
The University of Manchester Research

A smart city dashboard for combining and analysing multi-
source data streams
DOI:
10.1109/HPCC/SmartCity/DSS.2018.00226

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Gledson, A., Paton, N., & Ba Dhafari, T. (2019). A smart city dashboard for combining and analysing multi-source
data streams. In 20th IEEE International Conference on High Performance Computing and Communications; 16th
IEEE International Conference on Smart City; 4th IEEE International Conference on Data Science and Systems,
HPCC/SmartCity/DSS 2018, Exeter, United Kingdom, June 28-30, 2018.
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00226
Published in:
20th IEEE International Conference on High Performance Computing and Communications; 16th IEEE
International Conference on Smart City; 4th IEEE International Conference on Data Science and Systems,
HPCC/SmartCity/DSS 2018, Exeter, United Kingdom, June 28-30, 2018.
Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:27. Apr. 2024

https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00226
https://research.manchester.ac.uk/en/publications/3b3ac971-54f1-404d-8928-ad45211bdc59
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00226


A smart city dashboard for combining and
analysing multi-source data streams

Ann Gledson, Thamer Ba Dhafari, Norman Paton and John Keane
School of Computer Science, University of Manchester, UK

Email: {first-name}.{last-name}@manchester.ac.uk

Abstract—Smart city projects are making available numerous,
diverse, potentially valuable data streams. However, it is cumber-
some and laborious for domain experts to identify, analyse and
inter-relate such streams. In this paper we describe a system that
is designed to support these users to obtain an understanding of
key features of individual streams, and to undertake a variety of
analyses that inter-relate multiple streams. Three case studies are
presented, showing the use of the system to process live car-park,
weather, building energy consumption and bicycle journey data
from the CityVerve Smart City project in Manchester.

I. INTRODUCTION

Smart city projects collect dynamic data with a view to
supporting service delivery, providing timely information to
users, and guiding longer-term decision making. Such projects
utilise real-time, streamed Internet of Things (IoT) data from
a variety of domains, such as healthcare, air quality and trans-
port. To address these challenges, [1] introduce the sensing as
a service model comprising four layers: sensors and sensor
owners, sensor publishers, extended service providers and
sensor data consumers. The dashboard we describe provides
an extended service, allowing sensor data consumers to easily
view, manipulate and analyse the published data streams.

In the Smart City context, the sensor owners and sensor
publishers are many and largely independent [2], resulting
in non-standardised and highly heterogeneous data. Solutions
mainly involve either proactive and collaborative adherence to
pre-defined data description standards, as suggested in [3][1],
or retroactive development of individual tools to integrate
such datasets [4][5][6]. The dashboard presented in this work
takes advantage of the available Hypercat standard [7][8]
for searching data hubs, but adopts the latter approach for
fetching data points, as each hub exposes these datapoints
in a different format. In addition, IoT data is mobile and
dynamic, both spatially and temporally [9], and the analysis of
such information demands dynamic and flexible approaches;
in contrast to traditional store-then-process [10] solutions [3].
Such on-the-fly [10] data processing allows consumers to
explore [11][12], manipulate and integrate [9] sensed data as
as it becomes available, allowing the communication of critical
change rather than the communication of full history [13].

Potential users of smart city data are numerous and diverse
[14][15]; they include domain experts such as town plan-
ners [16][10][17] and environment/healthcare informaticians
[18][9], as well as stakeholders living or working in the city
[16]; each views the data from their own experiences and

perspective. Enabling a diverse user set to explore multi-
modal cross-thematic data increases the potential to find useful
patterns to meet a city’s needs. To support users in traversing
this complex information space, smart city projects usually
provide one of three approaches:

1) Data dashboards typically bring together several mash-
ups to provide custom visualisations of predefined data
sets (e.g. www.cityofboston.gov/mayorsdashboard and
www.dublindashboard.ie) [19][20][21]. Such dashboards
are useful, but the list of datasets provided is static and
the facilities for the user to explore, process and anal-
yse additional datasets is limited. For example, Dublin
City’s dashboard presents a range of real-time data such
as current weather, drive times and house prices, as well
as static documents such as planning applications and
city maps. The data follows a typical web-site structure,
by which the user can select predefined menu/list items
to drill down to the lowest level required.

2) Data Stream Management Systems (DSMS) support con-
tinuous and ad hoc queries over multiple data streams
[22][23][24][25]. These systems are often for private
use within individual institutions rather than providing
open data access. Furthermore, the required continuous
queries can range from simple analysis tasks, for ex-
ample computing aggregate operations over windows
to complex analyses requiring a significant level of
computing skills. For such tasks a user is likely to have
to resort to transferring the data to a data analytics
software package, such as Python Pandas or R.

3) Data Extraction and datastream analytics: Data extrac-
tion tools allow exploration and extraction of published
online data; for example [26] describe a tool for real-
time extraction of real-world data of use for research
and development; while [5] present an open data search
system which supports ad hoc, interactive discovery of
connections or linkages between datasets. These systems
output files of tabular data that the user can store and
analyse in a static manner, using external data analysis
tools. Much work has also been done on datastream
analytics, including pre-processing [27], analysis [9]
[28] and on data mining IoT data specifically [29] [17].

The cross-theme dashboard described here, developed as part
of the CityVerve Smart City project in Manchester, synthesizes
aspects of all the above approaches, creating a single tool to



support interactive data exploration, extraction, visualisation,
transformation and ad hoc analysis of publicly available IoT
streamed data. It amalgamates independently published data
sets from different domains and provides insights into potential
utility of city data, with relatively modest levels of effort.

To illustrate this functionality, we introduce three analysis
case studies:

1) an evaluation of the hypothesis that rainfall affects the
decision to drive into the city centre on work-days;

2) a comparison of weather data along with energy usage
in two University of Manchester buildings; and

3) an overview of city centre cycling, using data from a
live bicycle trial (https://seesense.cc/pages/manchester)
to obtain an overview of bicycle usage over a 25 day
period and at different hours of day.

These tasks will include searches for the relevant Manchester
city centre data streams, their manipulation and the analysis
of the processed data using correlation, time series analysis
and hierarchical clustering.

II. TECHNICAL CONTEXT

A. Overview of the CityVerve Project
The CityVerve project is intended to combine the latest IoT

technologies to demonstrate the capability of IoT applications
and address barriers to deploying smart cities, such as city
governance, user trust and adoption, interoperability and scal-
ability (http://www.cityverve.org.uk). The project covers four
areas: transport and travel, health and social care, energy and
the environment, and culture and the public realm. The data
architecture is based on a centralised platform of platforms
(PoP), a technology layer that provides a secure catalogue of
available data, and which has been developed to accommodate
the numerous and evolving data publishers in the city. The
PoP is designed to act as a single point of access, using data
virtualisation to provide seamless access to the underlying data
hubs: the BT CityVerve Data Hub (transport and environment
data)[8] (https://portal.bt-hypercat.com) , the Asset Mapping
hub (https://www.assetmapping.com) (data relating to physical
assets belonging to buildings and estates) and the DataWell
hub (anonymised health data). These hubs incorporate the
results from both new and existing sensing capabilities from
multiple data providers.

A key component of the architecture is a catalogue that
follows the Hypercat specification [30]; this allows a data
consumer to discover information about sensor data assets over
the web. Similarly, the sensor data streams are exposed using
publicly available and RESTful APIs that provide easy access
for application developers. Adherence to such specifications
has facilitated a dashboard design allowing searching of any
external (non-CityVerve) hub catalogue that follows this Hy-
percat specification and the fetching of datapoints belonging to
each data feed requires only minor information about the hubs
required (RESTful) URI format. For example, a further exter-
nal hub from the EU Triangulum project (http://triangulum-
project.eu) has been seamlessly assimilated into the dashboard
and the case studies include data from this external hub.

Fig. 1. Dashboard Architecture.

B. Dashboard Architecture

The CityVerve data dashboard architecture is illustrated in
Figure 1; we summarize its key components.

The middleware layer links the dashboard and the data hubs.
It comprises four main components:

1) Stream Search: the Hypercat search component
searches the data hub catalogues given a single curl
(https://curl.haxx.se) query string following the Hypercat
specification [7] and a list of identifiers for Hypercat
compliant hubs. Non-PoP hub catalogues are searched
using BT’s on-line API (http://search.bt-hypercat.com).

2) Data call/fetch: the data hub Call/Fetch library incor-
porates the connectors required to build request URIs
for fetching data-points from the restful data hub APIs
and to handle the results; the current hubs available are
the CityVerve PoP hub, the BT data hub[8] and the
Triangulum project hub.

3) Polling and Storage: the Restful API poller component
uses the above library to continually poll the selected
data streams; the returned data is stored in an InfluxDb
(https://docs.influxdata.com) time-series database (DB);
InfluxDb supports: (i) fast ingestion of time series data;
(ii) the addition of extra stream information using index-
able data tags (such as the URI of the original stream
and geographical location data); and (iii) an SQL-like
Continuous Query (CQ) language allowing filtering and
aggregation of the raw data-points.

4) Query Processor: converts user selected data manipula-



tion requests into the necessary continuous queries and
the resulting streams are stored in the InfluxDb.

Building on the middleware layer, the dashboard component
is a web application built using the Django framework. The
GUI consists of separate web-pages for the search, manipula-
tion and analysis of data. The dashboard also contains a user
details component that stores data in an SQLight DBMS.

To explain the Hypercat search process, we firstly define
data feeds and data streams along with how these are expressed
in the Hypercat data catalogue [7][30]. A data feed is a
collection of one or more data streams. For example, a
sensor attached to a lamppost and measuring both oxygen
and nitrogen dioxide or a road traffic incident reporting
mechanism are examples of data feeds. Each will have the
property hasSensorStream and may have further properties
such as latitude and longitude. A data stream is a series
of individual measurements, such as nitrogen oxide, oxygen
or accident severity. It will have the belongsToSensorFeed
metadata property and may have further properties such as
minValue, maxValue, location and unitSymbol (an example
value being degrees Celsius). These data streams represent
the individual values in our dashboard; feed metadata are used
only to obtain higher-level information about the streams, such
as the type of streams held or a location. A Hypercat catalogue
includes a list of all feeds and streams and their lowest level
descriptors are expressed in relation:value pairs such as:

{"rel":"urn:X-hypercat:rels:hasDescription:en",
"val":"Imperial sensor data."}

The Hypercat specification also includes an expressive query
language that combines sets of operands with any number
of nested UNION and INTERSECTION operators and each
operand (or query) is also specified using the above relation-
value structure. For example:

"intersection": [
{"query": "?rel=urn:X-bt:rels:feedTag"},
{"query": "?val=Air Quality"}]

would return all feeds and streams with a relation feedTag
which has the value of Air Quality. Geographical (bounding
box) searches are also provided, for example:

{"query": "?geobound-minlat=53.46
&geobound-maxlat=53.48
&geobound-minlong=-2.26
&geobound-maxlong=-2.22"}

would return feeds within the minimum and maximum latitude
and longitudes shown. The dashboards functionality is to
expose the middleware and Hypercat query functionality to the
user in an accessible, graphical format, as illustrated below.

III. DASHBOARD FUNCTIONALITY

As highlighted in Section 1, to make use of smart city
data, users need to be able to easily manipulate streamed
data that is dynamic, heterogeneous (from diverse sources and

representing many types of information) and non-standardised.
In the previous section we presented the middleware layer that
contributes towards handling these requirements so that we
are able to present a uniform set of streams on the dashboard
that can be continually updated and imported into a database.
The challenge remains to design a dashboard application that
allows users to view many streams, select a subset of those
for polling and to provide the key data manipulation and data
analysis/visualisation techniques in an accessible manner.

A. Stream states

Given the search mechanism, the polling process, the stor-
age of streams in InfluxDB and the ability to create derived
streams, each stream is in one of 4 states:

1) Unused: neither currently being polled nor held in
InfluxDB;

2) Previous: previously selected by the user and still held
in the database for persistence reasons;

3) Live: currently being polled and stored in the database;
4) Derived: currently in the database and resulting from

pre-processing steps. For example precipitation aggre-
gated by hour and taking the mean value.

B. Searching for Streams

Fig. 2. Search/Fetch page: geographical search

Once the user has logged in and selected the data hubs,
they are first shown the search web-page, illustrated in Figure
2. The dashboard search page allows the user to uniformly
explore the data streams contained in each hub.

The Hypercat search mechanisms described in section II-B
are made available on this web-page with a tab for each
search type. Search mechanisms currently supported are: a)
tag names, b) data types (relation-value pairs, including lexical
searching), and c) geographical areas. While browsing the
search results, as illustrated in Figure 3, users can check
that potentially useful streams are functioning properly by
displaying a chart of the last 12-24hrs results. To select a



stream for manipulation and/or analysis, the user provides their
own unique stream name and then clicks on the button with a
lightning bolt symbol which will make it live and add it to the
database streams list, viewed in a separate tab (Figure 4). All
streams in this list are either live, previous or derived. Each
item in the Database Streams list also includes a check-box,
so that the user can select streams as input to the following
3 options, (as shown in Figure 4): (i) data manipulation; (ii)
data analysis; and (iii) data download (to save to a local file).

Fig. 3. Search/Fetch page: search results list with expanded stream item

Fig. 4. Search/Fetch page: database streams list (no items expanded)

C. Data manipulation

Sensor data manifests features that make data analysis more
challenging, such as missing data, noise, and the level of data
heterogeneity. When visualising and/or integrating multiple
data streams, the user needs to be able, for example, to
replace missing data points, or to make different data sets more
comparable using techniques such as normalisation. Feature
subset selection might also be used to remove irrelevant

Fig. 5. Data manipulation page: aggregation sub-tab (in transformation tab)

and redundant features or to reduce data dimensionality; the
dashboard is designed to eventually cover each of the main
data pre-processing steps in [27]. Once the user has selected
streams and clicked the Manipulate button on the Database
streams tab (Figure 4), a new data manipulation web page
opens (Figure 5). This contains a Selected Streams tab which
displays the selected stream(s) data as recorded in InfluxDB;
a Filtering tab for selecting instances (Figure 6) and a further
four tabs for each type of data manipulation. Each tab contains
a sub-tab for each available pre-processing technique and these
contain the available options. Once the selected techniques
and parameters have been input, the user clicks the save
button, the manipulation query parameters are sent to the query
processor, continuously run against the respective streams and
saved as derived streams in InfluxDB. The query processor
uses InfluxDB’s inbuilt CQ mechanism where possible, and
supplements this with further query functionality where pre-
processing techniques [27] are not implemented.

Fig. 6. Data manipulation page: filtering tab

The manipulation techniques currently available are:
1) Filtering: the selection of instances using criteria such as

dates, types of day (bank holidays for example) (Figure
6) and geographical location ;

2) Cleaning:
a) Missing values: either ignoring them or calculating

the mean of existing values to use as substitutes;
b) Outlier smoothing: allows binning/clustering meth-

ods to detect and find replacements for outliers.
3) Transformation:



a) Normalisation: adjusting the scale of a stream’s
value range, to match the ranges of others;

b) Aggregation: abstracts to a higher level view of the
data to improve analysis results. This is done by
grouping the values of multiple datapoints into a
single, more useful value, for example grouping a
car park’s used spaces values into hourly groups
and taking the mean of each group.

4) Discretisation: partitions values that lie on a continuous
scale, into nominal attributes or intervals; e.g., convert-
ing temperature values into low, medium and high.

Streams may be subject to various state changes along a
pre-processing pathway and to allow this, the derived streams
held in InfluxDB are made available in the database streams
list (Figure 4) for further manipulation (or deletion).

D. Analysing data streams

To show how users can study and explore the streams to see
whether the data contains interesting patterns, a set of typical
analysis and visualisation methods have been implemented.
The dashboard allows users to analyse individual streams
and/or multiple streams and combining both options allows
the users to view and compare several streams. The analysis
and visualisation techniques currently available are:

1) Time series analysis: The dashboard allows the user to
conduct simple time series analysis, useful for modeling
the observations over time to look for trends, seasonality
and other cyclic patterns and allowing the prediction of
future values. These observed patterns might be the end
goal for the analyst, or a step in a higher level methodol-
ogy (such as the Box-Jenkins methodology [31]) where
these patterns need to be accounted for, before finding
further models to explain any remaining randomness
in the data. The dashboard allows the observation of
several time series at once.
Visualisations: The line graph and scatter plots are
simple ways to display time series data, with the y-
axis value representing each data value and the x-axis
representing time.

2) Correlation analysis: allows comparison of pairs of vari-
ables to search for the strength of relationship between
the two (for example between precipitation and car
park use). Discovering how one stream correlates with
another can give users an idea of certain associations.
Although this technique only allows comparison of two
streams at once, if correlation matrix visualisation is
used, a set of correlation results between a list of stream
pairs can be viewed and compared.
Visualisations: Correlation results between a single pair
of streams are displayed in a table with the correlation
values. Scatter plots are also used in the dashboard, with
an axis for each variable and a least squares regression
line showing the most likely correlation pattern by
drawing the straight line with the least distance from
each of the datapoints in the plot (as shown in Figure

Fig. 7. Data analysis page: scatter plot of rainfall and a car park

7). The correlation matrix (Figure 8) uses a heat map
display to allow the user to visualise many correlation
results at one time.

3) Hierarchical clustering: This method involves the divid-
ing of instances into a hierarchy of clusters based on a
set of features. In the hierarchy, each node represents a
cluster of the datapoints. Hierarchical clustering does
not require the number of clusters as an input, but
a termination condition should be defined to identify
when the merge process should be finished. Applying
clustering on time-series data, where the clustering is
based on stream features such as time-periods and/or
locations, has the potential to identify similar patterns
occurring at multiple times [32]. This technique allows
observation of two or more streams at once.
Visualisations: To visualise the resulting clusters we
display a dendrogram with heat map, in which a colour
bar is provided to represent the range of values assigned
to each cluster.

To perform data analysis, the user selects the desired streams
from the database streams tab and clicks the Analyse button
(Figure 4). A data analysis web page opens (Figure 7),
containing a Selected Streams tab which displays the selected
stream(s) data as recorded in InfluxDB and a Methods tab
which contains sub-tabs for the available analysis methods.

IV. CASE STUDIES

A. Precipitation and car park use

Does the early morning rainfall affect commuters decision
to drive to work? Our first case study illustrates the search
and fetch process by demonstrating the search for streams
relating to city centre car parks and rainfall. To obtain these
the user specifies tag names, such as car parks, weather and



precipitation rate, along with a geographical area covering
the city centre (Figure 2). When the Results tab is clicked, the
application searches for and returns matching items on that
tab (Figure 3), in this case a selection of city centre car park
and weather streams. The user browses this list and for each
stream that they wish to analyse, they give it a unique name
and then click on the button with the lightening bolt symbol
for that stream, which adds it to the Data Streams list (Figure
4) and puts it into the live state (see III-A). The longer the
web-page is left open, with the streams in the live state, the
more data is collected from hubs and stored in InfluxDB.

To pre-process the datastreams, the user firstly browses the
Database Streams list and selects the precipitation stream.
They click on the Manipulate button to open a Data Ma-
nipulation web-page for this stream and select the required
pre-processing steps and parameters. The user clicks the save
button and the required pre-processing methods are applied to
that stream and it is saved as a derived stream. This is repeated
for each car park free spaces data sets. The pre-processing
steps required for this case study are:

1) data cleaning: in the case study, the required cleaning
step is to check for missing values. To do this, the user
can browse all datapoints stored in InfluxDB by clicking
on the Selected Streams sub-tab shown in Figure 5, and
assess whether there is a need to process them. In this
case they decide to ignore all missing values and select
that option on the Missing Values sub-tab.

2) filtering: as the hypothesis relates to citizens’ decisions
to drive into the city during the mornings, the user needs
to select only rainfall data instances collected during
weekday mornings, between 6am and 10am. In addition
the user is only interested in data for working days, so
both precipitation and car park streams are filtered to
select only business/working days. The user selects the
Filtering tab (Figure 6) to perform these selections.

3) data reduction The required data reduction steps are
aggregation (Figure 5) to obtain the average rainfall for
each day and the minimum car-parking spaces that were
available per day, per car park. Generalisation is then
used to categorise the values into low, medium and high.

In this case study, the user would like to compare the pre-
processed rainfall and car-park spaces using scatter-plot visu-
alisations and run further data analysis using correlation tables.
In Figure 4 they have selected their newly created derived
streams and then clicked on the Analysis button, opening the
corresponding web-page. In Figure 7 our user has selected
Scatter. One of the pre-processed car park streams and the
preprocessed precipitation stream (both derived) are selected
and the scatter plot with regression line option is checked. The
result shows that an inverse correlation exists between these
two streams: when precipitation is high, the number of free car
park spaces is lower, with a correlation of -0.46; this moderate
correlation might be deemed worthy of further investigation.
The user might then decide to look at correlations between all
variables, so they would check the correlation matrix box; the

Fig. 8. Data analysis page: correlations sub-tab

output from running this analysis is illustrated in Figure 8.

B. Weather and building energy consumption

Does weather affect the energy consumption of University
of Manchester buildings? In this case study, the user wishes
to check the proportional changes in energy consumption in
University of Manchester buildings as the external temperature
changes. As in the previous case study, the search and fetch
web page is used to search for relevant streams, in this case
relating to buildings energy data and temperature. To obtain
these the user specifies tag names, such as building, energy,
University of Manchester and temperature. The user decides
to compare the CO2 electricity consumption of an old and a
new building, and they choose the Stopford building (1972)
and the newer Alan Turing building (2007). These are added to
the Data Streams list along with a temperature stream (Figure
4), therefore placing each one into the live state.

The user selects the required streams from the Database
Streams list and clicks on the Manipulate button to open a
Data Manipulation web-page for these streams and select the
required pre-processing steps and parameters.

The pre-processing steps required for this case study are:

1) data cleaning: the Stopford Buildng electricity con-
sumption stream is found to have a large proportion of
missing values, so the Cleaning and then Missing Values
tabs are selected and Use mean option is selected, which
results in the filling in of the missing values using the
mean value of the dataset for each 24 hours.

2) transformation The required transformation steps are
normalisation and aggregation (Figure 5). As the value
ranges in all three selected streams differ greatly from
one another, and the user is only interested in propor-
tional changes, the values of each dataset are normalised
to lie between zero and one. The streams are also
aggregated to contain only the maximum value per day,
thus showing a more generalised view of the data.



Fig. 9. Data analysis page: time series sub-tab

Again, the user clicks the save button, and the required pre-
processing methods are applied to these streams and they are
saved as a derived streams.

The user would like to run a time series analysis/visualisa-
tion of this data. They select the relevant derived streams and
then clicked on the Analysis button, opening the corresponding
web-page. In Figure 9 our user has selected the Time Series
sub-tab of the Method tab. All three streams are selected. The
resulting visualisation gives the user a general idea of how the
energy consumption changes as the temperature changes.

C. Bicycle trial results: show usage at different days and times

Use See.Senses bicycle data to obtain an overview of bicycle
usage at different times of day. The user wishes to view live
crowd-sourced data from a bicycle usage trial run by BT and
See.Sense. The trial employs 180 volunteer cyclists who track
their movements around the city centre using a smart phone
application and the cyclist-count per hour data-stream can be
used to measure the level of cycle usage.

Once the user has searched for See.Sense cycling data
streams, they select the required cyclist-count stream from the
Database Streams list, click on the Manipulate button to open
a Data Manipulation web-page for this stream, and select the
required pre-processing steps and parameters.

The only pre-processing step required for this case study is
data cleaning. From observing the raw data in the Database
Streams list, it can be seen that very few values are missing,
and as the user only requires a general overview of the data,
they choose to ignore these values. Again, the user clicks the
save button, and the required pre-processing method is applied
to these streams and the result is saved as a derived stream.

To obtain an overview of cycling patterns by day and hour,
the user runs a hierarchical clustering analysis of this data.
For this case study the method involves clustering based on
the count of cyclists per hour. The y-axis represents clustering

Fig. 10. Data analysis page: hierarchical clustering sub-tab

of hours of the day (0-23) and the x-axis displays the clustering
based on the included days (26 days from 26/02/2018 to
23/03/2018). The user is able to identify similar patterns
occurring at multiple times, and the resulting dendrogram with
heatmap shows the expected patterns for hours of the day, with
the rush-hour times from 7 to 10 and from 17 to 19 having
the highest counts. This visualisation also shows that cycling
usage is extremely low on several days, and upon further
checking these are found to coincide with known periods
of freezing temperatures and snowfall. It can also be seen
that although counts are generally fewer during weekends, the
hourly patterns do not differ much.

V. CONCLUSION

We present a smart city dashboard to allow interactive
discovery, transformation, integration and analysis of data.
This enables stakeholders (town planners, data scientists and
those who live and work in the city) to obtain insights of
potential utility with modest levels of effort. We illustrate this
by three case studies presenting user interaction with the dash-
board to test hypotheses such as does rainfall affects people’s
decision to drive into the city centre on work days. These



show how the system brings together the above techniques
to establish whether correlations exist between data sets from
multiple themes. The CityVerve data dashboard allows greater
flexibility than typical city dashboards, as the user can explore
all published city datastreams on the selected hubs and choose
from a combination of pre-processing and analysis methods to
manipulate/visualise the datasets. In contrast, existing smart
city data dashboards are designed to allow the user to browse
a preset list of data sources, built in to the dashboard, to
inform specific city tasks such as garbage collection or local
authority spending. Similarly, the analysis methods used in
these applications are hard-wired and bespoke, presenting
results and visualisations to the user to answer specific, pre-
defined questions. Whilst custom-made city dashboards pro-
vide a valuable means to allow non-technical domain experts
to navigate the complex smart city information space, we
present a more flexible approach to allow both easy exploration
of city data streams and further experimentation with a variety
of pre-processing and analysis methods.

In future work, the dashboard will be advanced to accom-
modate data manipulation tasks such as advanced data dis-
cretisation methods; data analysis methods will be expanded
to include further data analytic tasks shown to be useful
for time-series data such as classification, rule discovery and
novelty detection. In addition, to make the research repro-
ducible, the software will soon be made publicly available
(http://doi.org/10.5281/zenodo.1253279).

ACKNOWLEDGMENT

The authors acknowledge support from the Innovate UK
CityVerve project 102561; we also wish to thank all colleagues
involved in the project consortium.

REFERENCES

[1] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Transactions on Emerging Telecommunications Technologies, vol. 25,
no. 1, pp. 81–93, 2014.

[2] E. Al Nuaimi, H. Al Neyadi, N. Mohamed, and J. Al-Jaroodi, “Appli-
cations of big data to smart cities.” Journal of Internet Services and
Applications, vol. 6, no. 1, p. 25, 2015.

[3] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[4] S. S. Husain, A. Kalinin, A. Truong, and I. D. Dinov, “Socr data
dashboard: an integrated big data archive mashing medicare, labor,
census and econometric information,” Journal of big data, vol. 2, no. 1,
p. 13, 2015.

[5] E. Zhu, K. Q. Pu, F. Nargesian, and R. J. Miller, “Interactive navigation
of open data linkages,” Proceedings of the VLDB Endowment, vol. 10,
no. 12, pp. 1837–1840, 2017.

[6] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho, “Urban planning and
building smart cities based on the internet of things using big data
analytics,” Computer Networks, vol. 101, pp. 63–80, 2016.

[7] T. Jaffey, J. Davies, and P. Beart, “Hypercat 3.00 specification,” Hyper-
cat Limited, 2016.

[8] M. d’Aquin, J. Davies, and E. Motta, “Smart cities’ data: Challenges
and opportunities for semantic technologies,” IEEE Internet Computing,
vol. 19, no. 6, pp. 66–70, 2015.

[9] G. Pan, G. Qi, W. Zhang, S. Li, Z. Wu, and L. T. Yang, “Trace analysis
and mining for smart cities: issues, methods, and applications,” IEEE
Communications Magazine, vol. 51, no. 6, pp. 120–126, 2013.

[10] I. A. T. Hashem, V. Chang, N. B. Anuar, K. Adewole, I. Yaqoob,
A. Gani, E. Ahmed, and H. Chiroma, “The role of big data in smart
city,” International Journal of Information Management, vol. 36, no. 5,
pp. 748–758, 2016.

[11] A. Whitmore, A. Agarwal, and L. Da Xu, “The internet of things? a
survey of topics and trends,” Information Systems Frontiers, vol. 17,
no. 2, pp. 261–274, 2015.

[12] J. A. G. Macias, J. Alvarez-Lozano, P. Estrada, and E. A. Lopez,
“Browsing the internet of things with sentient visors,” Computer, vol. 44,
no. 5, pp. 46–52, 2011.

[13] R. J. Crouser, L. Franklin, and K. Cook, “Rethinking visual analytics for
streaming data applications,” IEEE Internet Computing, vol. 21, no. 4,
pp. 72–76, 2017.

[14] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon,
T. Pardo, and H. Scholl, “Understanding smart cities: An integrative
framework,” in System Science (HICSS), 45th Hawaii I. Conference on,
2012, pp. 2289–2297.

[15] A. Zanella, N. Bui, L. V. A. Castellani, and M. Zorzi., “Internet of things
for smart cities,” Internet of Things, vol. 1, no. 1, pp. 22–32, 2014.

[16] R. Lea, “An overview of the technology trends driving smart cities.”
Tech. Rep., 2015.

[17] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for internet of things data analysis:
A survey,” Digital Communications and Networks, vol. In Press, 2017.

[18] H. Pineo, K. Glonti, H. Rutter, N. Zimmermann, P. Wilkinson, and
M. Davies, “Characteristics and use of urban health indicator tools by
municipal built environment policy and decision-makers: a systematic
review protocol,” Systematic reviews, vol. 6, no. 1, p. 2, 2017.

[19] S. Few, Information Dashboard Design - The effective visual communi-
cation of data. O’Reilly, 2006.

[20] M. Mendonça, B. Moreira, J. Coelho, N. Cacho, F. Lopes, E. Cavalcante,
A. Dias, J. L. Ribeiro, E. Loiola, D. Estaregue et al., “Improving public
safety at fingertips: A smart city experience,” in Smart Cities Conference
(ISC2), 2016 IEEE International. IEEE, 2016, pp. 1–6.

[21] G. McArdle and R. Kitchin, “The dublin dashboard: Design and de-
velopment of a real-time analytical urban dashboard,” ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 4, p. 19, 2016.

[22] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, and U. Srivastava, “Stream: The stanford data stream
management system,” Data Stream Management. Data-Centric Systems
and Applications, 2016.

[23] U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan,
A. Pavlo, M. Stonebraker, E. Sutherland, N. Tatbul et al., “S-store: a
streaming newsql system for big velocity applications,” Proceedings of
the VLDB Endowment, vol. 7, no. 13, pp. 1633–1636, 2014.

[24] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” the VLDB Journal, vol. 12,
no. 2, pp. 120–139, 2003.

[25] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Cetintemel,
V. Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska et al., “A
demonstration of the bigdawg polystore system,” Proceedings of the
VLDB Endowment, vol. 8, no. 12, pp. 1908–1911, 2015.

[26] S. Mallapuram, N. Ngwum, F. Yuan, C. Lu, and W. Yu, “Smart city:
The state of the art, datasets, and evaluation platforms,” in Computer
and Information Science (ICIS), 2017 IEEE/ACIS 16th International
Conference on. IEEE, 2017, pp. 447–452.

[27] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Data preprocessing
for supervised learning,” International J. of Computer Science, vol. 1,
no. 2, pp. 111–117, 2006.

[28] P. Zikopoulos, C. Eaton et al., Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

[29] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong, “Data
mining for the internet of things: Literature review and challenges.”
International Journal of Distributed Sensor Networks, vol. 2015, 2015.

[30] R. Lea, “Hypercat: an iot interoperability specification,” 2013.
[31] G. E. Box and M. Gwilym, “Jenkins. time series analysis forecasting

and control,” São Francisco: Holden-Day, 1970.
[32] S. Aghabozorgi, A. Shirkhorshidi, and T. Wah, “Time-series clustering

- a decade review,” in Information Systems, vol. 53, 2015, pp. 16–38.


