine learning, bioinformatics, etc. [48],
[49], [50], [51], [52]. Similar to how GPUs have transformed
themselves into a first-class computing citizen after years of
hardware/software refinement, we believe that it is possible
for such general-purpose PIM design to similarly evolve into
an important computing device (or at a minimum provide
valuable insights in designing future general-purpose PIM) as
its hardware/software stack matures.

Given this landscape, our key motivation is to demystify
industry’s first general-purpose PIM design through a detailed
characterization study, understanding the unique properties of
UPMEM-PIM and identifying important research domains that
computer architects can explore. To this end, we first develop
an UPMEM-PIM ISA compatible simulation framework that
utilizes UPMEM’s open-source compiler stack to compile any
UPMEM-PIM program, from its C-level source code down
to its machine level instructions. The compiled UPMEM-
PIM binary is then consumed by our cycle-level hardware
performance simulator, which we carefully cross-validate
against a real UPMEM-PIM system (Section III). Simulators
are, by design, immensely flexible and customizable, so they
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Fig. 1: UPMEM-PIM hardware system overview.

enable us to understand the fine-grained details of the runtime
execution of a real (UPMEM) PIM program. Using our PIM
simulator (henceforth referred to as UPMEM-PIM simulator,
aka uPIMulator), we conduct a workload characterization
study and provide a number of interesting insights that cannot
be easily uncovered using UPMEM-PIM chip’s hardware
performance counters or profiling tools (Section IV). Finally,
we uncover some critical limitations of the current UPMEM-
PIM system through our case studies and propose several
key architectural features required for PIM to become more
performant, robust, and secure (Section V). These features
include the need for vector processing and ILP (instruction-
level parallelism) enhancing microarchitectures, architectural
support for multi-tenant execution, and the support for on-
demand caching rather than solely relying on scratchpads.
Overall, we expect our in-depth exploration of UPMEM-PIM
using our uPIMulator to open up important research directions
for computer system designers1, paving the way for PIM to
evolve into a truly general-purpose computing device.

II. UPMEM-PIM ARCHITECTURE

A. Hardware Architecture
System overview. Figure 1 provides a high-level overview

of an UPMEM-PIM based system containing a host-side CPU
communicating with a group of standard regular DIMMs and
another group of PIM-enabled memory DIMMs (UPMEM-
PIM modules). An UPMEM-PIM module is based on a
standard DDR4-2400 [53] DIMM form factor containing
8 UPMEM-PIM DRAM chips per each rank. Within each
UPMEM-PIM DRAM chip, there are 8 DPUs (DRAM
Processing Units), one DPU per each DRAM bank. Each
DPU has direct access to a dedicated 64 MB DRAM bank
(referred to as Main RAM, aka MRAM), a 64 KB SRAM-
based scratchpad memory (aka Working RAM, WRAM), and
24 KB instruction memory (aka Instruction RAM, IRAM).
Before an UPMEM-PIM program (i.e., the PIM kernel) is to
be executed, the host CPU must explicitly offload both the PIM
kernel and the input data from CPU’s conventional memory
address space (i.e., regular DIMMs) to DPU’s UPMEM-PIM
address space. The real PIM system we study in this work
contains 20 double-ranked UPMEM-PIM DIMMs, so a total
of (20 × 2 × 8 × 8)=2,560 DPUs concurrently execute as
co-processors to the CPU.

DPU architecture. The DPU is designed as an in-order
14-stage pipelined processor with a RISC-based ISA, imple-
menting fine-grained multi-threading. A total of 24 threads

1uPIMulator is open-sourced at https://github.com/VIA-
Research/uPIMulator.

(a) Host-side code.

(b) DPU-side code.

Fig. 2: An element-wise vector addition program written for UPMEM-
PIM: (a) host-side and (b) DPU-side program.

(called tasklets by UPMEM) can concurrently execute within
a DPU, all of which share the scratchpad (WRAM), in-
struction memory (IRAM), and per-bank DRAM (MRAM).
The UPMEM DPU has a peculiar thread scheduling rule
where two consecutive instructions within the same thread
must be dispatched 11 cycles apart (UPMEM refers to such
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microarchitecture as the revolver pipeline [54]). UPMEM states
that such scheduling constraint is enforced to obviate the need
to implement complicated circuitry for data forwarding and
pipeline interlocks [55]. Another unique aspect of the DPU
microarchitecture is in its register file (RF) design: the RF
is split into an even and odd RF and a thread cannot access
multiple even or odd registers at the same cycle (e.g., r0 and
r2 cannot be accessed at the same cycle) due to a structural
hazard (i.e., RF conflict).

B. Programming Model

UPMEM-PIM follows the single-program multiple-data
(SPMD) programming paradigm. A single program written
by the programmer gets executed by all the software threads
(i.e., tasklets) that are instantiated, but each individual thread
can take its own control flow and access different parts of the
data using its thread ID (tasklet ID). Since there can be up to
2,560 DPUs and 24 threads per DPU, the programmer must
carefully partition the input data, not only across the DPUs
(Figure 2(a), line 18-20, 22-24, and 26-29) but also across
the threads within each DPU (Figure 2(b), line 22-29). We
use Figure 2 as a running example to highlight some of the
important programming semantics of UPMEM-PIM.

Host-side programming. Any program that is written
in UPMEM’s C-like programming language can be com-
piled into its machine code by using the LLVM-based
compiler toolchain [46] developed by UPMEM [47]. Similar
to NVIDIA’s CUDA [56], UPMEM-PIM follows the co-
processor computing model where the CPU offloads the
memory-intensive task to the DPU, functioning as an arbiter
of the PIM program’s execution. Consequently, the UPMEM
compiler generates two binaries, one that runs on the host and
the other that runs across all the DPUs. In the host-side code
(Figure 2(a)), the programmer must (1) allocate the desired
number of DPUs to be used (line 8), (2) offload the program
binary to all the DPUs (line 9), (3) partition and send input
data to the DPU’s scratchpad (line 18-20) and per-bank DRAM
(line 22-24, and 26-29), (4) ask the host to send commands
to the DPUs to execute the PIM program (line 31), and (5)
once the PIM program terminates, retrieve back the results
from DPU memory back to the host CPU’s memory address
space (line 33-36).

DPU-side programming. A unique aspect of UPMEM-
PIM’s programming model is that all the PIM kernel’s working
set must be staged through DPU’s scratchpad using DMA
instructions. Consider the code snippet in Figure 2(b). Any
thread executing within the DPU can only load (store) data
from (to) the scratchpad (WRAM) address space but it is
not able to address data in the per-bank DRAM (MRAM)
address space directly (line 7, 42). In effect, DPUs operate
over two distinct memory address spaces, the slower but larger
per-bank DRAM region and the faster yet smaller scratchpad
region. Only when the programmer explicitly requests data
movements from the per-bank DRAM region to the scratchpad
region (using DMA instructions via mram_read(), line 39-
40) can the DPU threads access the necessary data from
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Fig. 3: Memory model of (a) CUDA and (b) UPMEM-PIM. (c) The
(physical) address map of UPMEM-PIM.

the scratchpad using load/store instructions (line 9, notice
the pointers to the arrays A,B,C are dynamically allocated
at the scratchpad WRAM via mem_alloc() calls in line
35-37). This is similar to NVIDIA’s CUDA programming
model [56] where the programmer must explicitly orchestrate
data movements across the CPU memory and the GPU memory
using cudaMemcpy() (unless the programmer employs
Unified Memory [57]). CUDA, however, does allow threads
to directly load (store) from (to) both its scratchpad and its
DRAM, unlike UPMEM’s memory model which only allows
load/store semantics over the scratchpad (Figure 3(a,b)). In
the remainder of this paper, we refer to such a model as
UPMEM’s scratchpad-centric programming model.

Data sharing and synchronization. Threads executing
within the same DPU can share data over the DPU scratchpad
or its local DRAM bank (MRAM). They can also synchronize
with each other by using mutexes, barriers, or semaphores allo-
cated in UPMEM-PIM’s atomic memory region (Figure 3(c)),
all of which are supported by UPMEM’s SDK [58].

However, threads executing in different DPUs cannot share
data or synchronize with each other directly. This is because
1) all the DPUs’ per-bank DRAM across the UPMEM-PIM
DIMM are not virtualized within a single, shared memory
address space (further discussed in Section II-C) 2) nor is
there a direct communication datapath among them. If data
sharing or synchronization across different DPUs is in need,
the programmer must first explicitly copy back the shared data
from the producer DPU’s memory to the CPU memory after
kernel terminates. The CPU can then copy back this shared
data from its CPU memory region to the consumer DPU’s
memory region during the next PIM kernel execution.

C. System Software for Memory Management

UPMEM-PIM does not have a memory management unit
(MMU) to virtualize its physical memory, so the DPU
uses physical addresses when accessing WRAM, IRAM,
and MRAM, as illustrated in Figure 3(c). In other words,
when moving data across UPMEM-PIM’s memory hierarchy
using (1) load/store instructions (for scratchpad↔RF) or (2)
DMA instructions (for DRAM↔scratchpad), the memory
addresses generated by executing an instruction are used as-is,
without any address translation process involved (Figure 3(b)).
Consider the example in Figure 2. When the input array B
is being copied from the CPU to DPU’s per-bank DRAM

3



Parser

void *
memcpy(void *dest, const void *src, size_t
len)
{

uint8_t *d = (uint8_t *)dest;
const uint8_t *s = (const uint8_t *)src;
...

} Library source codes

void vector_addition(int *A, int *B, int *C) {
for (int i = 0; i < SIZE; i++) 

C[i] = A[i] + B[i];
}
int main() {

vector_addition(A, B, C);
return 0;

} Application source codes

memcpy:
.Lfunc_begin1:

add r2, r0, r2
.Ltmp5:

xor r3, r1, r0
.Ltmp6:

add r4, r0, 3

vector_addition:
.Lfunc_begin0:

jeq r2, 0, .LBB0_2
.Ltmp0:
.LBB0_1:  

lw r3, r1, 0
lw r4, r0, 0
add r3, r4, r3
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Fig. 4: uPIMulator simulation framework overview.

(Figure 2(a), line 26-29) and then from DPU’s DRAM to
DPU’s scratchpad (Figure 2(b), line 40), the programmer must
carefully program the pointer value to use as the destination
(for CPU→DPU’s DRAM) and source address (for DPU’s
DRAM→DPU’s scratchpad) within per-bank DRAM (MRAM)
by using DPU_MRAM_HEAP_POINTER_NAME (Figure 2(a),
line 27-29) or DPU_MRAM_HEAP_POINTER (Figure 2(b),
line 26-29) as the base physical address.

Overall, the lack of a virtual memory support leaves the
programmer with the burden of reasoning about where the
input (output) data should be copied over to (from) within
DPU’s DRAM, hurting user productivity. Section V-C further
discusses the architectural implication of an MMU-less PIM.

III. UPIMULATOR SIMULATION FRAMEWORK

Figure 4 provides an overview of uPIMulator, which
consists of two key components: (1) a compiler toolchain
that supports execution-driven simulation of UPMEM ISA-
compatible, machine-level instructions, and (2) a hardware
performance simulator cross-validated against a real UPMEM-
PIM. Together, these dual components reduce the effort
required to model UPMEM’s general-purpose PIM architecture
with high accuracy, enabling architectural exploration of any
PIM program written with UPMEM’s programming model.

A. Simulator Development

Software compilation toolchain. The open-source UP-
MEM SDK [58] provides an LLVM [46]-based compiler
toolchain [47] (dpu-upmem-dpurte-clang) that takes in
(1) the programmer-written source codes and (2) glibc-style,
UPMEM-PIM compatible C library (e.g., mem_alloc()
for malloc in DPU scratchpad, memcpy(), printf())
to preprocess, compile, and assemble into binary objects,
finally linking them into an UPMEM-PIM binary executable.
uPIMulator utilizes UPMEM SDK’s preprocessor and compiler
as-is to first lower UPMEM program source files into multiple
assembly-level codes. These assembly codes are then fed into
our custom-designed linker (which is based on the open-source
ANTLR’s lexer and parser [59], [60], [61]) to go through the
lexical and syntax analyses to resolve the def-use relationships
of all the functions, code labels, etc. for linking. Finally, our
custom-designed assembler generates the final binary files to
upload into UPMEM-PIM’s atomic (i.e., mutex), IRAM (i.e.,
the UPMEM-PIM program), WRAM, and MRAM (i.e., the
input data) address spaces (Figure 4).

The reason why uPIMulator employs a custom-designed
linker and assembler is as follows. We observe that the
current version of UPMEM linker is specifically tied to
UPMEM-PIM’s microarchitecture, preventing us from explor-
ing alternative PIM architectures. For instance, UPMEM’s
linker generates a linking error when the compiled program’s
instruction memory or scratchpad usage exceeds the physical
IRAM or WRAM capacity. As detailed later in Section V-D,
this paper presents a case study to evaluate the trade-offs
of employing an on-demand cache for UPMEM-PIM, as
opposed to UPMEM’s current scratchpad-centric design. Under
UPMEM’s programming model, this requires us to write the
UPMEM-PIM program that has a working set allocated in the
scratchpad (WRAM) space exceeding its 64 KB size, which is
subsequently re-mapped to the per-bank DRAM region in our
cycle-level hardware performance simulator. This allows us
to treat a DPU thread’s load/store transactions to scratchpad
as if they are to DRAM, so plugging in a cache simulator
in between the DPU and scratchpad (which is emulated as
DRAM) enables us to study the performance of caches vs.
scratchpads (Section V-D details our methodology for this
study). None of these features are available with UPMEM’s
current linker design, motivating us to implement our own
linker and assembler for a flexible simulator development and
design space exploration.

Overall, uPIMulator enjoys LLVM’s mature compiler stage
optimizations (e.g., common subexpression elimination [62])
by leveraging UPMEM’s existing preprocessor/compiler as-is
while also enabling diverse architectural explorations through
our custom-designed linker/assembler.

Hardware performance simulator. We implement a cycle-
level performance simulator of UPMEM DPU by referring to
both UPMEM’s user manual and publicly available information
and discussion about the DPU’s microarchitecture [47], [54],
[55], [58], [63], [64]. As summarized in Table I, the baseline
DPU architecture is modeled as a 14-stage in-order pipelined
processor, faithfully modeling its revolver pipeline scheduling
algorithm and the structural hazard enforced at the odd/even
RF accesses (Section II-A). uPIMulator functionally executes
the instructions to update its architectural state, allowing us
to verify the correctness of PIM program’s execution.

As for modeling the DRAM subsystem, rather than employ-
ing a highly accurate cycle-level DRAM simulator [65], [66],
[67], we base our implementation on GPGPU-Sim’s cycle-level
DRAM simulator for fast simulation time [68] (our simulator
runs 2.5× slower when interfaced with Ramulator [66], which
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TABLE I: uPIMulator default configuration.

DPU processor architecture
Operating frequency 350 MHz

Number of pipeline stages 14
Revolver scheduling cycles 11

WRAM / IRAM size 64 KB / 24 KB
WRAM / IRAM access latency 1 cycle

WRAM / IRAM access granularity 4 / 6 B per clock
WRAM / IRAM access bandwidth 1,400 / 2,100 MB/sec

Atomic memory size 256 Bits
DRAM system

MRAM size 64 MB
DDR specification DDR4-2400 [53]

Memory scheduling policy FR-FCFS
Row buffer size 1 KB

tRCD, tRAS, tRP, tCL, tBL 16, 39, 16, 16, 4 cycles
Communication

CPU→DPU bandwidth (per rank) 0.296 GB/s per DPU
CPU←DPU bandwidth (per rank) 0.063 GB/s per DPU

Software architecture
Number of general-purpose registers 24

Maximum number of threads 24
Stack size (per thread) 2 KB

Heap size 4 KB

is known to be the fastest among popular DRAM simulators).
Because the details of UPMEM-PIM’s memory scheduling pol-
icy is not publicly available, we employ a first-row, first-come-
first-serve (FR-FCFS [69]) algorithm for scheduling memory
transactions. The communication latency of transferring data
over the CPU↔DPU channel is simulated by employing
a fixed bandwidth model as its communication channel
(i.e., communication latency = transfer size/communication
bandwidth), whose value is carefully tuned by profiling a real
UPMEM-PIM system (Table I).

Because UPMEM-PIM implements the CPU↔DPU com-
munication using Intel AVX read (CPU←DPU) and write
(CPU→DPU) instructions [70], we observe asymmetric
CPU↔DPU communication bandwidth (i.e., the synchronous
AVX reads have lower throughput than the asynchronous AVX
writes), a phenomenon also reported in [48].

B. Simulator Availability and Extensibility

uPIMulator is designed to cleanly decouple the SPMD-based
frontend code/data generation from the backend performance
model with its modular design (Figure 4). Such design
philosophy is inspired by GPGPU-Sim [68] which similarly
utilizes NVIDIA’s CUDA compiler and PTX assembler as its
frontend to generate CUDA code/data, which is subsequently
consumed by its backend cycle-level GPU microarchitecture
simulator. As such, uPIMulator can easily be extended to
model and evaluate architecture designs with alternative
software/hardware architectures (we later demonstrate uPIM-
ulator’s extensibility via our case study in Section V). For
instance, one can modify uPIMulator’s frontend code/data
generation stage to flexibly map the code/data binaries at
arbitrary locations in the memory address space, a feature we
utilize to generate the proper instructions/data in our “cache
vs. scratchpad” case study discussed later in Section V-D.
Similarly, uPIMulator’s backend performance model can also

TABLE II: PrIM benchmarks configurations used for the characteri-
zation and case studies conducted in this work.

Benchmark Dataset (single DPU) Dataset (multiple DPUs)
BFS 2K vertices, 15K edges 16K vertices, 120K edges
BS 32K elem., 4K queries 128K elem., 16K queries

GEMV 2K x 64, 64 x 1 elem. 8K x 64, 64 x 1 elem.
HST-L 128K elem., 256 bins 512K elem., 256 bins
HST-S 128K elem., 256 bins 512K elem., 256 bins
MLP 3 layers, 256 neurons 3 layers, 1K neurons
NW 256 gene sequence 512 gene sequence
RED 512K elem. 2M elem.

SCAN-RSS 256K elem. 1M elem.
SCAN-SSA 256K elem. 1M elem.

SEL 512K elem. 2M elem.
SpMV 12K x 12K, 80519 elem. 14K x 14K, 316740 elem.
TRNS 128K elem. 256K elem.

TS 2K elem., 64 queries 64K elem., 64 queries
UNI 512K elem. 2M elem.
VA 1M elem. 4M elem.

be extended to execute UPMEM-PIM’s SPMD code over
alternative hardware architectures. For instance, one can
maintain the same UPMEM-PIM’s code to execute over
an NVIDIA GPU style SIMD processor architecture by
modifying the backend performance model to be implemented
as a SIMT (single-instruction-multiple-thread) [56] vector
processor microarchitecture model, a case study we conduct
in Section V-A.

C. Simulator Validation

We validate our uPIMulator using PrIM [71], an open-source
UPMEM-PIM benchmark suite (Table II). PrIM consists of
16 data-intensive workloads from various application domains
such as linear algebra, graph processing, neural networks, etc.
We verify uPIMulator’s functional correctness as well as its
performance correlation to real UPMEM-PIM hardware by
running each individual PrIM benchmark with 1/2/4/8/16/24
threads under various input data sizes, cross-validating both
uPIMulator and real UPMEM-PIM’s final output data as
well as its execution time. Among the 16 PrIM benchmarks,
uPIMulator was able to compile and simulate 13 workloads
as-is. However, the remaining 3 workloads (BFS, SpMV,
NW) had minor bugs or utilized undisclosed functions within
the UPMEM SDK, preventing its simulation and debugging
on uPIMulator, so we modified these three benchmarks to
provide the same functionality of the original implementation
while being executable on top of uPIMulator. As discussed in
Section III-A, the CPU↔DPU transfer (used for inter-DPU
communication) is modeled as a fixed bandwidth model, so
the frequency of inter-DPU communications can affect the
accuracy of uPIMulator’s simulated execution time. To sepa-
rately analyze the fidelity of uPIMulator’s DPU architecture
model and the effect CPU↔DPU communication model has
on system-level simulations, we separately report the validation
results of uPIMulator when running the PrIM benchmark suite
(1) with just a single DPU executing without any inter-DPU
communication and (2) with multiple DPUs with inter-DPU
communication. For the single DPU validation, we used 710
data points whose execution times are within the range of 500
ms, showing 98.4% correlation against UPMEM-PIM with a
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Fig. 6: Breakdown of DPU’s runtime into active (black) and idle (red, yellow, blue) cycles. When all the threads are idle, we categorize each
thread’s status based on the reason for its idleness, i.e., memory (red), revolver pipeline scheduling constraint (yellow), and the structural
hazard at the RF (blue).

mean absolute error (MAE) of 12.0%. Under the multi-DPU
validation, uPIMulator shows 83.6% correlation with MAE of
26.9% under 387 data points, with relatively larger absolute
errors observed when the inter-DPU communication time is
more pronounced.

D. Simulation Rate

Developing a detailed execution-driven simulator often
comes at the expense of increased simulation time. While
uPIMulator is not multi-threaded, it achieves an average
simulation rate of 3 KIPS (kilo-instructions-per-second), which
is on par with other popular execution driven simulators like
GPGPU-Sim [68]. Because of UPMEM’s current programming
model and how its communication/synchronization primitives
work (Section II-B), DPUs mostly operate independently as
a standalone processor, so we expect parallelizing uPIMula-
tor with multi-threading will lead to significant simulation
rate improvements. We leave the support of multi-threaded
uPIMulator implementation as future work.

IV. DEMYSTIFYING UPMEM-PIM WITH UPIMULATOR

This section utilize uPIMulator and the PrIM benchmark
suite [71] to demystify the internal runtime characteristics of
UPMEM-PIM, showcasing the applicability of uPIMulator
for architectural exploration. We first focus on simulating
PrIM under a single DPU setting in Section IV-A, identifying
its bottleneck in Section IV-B, and finally discussing multi-
DPU execution with strong scaling in Section IV-C. Table II
summarizes the PrIM benchmarks and its input data sizes
we explore in this paper. Due to space constraints, when
sweeping the number of threads that execute a given PrIM
benchmark (collected over 1/2/4/8/16/24 threads), we only
show the results with 1/4/16 threads for brevity.

A. Analyzing Runtime Performance

Figure 5 shows the compute and memory bandwidth
utilization as a function of the number of concurrent threads
instantiated (1/4/16 threads). With the exception of BS and
SpMV, PrIM benchmarks generally exhibit a compute-bound
behavior, having a relatively higher compute utilization than
DRAM bandwidth utilization. PrIM targets data-intensive
workloads that are traditionally categorized as memory-bound
under von-Neumann CPU/GPU architectures. As such, the
results in Figure 5 highlight the unique value proposition of
PIM vs. CPUs/GPUs, i.e., the performance bottleneck is now
shifted from the memory-bound regime to the compute-bound
territory. We observe similar performance results over real
UPMEM-PIM systems (prior work in [48] reports similar
observations), demonstrating the fidelity of our uPIMulator.

B. Identifying Bottlenecks

While the workloads in PrIM generally exhibit a compute-
bound behavior, the results in Figure 5 imply that there are
still some performance left on the table. Using uPIMulator,
we now root-cause the key bottlenecks in UPMEM-PIM’s
microarchitecture that cause such performance loss.

Latency breakdown. In Figure 6, we breakdown DPU’s
execution time into two categories: (1) the time when the thread
scheduler has one or more threads to issue into the pipeline
(black bar), and (2) when the scheduler is left idle with zero
threads to issue (all non-black bars) because all the threads
are either (2-a) waiting for a memory operation to be serviced,
(2-b) stalled due to the UPMEM’s revolver pipeline scheduling
constraint, or (2-c) stalled due to the structural hazard at the
odd/even register file (see Section II-A for revolver pipeline
& RF hazard). As the number of threads increases, the DPU
scheduler is provided with more thread-level parallelism to
populate its 14-stage pipeline, leading to larger fraction of the
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Fig. 7: Number of issuable threads by DPU scheduler each cycle,
binned per each category (left axis) and average number of issuable
threads (right axis) when executing with 16 threads.

runtime executing instructions. Nonetheless, several workloads
still suffer from non-negligible portion of its execution time
with idle cycles due to memory-side bottlenecks (BS, SpMV),
the structural hazards caused by the revolver pipeline and
odd/even RF (GEMV, HST-S, MLP, RED, TRNS, TS), or
both (BFS, NW, SCAN-RSS, SCAN-SSA, SEL, UNI). While
pipeline stalls due to memory operations are a fundamental
one that cannot be resolved easily through processor-side
optimizations, idle cycles originating from the revolver pipeline
scheduling constraint or odd/even RF hazard is an artifact of
UPMEM-PIM’s specific processor microarchitecture.

Thread-level parallelism (in space and time). To analyze
UPMEM-PIM’s performance bottleneck from a different
dimension, we measure the amount of thread-level parallelism
(TLP) available to the DPU scheduler in space (Figure 7) and
in time (Figure 8). In Figure 7, we categorize the number
of issuable threads available to the DPU scheduler to issue
into the pipeline by categorizing which bin it falls under. As
depicted, workloads suffering from sub-optimal performance
generally exhibit a higher fraction of its runtime with less
TLP (i.e., ‘0’ issuable threads in the left axis of Figure 7),
rendering the DPU to lose compute throughput (Figure 5).
While insightful, the analysis in Figure 7 cannot capture the
temporal variation in TLP or any phase behavior at runtime,
which can add another level of insights for architectural
exploration. uPIMulator enables the analysis of how TLP
fluctuates as execution progresses, as shown in Figure 8.
Although some workloads consistently exhibit low (BS) or
high (GEMV) TLP, others exhibit a mix of high-and-low
TLP behavior (SCAN-SSA), providing valuable insights to
understand the runtime dynamics of a workload.

Instruction mix. Finally, Figure 9 shows the instruction
mix of PrIM when executed with a 1/4/16 threaded single
DPU. uPIMulator uncovers a couple of interesting observations
as follows. First, with the exception of BFS, the number
of load/store instructions to the scratchpad memory (red)
generally outweighs the number of DMA instructions to
the per-bank DRAM (yellow). This is an artifact of the
scratchpad-centric programming model of UPMEM-PIM,
i.e., the register data operands can only be loaded from
the scratchpad and the programmer must manually initiate
DRAM→scratchpad copies to move the working set closer
to the processor. Consequently, to make sure the scratchpad
accesses do not cause a performance bottleneck, the DPU
microarchitecture is designed to guarantee a short, single cycle
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Fig. 8: Changes in the number of issueable threads (y-axis) in time
(x-axis) during the course of (a) BS, (b) GEMV, and (c) SCAN-SSA’s
execution. For clear visualization, the y-axis shows the number of
issuable threads averaged over 10,000 consecutive cycles (i.e., cycles
with zero issuable threads are not shown clearly as they are smoothed
out while averaging).

latency in handling load/store instructions. Second, although
the compute utilization of certain workloads like HST-L and
TRNS seemingly look decent (Figure 5), a significant portion
of its runtime is effectively wasted as it is busy waiting to
acquire locks (e.g., mutex_lock). This is illustrated by the
large fraction of the instructions executed in HST-L and TRNS
dedicated to synchronization instructions (e.g., acquire,
release in UPMEM ISA). Future UPMEM ISA extensions
that enable busy waiting threads to transition into sleep mode
and only resume execution when they are woken up can
potentially reduce such inefficiency.

C. Strong Scaling with Multi-DPUs

Figure 10 shows the latency breakdown when each PrIM
benchmark is parallelized across 1, 16, and 64 DPUs using
strong-scaling, i.e., benchmark’s working set remains identical,
so perfect strong-scaling would reduce latency proportional to
the number of DPUs. In general, the majority of PrIM’s per-
formance scales well when parallelized across multiple DPUs
because the communication size per DPU gets proportionally
reduced as a function of the DPUs concurrently executing.
BFS, BS, and NW, however, exhibit sub-linear scaling because
the communication size gets larger as the number of DPUs is
increased. It is also worth noting that for some benchmarks
like SCAN-RSS, SCAN-SSA, SEL, UNI, and VA, transferring
input (CPU→DPU) and output (DPU→CPU) data dominates
the total execution time. For these benchmarks, the latencies
to copy the input/output data over CPU↔DPU channel are
not being effectively hidden by overlapping it with DPU’s
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kernel execution time. Future versions of UPMEM SDK
which provide programming semantics that facilitate flexible
kernel partitioning and task scheduling (e.g., CUDA stream,
CUDA dynamic parallelism [56]) will likely enable further
performance improvements.

V. PATHFINDING FUTURE PIM ARCHITECTURES

In this section, we uncover some key limitations of the
current UPMEM-PIM system through a series of case studies
and demonstrate how uPIMulator can be utilized to explore
architectural support required for future PIM architectures to
become more performant, robust, and secure.

A. Case Study #1: UPMEM-PIM with SIMT Processing

The baseline UPMEM-PIM employs a scalar processor
leveraging thread-level parallelism to maximize performance.
Recent domain-specific PIMs [14], [19], on the other hand,
leverage data-level parallelism by employing vector processing
to boost their performance for key machine learning primitives
(e.g., matrix multiplication). We observe that UPMEM’s
SPMD programming model renders its hardware architecture
to similarly reap out performance benefits of data-parallel
execution by employing a SIMT (single-instruction-multiple-
thread) vector processor [56]. In this subsection, we augment
the baseline UPMEM-PIM as follows to analyze the perfor-
mance benefits of employing SIMT vector processing. First,
the processor pipeline is augmented with a vector register file
which an N -way vector unit reads (write) vector operands from
(to). Similar to the notion of “warps” in CUDA, we group
N consecutive tasklets as the (grouped) thread scheduling
granularity to the N -way vector unit which executes N scalar
instructions in lockstep for vector processing. Similar to SIMT
GPUs, a memory address coalescing operation [56] is applied
among the grouped N scalar load/store instructions which
helps maximize memory bandwidth utilization by minimizing
the effect of SIMT memory divergence [72], [73]. SIMT
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Fig. 11: (a) SIMT based DPU architecture modeled using uPIMulator,
(b) performance (right axis) achieved for GEMV. The max IPC of
Base and all SIMT designs are 1 and 16, respectively.

control divergence [73], [74], [75], [76], [77], [78], [79]
is handled dynamically at runtime using each individual
thread’s program counter values to only execute scalar threads
executing the same instruction over the vector lanes, masking
out inactive threads from execution as appropriate, similar to
how recent NVIDIA GPUs (post Volta GPU) handle SIMT
control divergence [80].

Figure 11 shows the performance achieved for GEMV,
a key primitive in machine learning which recent domain-
specific PIMs are optimized for. The figure first shows baseline
UPMEM-PIM (Base), which is additively augmented with 1)
16-way SIMT vector unit without memory address coalescing
(SIMT) and 2) with address coalescing (SIMT+AC). Both
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Fig. 12: Ablation study to explore UPMEM-PIM’s possible performance improvements when baseline DPU with 16 threads is additively
enhanced with data forwarding logic (D), unified RF with 2× read bandwidth to remove hazards at RF (R), 2-way superscalar in-order
pipeline (S), and doubling the operating frequency to 700 MHz (F).

of these SIMT design points have MRAM read bandwidth
identical to Base. Finally, another design point that scales
up MRAM read bandwidth by increasing DRAM operating
frequency by 4×/16× (SIMT+AC+4x/16x) is explored to
evaluate the upperbound performance with SIMT. As depicted,
augmenting UPMEM-PIM with a 16-way vector unit (SIMT)
provides a mere 2.6× speedup as performance is heavily
bottlenecked by MRAM read bandwidth. Adding the memory
coalescer (SIMT+AC) helps better utilize memory bandwidth
and provides an additional 1.9× speedup vs. SIMT (4.6× vs.
Base). Even with memory address coalescing (AC), however,
the memory-boundedness of SIMT execution persists with
SIMT+AC, leaving performance left on the table, one which
is only alleviated by the more aggressive design which scales
up MRAM bandwidth further with SIMT+AC+4x/16x.

Key takeaways: UPMEM-PIM’s SPMD programming
model makes its hardware architecture amenable to data-
parallel processing via SIMT vector execution. UPMEM-
PIM’s baseline memory system, however, is not sufficiently
provisioned to sustain the higher DRAM read bandwidth
requirements of vector execution, resulting in limited speedup
with a naively implemented SIMT PIM design. Properly
optimizing the PIM memory system to maximize bandwidth
utilization (e.g., memory address coalescing, higher DRAM
read bandwidth) will thus be crucial for future SIMT vector
based PIM designs to fully unlock the potential of SIMT.

B. Case Study #2: ILP-enhanced PIM Architectures

Today’s commercial PIM processors employ a simple, in-
order pipeline without any sophisticated microarchitectures
to extract ILP for higher performance (e.g., superscalar,
super-pipelining, . . .) [14], [15], [18], [55]. As discussed in
Figure 6, such a wimpy PIM processor design point leaves
significant performance left on the table, as conventionally
memory-bound workloads now fall under the compute-bound
regime with PIM (Section IV-A). We believe such design
decision was inevitable because current generation of PIM
processors are fabricated on a density-optimized technology
node (e.g., ≥20 nm DRAM technology for HBM-PIM and
UPMEM-PIM [15], [48]) posing several design constraints that
prevent advanced microarchitecture designs. That being said,
future PIM architectures with more flexibility in area, power,
and thermal budget can certainly consider relatively more

aggressive, performance-oriented design points with higher
operating frequency and ILP-enhancing microarchitectures.

In this case study, we use uPIMulator to see how much
performance can be unlocked in PrIM’s “compute-bound”
workload by augmenting UPMEM-PIM’s DPU with ILP
enhancing optimizations. Figure 12 summarizes our ablation
study on how much the baseline UPMEM-PIM’s performance
(denoted “Base”) can be improved by adding the following
features in an additive manner: (D) addressing the scheduling
constraint enforced with baseline revolver pipeline by enabling
data forwarding across instructions without data dependencies
within the same thread to execute, (R) merging the odd/even RF
into a single one but doubling the read bandwidth to eliminate
baseline RF’s structural hazard, (S) 2-way superscalar in-order
pipeline to better leverage parallelism, and finally (F) doubling
DPU’s operating frequency to 700 MHz. As depicted, the
addition of these microarchitecture techniques substantially
improve the performance of PrIM’s compute-bound workloads
(avg 2.7×, max 6.2× speedup) as it successfully addresses the
performance bottlenecks discussed in Figure 6. Interestingly,
with the addition of (D+R+S) features to baseline UPMEM-
PIM, several workloads become relatively more memory-
bound (i.e., larger fraction of Idle(Memory)) so the benefits
of higher operating frequency (F) are less pronounced for
these workloads (e.g., GEMV, VA). A fundamental reason
why baseline UPMEM-PIM cannot fully reap out the potential
of these ILP optimizations is because of the large performance
gap between WRAM bandwidth (2, 800 MB/sec) vs. MRAM-
to-WRAM bandwidth (600-700 MB/sec). More concretely, for
those workloads exhibiting low data locality, the performance
becomes relatively MRAM access bound and renders any op-
timizations that resolve the compute-boundness of a workload
ineffective (e.g., all data points exhibiting high fraction of
Idle(Memory) in Figure 12). Note that the existing 600-700
MB/sec of MRAM-to-WRAM bandwidth is not a fundamental
constraint because the maximum memory bandwidth that can
be reaped out at the MRAM (DRAM) “bank” level is much
higher (up to several GB/sec of bandwidth), i.e., the limited
600-700 MB/sec of MRAM bandwidth is simply a design point
pursued by UPMEM-PIM architects for this particular PIM
design. Using uPIMulator, we conduct a sensitivity study that
scales up the MRAM-to-WRAM read bandwidth and analyze
its performance implication for memory-bound workloads. As
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Fig. 13: Speedup achieved when scaling up the MRAM-to-WRAM bandwidth by four times (×1 to ×4). The evaluated design points are 1)
baseline UPMEM-as-is (Base) and 2) UPMEM with all the ILP optimizations (Base+(D+R+S+F)) discussed in Figure 12.

shown in Figure 13, the speedup is more pronounced with the
ILP-enhanced UPMEM-PIM designs (red lines) because they
exhibit more memory-boundedness as shown in Figure 12.
Contrarily, benefit of MRAM bandwidth scaling is minimal for
workloads still exhibiting compute-boundedness even under
ILP optimizations (HST-L, HST-S, MLP, TRNS, TS). Same
principle holds for the baseline UPMEM as-is (blue lines)
where the only noticeable speedup with MRAM scaling is
observed only for BS and SpMV which are already heavily
memory-bound even without ILP optimizations, the other
remaining compute-bound workloads achieving little speedup.

It is worth pointing out that, while the two case studies
discussed so far have quantified the performance merits of
both SIMT and superscalar execution in a PIM architecture,
the available power and area budget can limit how aggressively
SIMT or superscalar can be employed within PIM. Standalone
PIM systems like SK Hynix’s AiM [19], [81], which are
integrated as co-processors on top of a PCIe bus, have much
larger power and area budget than a DIMM-based PIM
solutions like UPMEM-PIM. Therefore, these standalone,
domain-specific PIM solutions which have more design
flexibility will more likely be prime candidates to embrace
SIMT or superscalar based PIM designs that require higher
design overheads.

Key takeaways: Many data-intensive workloads exhibit a
compute-bound behavior when executed with PIM. Enhancing
PIM’s computational throughput will therefore become much
more important in future PIM designs. Using uPIMulator, we
demonstrate the efficacy of various ILP-enhancing microar-
chitectural techniques for future PIM architectures, improving
the performance of several compute-bound PIM workloads.

C. Case Study #3: Multi-tenant Execution in PIM

Multi-tenancy is one of the most important features for
processors to provide for cloud deployment as it helps better
saturate the processor’s compute and memory resources, reduc-
ing its total cost of ownership. As such, current CPUs/GPUs
come with a variety of hardware/software features that
support multi-tenancy with performance isolation and security
guarantees (e.g., CPU cache partitioning [82], [83], NVIDIA’s
multi-instance GPU [84], etc. [85], [86]). Given UPMEM-
PIM’s abundant compute and memory throughput (e.g., an
aggregate compute and memory throughput of 0.896 TOPS
and 2.5 TB/sec of memory bandwidth in a 40 ranked UPMEM-
PIM system), having a proper multi-tenancy support will be

vital for future PIM architectures, especially when seeking for
industrial adoption by cloud vendors.

Unfortunately, our case study reveals that current com-
mercial PIM chips (whether it be UPMEM-PIM or domain-
specific PIMs [14], [15], [18], [19]) are not able to meet
the requirements of multi-tenancy, not just from a hard-
ware/software perspective, but also from its programming
model’s perspective. Due to space limitations, let us focus
our attention on two important conditions to be met for multi-
tenancy. First, co-located workloads should securely execute
without interfering with each other (i.e., “security” guarantees).
Second, co-located workloads must not be aware of the fact
that they are concurrently executing (i.e., “transparency” to
co-located applications). We discuss each of these challenges
below.

Security. One of the fundamental architectural supports that
is needed for secure execution is isolating the memory address
space of co-located applications using MMU’s address trans-
lation capability. Practically all commercial PIM systems [14],
[15], [18], [55] are designed without an MMU, a point we
emphasized in Section II-C with UPMEM-PIM’s physical
addressing based memory model. Note that the decision
regarding which granularity multi-tenancy should be employed
(e.g., coarse-grained per-DPU vs. fine-grained intra-DPU
multi-tenancy) presents interesting tradeoffs in terms of DPU
resource contention, virtualization overhead, etc. Such design
decision, however, does not obviate the need for the MMU
to isolate different tenants by translating virtual addresses.
Consider a design point where per-DPU multi-tenancy is
implemented, e.g., two different PIM programs (two tenants)
execute over non-overlapping groups of DPUs within the
same DIMM. If one of the tenants is a malicious attacker, the
malicious host-side CPU program can freely access the other
victim tenant’s DPU physical memory because current PIM
architectures employ (MMU-less) physical addressing when
accessing their DRAM banks. Therefore, co-locating multiple
workloads with address space isolation is fundamentally
impossible in MMU-less PIM architectures.

Aside from such security benefits, PIM chips with an MMU
can greatly enhance programmer productivity by virtualizing
the memory address space, i.e., they can separate the physical
allocation of data in PIM DRAM against its logical allocation
within the virtual address space. As discussed in Section II-B,
copying data from CPU to UPMEM-PIM’s DRAM (MRAM)
requires the programmer to painstakingly derive the physical
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location in DPU’s DRAM because UPMEM ISA is currently
based on physical addressing. Having a proper MMU support
will enable more flexible allocation of data across the physical
address space and can also provide “pointer-is-a-pointer”
semantics to enhance programmability [57], [87], [88], [89].

In this case study, we add a hardware MMU to UPMEM-
PIM, using our uPIMulator, and study its performance impli-
cations. Our MMU model employs a single page-table walker
(page size of 4 KB) backed with a single-level, 16-entry fully-
associative TLB. The page-tables are assumed to be stored in
DPU’s local DRAM bank and the access latency to the TLB
is assumed as a single DPU clock cycle. Aside from how a
PIM core (the DPU) handles address translation exceptions,
the interaction between a DPU and its MMU largely follows
that of a conventional CPU and its MMU. That is, in the
event that a DPU accesses memory, the MMU translates all
DRAM (MRAM)’s virtual address to its physical address by
leveraging the TLB or the page-table. For memory requests
that the MMU is not able to handle, however, an assistance
from the host CPU is required. This can occur, for example,
when a page fault occurs and an update to the page-table is
in need. Under such circumstances, the MMU writes the fault
information into a fault buffer, which can either be recognized
by the host CPU via a polling approach or an interrupt-based
approach. Under a polling approach, the host periodically polls
each DPU’s fault buffer to fulfill DPU’s service needs. If the
interrupt-based approach is to be employed, the MMU can
raise an interrupt-like signal via DDR4’s ALERT_N standard
protocol to interrupt and notify the host [90]. The host can
then recognize the existence of a page fault within the DPU
and handle it appropriately through a fault handler, updating
the DPU’s page-table before sending a resume signal. We
utilize such mechanism to translate all DRAM (MRAM)
accesses from its virtual address to its physical address and
measure its performance regression. Overall, PrIM experiences
an average performance loss of 0.8% (max 14.1%) by adding
address translations to DPU’s memory accesses. Such low
performance overhead is mainly attributed to UPMEM’s
scratchpad-centric memory model where data transfers across
DRAM↔scratchpad are orchestrated in coarse-grained chunks
(several KBs) over DMA instructions, exhibiting high spatial
locality and thus achieving high TLB hit rates. Furthermore,
DPU cores are clocked at 350 MHz frequency, rendering their
memory access latency to be in the range of several tens of
DPU clock cycles (unlike CPUs/GPUs which operate in the
GHz range and exhibit hundreds of CPU/GPU processor cycles
of memory latency), experiencing much less TLB miss penalty
than CPUs/GPUs. Overall, our case study demonstrates the
practicality of adding a functional MMU architecture to future
PIM technologies.

Transparency. We believe that multi-tenant execution under
the current UPMEM programming model is not practical
because of its scratchpad-centric programming model. Con-
sider a scenario where we seek to co-locate two PrIM
benchmarks, a memory-bound BS and a compute-bound
TS, which exhibit complementary resource requirements
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Fig. 14: Modeling a (a) scratchpad-centric and (b) cache-centric
UPMEM-PIM architecture in uPIMulator.

(as quantified in Figure 5) and are perhaps the perfect
candidates for multi-tenant execution. Unfortunately, the BS
and TS each require using the same scratchpad (WRAM)’s
heap via a memory allocation API call (mem_alloc() in
UPMEM SDK, e.g., line 35-37 in Figure 2(b)), which leads
to exceeding the total size of scratchpad (WRAM)’s heap size.
Consequently, co-locating both of these workloads requires
a non-trivial amount of changes to both co-located PrIM
programs, arguably an unacceptable requirement to enforce on
end-user applications. More crucially, it directly violates the
transparency requirement we previously discussed, rendering
a scratchpad-centric PIM programming model ill-suited for
multi-tenant execution.

Consequently, our analysis reveals that future PIM should
also employ on-demand caches, rather than singlehandedly
relying on scratchpads, to reap data locality benefits. PIM
programs running on top of an on-demand cache will be able
to leverage data locality in an opportunistic manner while not
having to change the program itself. In the next subsection, our
next case study details the feasibility of supporting on-demand
cache architectures for future PIM designs.

Key takeaways: Supporting multi-tenancy in PIM requires
security and transparency guarantees for the co-located
workloads. To enhance security in PIM architectures, we
augment uPIMulator with an MMU to quantify the perfor-
mance overheads of address translations and observe an
average 0.8% (max 14.1%) latency increase, demonstrating
the practicality of an MMU-enabled PIM design. Guaranteeing
transparency to co-located PIM workloads under UPMEM’s
current, scratchpad-centric programming model is a different
story, however, as it requires significant changes to the co-
located programs, a non-option to begin with for transparent
multi-tenant execution. Having an on-demand cache architec-
ture supported in PIM can bridge this gap, opening the door
for multi-tenant PIM architectures.

D. Case Study #4: On-demand Caches vs. Scratchpads

As discussed in Section II-B, UPMEM’s scratchpad-centric
programming model requires the programmer to explicitly
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Fig. 15: Performance of scratchpad-centric vs. cache-centric UPMEM-PIM (normalized to scratchpad-centric design). The cache-centric
UPMEM-PIM employs a cache line size of 64 bytes with load coalescing features enabled.

orchestrate the data movements across two distinct ad-
dress spaces, the DRAM space and scratchpad space (i.e.,
MRAM↔WRAM). This is because the DPU threads can only
load (store) data from (to) the scratchpad but cannot directly
address data mapped in the DRAM space. Using uPIMulator’s
custom-designed linker, this subsection conducts the cache vs.
scratchpad case study based on the following methodology.

1) The open-source UPMEM compiler does not limit the
data size the programmer can allocate and copy into
WRAM (scratchpad) space. Concretely, compiling an
UPMEM-PIM program to an assembly-level code whose
scratchpad allocation size exceeds the physical WRAM
capacity in itself does not cause any compilation errors.
During the linking process, however, if the WRAM data
allocation size exceeds the physical WRAM capacity, the
UPMEM linker generates a linking error as the hardware
UPMEM-PIM chip cannot execute the compiled codes
properly (see Section III-A for discussion on UPMEM
linker’s key properties).

2) Because uPIMulator’s linker is designed to flexibly relo-
cate and map a given address region to anywhere in the
physical address space, we take the following measures
to emulate an alternative, cache-centric UPMEM-PIM (a)
whose DPU threads can directly address data allocated
in DRAM without having to move data to the scratchpad
(i.e., there is no notion of scratchpad under this model),
while (b) also leveraging data locality by storing recently
accessed data within the cache.

3) uPIMulator emulates cache-centric UPMEM-PIM as
follows. First, the input data is allocated directly in
the WRAM (scratchpad) address space, unlike the
baseline UPMEM model whose input data must be
copied from MRAM (per-bank DRAM) to WRAM
using DMA instructions. The WRAM-allocated input
data, which is directly addressable by the DPU threads
using load/store instructions (as compiled by the original
UPMEM compiler), is then relocated by uPIMulator’s
linker to be mapped into a physical address region which
is backed by our cycle-level hardware performance
simulator, modeling it as a DDR4-2400 [53] compatible
DRAM device (Figure 14(b)). By adding a cycle-level
cache simulator in between the DPU processor and
the (DRAM-emulated) WRAM address space, the data
referenced by the load/store instructions will be stored
on-demand to this cache simulator, allowing us to
explore the cache vs. scratchpad design space.
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Fig. 16: Bytes read from DRAM (left axis, normalized) and end-to-
end execution time (right axis, normalized) for (a) BS and (b) UNI.

Figure 15 compares the performance of scratchpad vs. cache
in UPMEM-PIM for PrIM. The cache-centric UPMEM-PIM
employs an instruction cache and a data cache, each configured
as an 8-way set-associative cache with LRU replacement policy
and 24 KB and 64 KB capacity, respectively, identical to the
instruction memory (IRAM) and scratchpad (WRAM) space
provisioned under the baseline UPMEM-PIM. For certain
workloads, scratchpad performs better than caches (e.g., UNI)
while the opposite also holds true for others (e.g., BS). To
better understand the reasons behind such results, Figure 16
shows the number of bytes read from DRAM during the course
of BS and UNI’s execution. In general, we can observe that
the execution time is highly correlated with the number of
bytes read. For example, under the memory-bound BS, the
scratchpad based execution with 16 threads incurs 5.1× higher
memory read traffic than using caches. For BS, it is challenging
to statically estimate the right amount of data to upload
into the scratchpad, which results in a severe overfetching
of useless data and causing a performance bottleneck to
this memory-bound workload. Under such scenario, a purely
on-demand caching strategy performs much more favorably
in terms of fetching (relatively) the right amount of data
within the cache and maximizes data locality. In contrast,
workloads like UNI performs much better with scratchpads
where carefully orchestrating data movements perform better
than the opportunistic cache design. Determining which design
point is more favorable for PIM architectures is not the purpose
of this case study. Rather we seek to demonstrate the practical
benefits and feasibility of a cache-centric PIM architecture,
motivating future work in this research space.

Key takeaways: Similar to conventional CPUs/GPUs, an on-
demand cache design can do a better job in leveraging locality
for PIM when its memory access pattern cannot be optimally
determined at compile time, a scenario where scratchpad
based design points can perform poorly.
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E. Other Promising Research Directions

Aside from the case studies we discussed previously, we
believe that PIM with better inter-DPU synchronization prim-
itives, high-performance inter-DPU communications, robust
system software support for better programmability, and a
unified virtual memory across all DPUs are critical components
that require attention from PIM architects. We plan on
exploring these studies as future work.

VI. SIMULATOR LIMITATIONS AND FUTURE WORK

A. Power and Area Modeling for PIM

Similar to the early efforts on modeling cycle-level perfor-
mance of programmable GPUs [68], the current version of
uPIMulator primarily focuses on simulating the performance
aspects of UPMEM-PIM. There exists a rich set of prior work
focusing on estimating the power and area of CPUs [91], [92]
and GPUs [93], [94], [95] and integrating them with cycle-
level CPU/GPU performance model simulators. An important
future direction of uPIMulator is to develop a power and area
modeling framework targeting PIM and integrate them with
our UPMEM-PIM performance model. We leave it as future
work as it deserves a detailed exploration on its own.

B. Improving the Fidelity of Inter-DPU Communication

As discussed in Section III-C, using a simple bandwidth
model for CPU↔DPU communications renders uPIMulator
to exhibit relatively lower correlation with real UPMEM-PIM
system when the inter-DPU communication time is more
pronounced. A real UPMEM-PIM system implements such
communication operator by having the host CPU execute AVX
instructions, so improving the fidelity of uPIMulator’s inter-
DPU communication requires our simulation framework to
be tightly integrated with a detailed cycle-level CPU perfor-
mance model [96], [97], [98], [99], [100], [101]. Extending
uPIMulator to be integrated with high fidelity CPU simulators
is left as future work.

VII. RELATED WORK

The initial concept of PIM dates back to the 1970s [102]
with numerous follow-on works [2], [3], [4], [5]. With the
proliferation of today’s domain-specific architectures, there
exists a variety of PIM or near-memory processing studies [14],
[16], [18], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [103], [104], [105], [106], [107], [108], [109],
[110], [111], [112], [113], [114]. There are also several prior
works on PIM exploring compiler issues [8], [10], [115], data
coherency [11], [12], [13], [116], synchronization [117], QoS
aware runtime and scheduling for PIM [118], among many
others [119], [120], [121], [122], [123], [124], [125]. This
paper focuses on characterizing the first real-world general-
purpose PIM via our uPIMulator, pathfinding important
research directions for future PIMs. Below we summarize
other relevant works on characterizing real-world PIM and
PIM simulators.

Analysis on real-world PIM devices. There have been
several recent works that characterize commercial PIM tech-
nologies [14], [48], [49], [52], [71], [126], [127], [128], [129],
[130], [131]. Gómez-Luna et al. [48], [71] developed the PrIM
benchmark suite and conducted a workload characterization
on UPMEM-PIM. There are also several works exploring the
applicability of UPMEM-PIM for accelerating dense/sparse
linear algebra, databases, data analytics, graph processing,
bioinformatics, image processing, compression, simulation,
encryption, and etc [48], [49], [52], [71], [126], [127], [130],
[131], with more recent work exploring UPMEM-PIM’s
applicability for accelerating machine learning [129]. Lee
et al. [14] discusses the hardware/software architecture for
Samsung’s HBM-PIM architecture. There is also a recent
work by Liu et al. [16] which explores the applicability of
Samsung’s near-memory processor AxDIMM for accelerating
recommendation models.

Simulators for PIM. PIMSim [132] supports a configurable
PIM logic modeling, memory organization, interconnection,
and provides co-simulation with other simulation frameworks.
Ramulator-PIM [66], [133], [134] integrates ZSim [97] and
Ramulator [66] to simulate PIM-enabled memory. MPU-
Sim [135] models a near-bank processing architecture which
supports NVIDIA CUDA’s SIMT programming model [56].
MultiPIM [136] enables the simulation of PIM systems based
on 3D stacked memory with features to explore multi-stack
interconnects with virtual memory support. Compared to these
existing PIM simulators, the key novelties of uPIMulator
are as follows. First, the frontend of our software compila-
tion toolchain employs a custom-designed linker targeting
industry’s first general-purpose PIM ISA, which opens up a
wide range of hardware/software architectural explorations.
Existing PIM simulators primarily rely on conventional
software frontends (e.g., x86 in ZSim+Ramulator), making it
challenging to change the way the program and data binaries
are mapped over the memory address space, a feature critical
in some of the case studies we conducted in Section V. Second,
uPIMulator’s backend simulator models a real-world per-bank
PIM architecture, widely employed and commercialized in
both domain-specific [14], [19] and general-purpose PIM
designs, unlike popular PIM simulators like MultiPIM or
ZSim+Ramulator [66], [133], [134], [136] which assume the
PIM cores are placed in the logic layer of a 3D stacked
memory (e.g., HMC). Table III summarizes key differences
between uPIMulator and other PIM simulators.

VIII. CONCLUSION

In this work, we present a novel simulation framework
named uPIMulator which targets UPMEM’s commercial
general-purpose PIM architecture. Using uPIMulator, we
present our detailed characterization on wide range of real
PIM programs and showcase uPIMulator’s applicability for
computer architecture research. Furthermore, we identify
some important shortcomings of the current UPMEM-PIM
system through our case studies and propose some critical
research areas that require further investigation from computer
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TABLE III: Comparison of uPIMulator vs. other PIM simulators.

PIMSim
[132]

Ramulator
-PIM [133]

MultiPIM
[136]

MPU-Sim
[135] uPIMulator

ISA x86, ARM,
SPARC x86 x86 PTX UPMEM

Implementation In-house Zsim
+ Ramulator

Zsim
+ Ramulator
+ BookSim

In-house In-house

Frontend
(Trace vs. Execution) Trace Trace

+ Execution
Trace

+ Execution Execution Execution

ISA & Linker
Customization X X X X O

Validation Against
Real PIM Hardware X X X X O

Multi-threaded
Simulation X O O X X

Lines of Code
(LoC) 30 K 35 K 92 K 12 K 52 K

Simulation Rate
(KIPS) N/A N/A N/A N/A 3

architects (e.g., architectural support for vector processing, ILP-
enhancing microarchitectures, multi-tenancy, and on-demand
caching), which we believe will be vital for future PIM
architectures to evolve into first class computing citizens.
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