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Abstract—The most daunting and challenging task in intrusion
detection is to distinguishing between normal and malicious
traffics effectively. In order to complete such a task, the biological
danger theory has appeared to be one of the most appealing
immunological models which has been converted to a computer
science algorithm, named as Dendritic Cell Algorithm (DCA).
To perform a binary classification, the DCA goes through four
phases, preprocessing, detection, context assessment and classifi-
cation. In particular, the context assessment phase is performed
by comparing the signal concentration values between mature
(i.e., abnormality) and semi-mature (i.e., normality) contexts.
The conventional DCA requires a crisp separation between semi-
mature and mature cumulative context values. This can be hard
if the difference between the two contexts is marginal, which
negatively affects the classification accuracy. In addition, it is
technically difficult to quantify the actual meaning of semi-
mature and mature in the DCA. This paper proposes an approach
that integrates the K-Means clustering algorithm to the DCA
to map the DCA cumulative semi-mature and mature context
values into semi-mature (normal) and mature (anomaly) clusters
in order to improve the classification accuracy. The KDD99 data
set was utilized in this work for system validation and evaluation,
and the experimental results revealed an improvement in the
classification accuracy by the proposed approach.

Index Terms—Dendritic cell algorithm, Danger theory, K-
Means clustering, Artificial immune systems

I. INTRODUCTION

Network security has become one of the fundamental and
essential requirements for information communication systems
and their applications in smart cities and e-government [1] etc,
especially due to the plethora of new cyber-attack techniques.
Recently, many private and public organizations have lost their
assets and finances as a result of network attacks, such as
the denial of service [2]. The security measure of computer
networks can be designed based on the biological immune sys-
tems (BISes), as it is straightforward to associate cyber-attacks
with foreign molecules (pathogens) and the computer network
with the mammalian body. Over hundreds of centuries, BISes
have appeared to be strong and robust in protecting the human
body against foreign molecules such as virus and bacteria
by developing itself with great characters of adaptability,
lightweight and autonomy. Since 1990s, a number of AIS
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algorithms were developed by mimicking the characteristics of
BISes, which have been utilised to build intelligent intrusion
detection systems that can protect computer networks against
cyber-attacks.

According to the biological danger theory (DT) [3], the
BISes concern the alarming signals that might cause damage
to tissues and cells rather than foreigners. The human dendritic
cells (DCs) collect, process and reveal these alarming signals
to the immune system for response [4]. These signals are in
the form of antigens, each of which is a foreign molecule that
can activate immune response. Inspired by the DT theory and
the antigens presentation behaviour of DCs [5], an artificial
immune system, named as Dendritic Cell Algorithm (DCA),
has been developed. The DCA has been applied to detect
denial of service attacks in computer networks and smart grid
with promising results [6], [7]. To detect anomaly, the DCA
processes each network connection (represented as an antigen)
in four processing phases, including preprocessing and initial-
ization, detection, context assessment, and classification.

DCA context assessment phase is performed by comparing
the signal concentration values between mature (abnormality)
and semi-mature (normality) contexts. If the semi-mature
concentration is greater than mature one, the antigen data will
be mapped to the semi-mature class (normal); otherwise, the
antigen data will be assigned to the mature class (anoma-
lous). The most controversial question about DCA context
assessment is the existence of a crisp separation between
normality (semi-mature) and abnormality (mature) cumulative
output values [8]. If the difference between the mature and
semi-mature contexts is neglectable, the context of the antigen
data collected in a DC will be hard to be separated. Any tiny
noise could change and affect the context assessment decision
which may pose a negative effect on the classification accuracy
[8], which is particularly the case when the classes of data
instances change over time. Also, it is very difficult to quantify
the actual meaning of semi-mature and mature in the DCA
compared to its counterpart in the conventional BISes.

This paper proposes a modified DCA algorithm which maps
the DCs cumulative semi-mature and mature context values
into semi-mature (normal) and mature (anomaly) clusters
in order to address the aforementioned challenge. This is
achieved by applying the K-Means clustering algorithm to the



DCA algorithm. Of course, any other clustering algorithms
such as the mean-shift clustering [9] and the EM cluster-
ing [10] may also be applied here, but the K-Means is chosen
because the number of clusters are known and it works well
with large data sets and requires less computational effort
compared to other clustering techniques [11]. Briefly, the DCA
first preprocesses and initialises the signals for each antigen
(data item), then computes cumulative semi-mature and mature
context values and passes them to the K-Means clustering
algorithm. From this, the K-Means algorithm assesses the
context and clusters the data items to their classes.

The remainder of this paper is organized as follows: Sec-
tion II provides the underpinning theoretical background in
artificial immune system, danger theory and dendritic cell
algorithm. Section III presents the proposed approach, which
integrates the K-Means clustering algorithm with the conven-
tional DCA algorithm. Section IV reports the experimentation
that was performed to validate and evaluate the proposed
approach by result analysis and comparison. Section V draws
the conclusion of the study and points out the future research
directions.

II. ARTIFICIAL IMMUNE SYSTEM

AIS is a special class of computational intelligence ap-
proaches inspired by the mammalian immune system, which
was developed for the purpose of classification, anomaly
detection, and optimisation. The first immunological model
ever exploited for AIS algorithms is known as the self-
nonself model [12]. Self-nonself supposes that, the mammalian
immune system can distinguish between self-cell, which is
tolerated, and non-self (foreign), which is attacker and not
tolerable. This is achieved through a process known as negative
selection. In BIS, a negative selection process [12] occurs
when new born immature T cells go through a negative
selection process in the thymus to eliminate the self-reactive T
cells binding with self-proteins. Therefore, the mature T-cells
can only bind to nonself antigens when released to the blood
circle.

Typical AIS algorithms based on the self-nonself model
include Negative selection, positive selection and clonal se-
lection algorithms [13]. Negative selection algorithm collects
a set of self strings that define the normal state of the
monitored system, and then generates a set of detectors that
only recognize nonself strings. This detector set is used to
monitor the anomaly changes of the traffics in the system
in order to classify them as being self or non-self. Positive
selection algorithm is an alternative to negative selection in
which the detectors for self strings are evolved rather than for
non-self.

Self-nonself AIS algorithm have been criticised and found to
have weaknesses such as scalability, requiring initial learning
phase, and large number of false positives amongst other [13].
To overcome these limitations, a new family of AIS algorithms
based on the DT was introduced by [14], which is reviewed
in the following subsections.

A. Danger theory

According to [3], the recognition of a foreign molecule
such as virus is based on environmental context (signals)
rather than the simple self-nonself discrimination behaviour.
It doesn’t matter if the damage is due to pathogens or by
own cell defect, the immune response reacts against what is
causing damage. If a foreign molecule does not cause damage
or the cells die normal programmed death, immune tolerance
is initiated [3]. The immune system is divided into two parts
namely, the innate immune (e.g., skin) and adaptive immune
system (e.g., white blood cells). The innate immune system is
in-born immunity system and an important subsystem of the
overall immune system that comprises the cells (e.g., DCS)
and mechanisms that defend the host from infection by other
organisms. The adaptive immune system is a subsystem of the
overall immune system that is composed of highly specialized,
systemic cells and the processes that eliminate pathogens or
prevent their growth.

DCs reside in the innate immune system with the respon-
sibilities of sampling and processing antigens and presenting
them on the cell surface of the T-cells in the adaptive im-
mune system [4]. Nevertheless, DCs express costimulatory
molecules (CSMs) on their cell surfaces which limits the
amount of antigens they can sample while in the affected
tissue. The four signals that DCs collect from their neighbor-
hood are pathogenic associated molecular patterns (PAMPs),
safe signals (SSs), danger signals (DSs), and inflammatory
cytokines (CKs).

PAMPs are proteins produced by pathogenic molecules such
as virus and bacteria which can be easily detected by DCs and
activate immune response. The presence of a PAMP signal
expressed by an antigen indicates an anomalous situation.
DSs are produced as a result of abnormal cell death. The
presence of DSs indicate an anomalous situation but with
lower confidence than PAMP signals. SSs are produced as a
result of programmed cell death. The presence of SSs indicate
that, DCs where collected in their normal conditions. CKs
indicate that, a great number of DCs were collected in the
tissue under distress but not affected.

Additionally, DCs exist in three states namely ”immature”,
”semi-mature” and ”mature”, which determine exactly the
properties of the collected antigens or data items.

• Immature DC (iDC)- iDCs are found in tissues in their
pure state. In their immature state, iDCs collect signals
and antigens which can either be, PAMP, DS or SS.
The relative proportions of these signals causes iDCs
to differentiate to a mature state or to a semi-mature
state.

• Mature DC- an iDC become a mature DC (mDC)
when the iDC is exposed to a greater quantity of either
PAMPs or DSs than SSs. Sufficient exposure to PAMPs
and DSs can cause maturation, the DC ceases antigen
sampling and migrates from the tissue to the lymph
node for antigen presentation and immune response.

• Semi-mature DCs- an iDC differentiate to a semi-



mature DC (smDC) as a result of exposure to more SSs
than PAMPs and DSs. Antigens collected in a smDC
cause immune tolerance and no immune reaction is
initialised in such situation.

B. Dendritic Cell Algorithm
The DCA acquires the knowledge of normal and anomalous

data using statistical analysis through categorization of input
features into PAMP, DS and SS [15], and thus the DCA is
a supervised learning approach. For anomaly detection and
classification purposes, the DCA creates a population of DCs
to form a pool from which a number of DCs are selected to
perform data item sampling regarding signals (PAMP, DS and
SS). While in the pool, DCs are exposed to the current signal
values and the corresponding data items from the data source.
Each DC has an ability to sample multiple data items. During
the classification stage, an aggregated sampling value from
different DCs for a particular data item is computed which is
used to classify an antigen as normal or anomalous.

The DCA algorithm is outlined in Algorithm 1. The DCA
algorithm takes data items as inputs, and produces the classi-
fication results as system outputs. The DCA goes through the
following four phases to perform a classification task:

1) Preprocessing and Initialization
At this phase, features selection and signal catego-
rization are performed by selecting the most relevant
features (attributes) from the input training dataset and
assigning each selected attribute to a signal categories
of either PAMP, DS or SS.

• PAMP: An attribute indicates clearly the pres-
ence of anomalous behaviour associated with a
given data item. For instance an attribute reflect-
ing the number of error messages generated per
second by a failed network connection. Those
attributes which show a signature of a certain
abnormal behaviors are mapped as PAMP signal.

• DS: An attribute indicates the presence of ab-
normal behaviour but with lower confidence
than PAMP. Increase in DS value increase the
anomalous confidence value associated with a
given antigen, though represent normal behavior
at a low signal strength. For instance, an attribute
reflecting the number of transmitted network
packets per second.

• SS: Presence of SS associated with an attribute
is an indicator of normal behavior associated
with a given antigen. For instance, an attribute
referring to the inverse rate of change of number
of network packets per second.

In some studies on DCA, expert knowledge on the
problem domain were used to select the most sig-
nificant features and map them into their appropriate
signal categories [5]. Other techniques have also been
employed for feature selection, such as rough fuzzy
logic [16], information gain, correlation coefficient. Di-
mensionality reduction techniques such as the principal

Algorithm 1 DCA

input: the dataset D, the DC pool size n, sampling ratio s,
migration threshold θ, anomaly-threshold th
output: normal or anomalous for data items
/** Preprocessing & Initialization phase**/
Initialise immature DC pool Pi with n DC cells;
Initialise migration DC pool Pm with unlimited size;
signal categorisation;
/** Detection phase**/
for each d in D do

calculate the concentrations of CSM , mDC and smDC
for 1 to s do

randomly select a DC from Pi

associate d with DC
if cumulative CSM > θ then

migrate DC
select new DC

end if
end for

end for
/*Context Assessment phase */
for each DC in Pm do

if smDC ≤ mDC then
DC-context=1;

else
DC-context=0;

end if
end for
/* Classification phase */
for each d do

if DC-context == 1 then
mature++;

end if
end for
for each d do

Calculate MCAV();
if MCAV > th then

Anomalous;
end if

end for

component analysis, may also be applied. At this stage,
two empty pools of DCs are initialized for immature
DCs (Pi) and migrated DCs (Pm).

2) Detection
The DCA processes the input signals to obtain three
cumulative signals for CSM , smDC, mDC. The
CSM is used to limit the amount of data items that a
DC can sample, whilst smDC and mDC are used to
determine the context (normal/anomalous) of the data
items. the cumulative signal values are computed using
the following equation:

C =
(WPAMP ∗ CPAMP ) + (WSS ∗ CSS) + (WDS ∗ CDS)

WPAMP +WSS +WDS
,

(1)



where CPAMP , CSS and CDS are the input signal
values of PAMP, SS and DS signals of each data
item, respectively, and WPAMP , WSS and WDS are
signal concentration weights used for PAMP, SS and
DS signals, respectively. These weights are either pre-
defined or derived empirically from the data.
The three cumulative output values are summed up
overtime for all data items sampled by a DC. There-
fore, each sampling DC from the pool is assigned a
migration threshold θ in order to limit the amount of
data items a DC can take. If the CSM value of a DC
exceeds the threshold θ, the DC will be removed from
the pool and replaced by a new one; in the same time,
the removed DC will be migrated to the migration pool
(Pm) for data items presentation and classification.

3) Context Assessment
The cumulative values of smDC and mDC contexts
are used to perform context assessment in this phase.
If data items collected by a DC have a greater mDC
than smDC values, it is assigned a binary value of
1 and 0 otherwise. This information is then used
in the classification phase to compute the number
of anomalous data items present in the data set. To
alleviate the crisp separation that exists between mDc
and smDC, [17] proposed a technique known as Fuzzy
Classification Dendritic Cell Method (FCDCM) based
on Gustafson-Kessel algorithm which clusters and de-
fines the contexts regarding the cumulative mDC and
smDC values rather than simply comparing them. By
using the Euclidian distance, each DC context is given a
vector of membership measures with different strength
for each cluster so that it can belong to all cluster simul-
taneously. When the clustering is complete, the fuzzy
cluster is converted into crisp one by assigning the
point with the highest value of the membership function
to represent the cluster. The classification accuracy
results indicates that, the Gustafson-Kessel algorithm
is appropriate to smooth the crisp separation between
mDC and smDC although its performance heavily
depends on the applied feature selection technique [18].
This approach has been further extended by applying
fuzzy rough set [17] for automatic feature selection and
signal categorization.

4) Classification
All the collected antigens are analysed by deriving the
Mature Context Antigen Value (MCAV) for each data
item. Thus the MCAV is used to assess the degree
of anomaly of a given data item. Firstly, the anomaly
threshold of MCAV is derived from the testing data
set based on the total number of anomaly items and
the total number of items in the data set. Then, the
MCAV value is calculated by dividing the number of
times an antigen presented in the mature context to
the total number of presences. Antigens with greater
MCAVs than the anomaly threshold are classified into
the anomalous class whilst the others are classified as

normal.

III. THE PROPOSED APPROACH

The proposed approach is outlined in Figure 1. The system
firstly performs feature selection, and only the most relevant
features are retained in the training data set. The selected
features are categorised into three input signals namely PAMP,
DS and SS followed by a normalization process. To be
modeled as antigens, data items with the selected features
are assigned IDs which are used for their identification by
the DCs. Data item IDs and the input signals are taken by
the DCA and GA. Then GA searches for the optimal set of
weights to be used in Equation 1 [19], which are then relayed
to the DCA to compute the CSM , mDC and smDC context
values.

To classify each of the input data item either as normal, ex-
pressed as a semi-mature DC context, or anomalous, expressed
as a mature DC context, the DCA forwards the smDC and
mDC values to the K-Means algorithm for clustering. The
K-Means algorithm is initialized with two cluster centroids
for semi-mature and mature, each with two initial centroid
values corresponding to smDC and mDC cumulative context
respectively. The K-Means computes the minimum Euclidean
distance between the DC context values (smDC,mDC) and
cluster’s centroids, assigns the DCs to their closest clusters,
and then updates the cluster centroids. This process is it-
erated for multiple times until the centroids settled. After
the clustering is performed, all normal data items will be
assigned to the semi-mature cluster while all anomalous data
items will be assigned to the mature cluster. Each components
of the proposed modified DCA is detailed in the following
subsections.

A. Feature Selection

The information gain [20] is used in this work to perform
feature selection. The information gain of each attribute is
calculated and attributes with substantial lower information
gains are discarded. The information gain of an attribute
indicates the amount of information the attribute provides with
respect to the classification [21]. In particular, the approaches
presented in [20] is used in this work. Given a sample data set
S, the information gain of an attribute A, denoted as G(S,A)
can be calculated as:

G(S,A) = E(S)−
∑

v∈V alues(A)

|Sv|
|S|
∗ E(Sv), (2)

where V alues(A) represent the set of possible values that
attribute A may take, Sv is a subset of S for A each of which
takes value v for attribute A (i.e., Sv={d∈S|A(d)=v}), and
E(S) is the entropy which is defined as:.

E(S) =

i=2∑
i=1

−pi ∗ log2pi, (3)

where pi is the proportion of elements in class i in reference
to the total number of elements in the data set S. Obviously,



Figure 1: The modified DCA algorithm

there are only two classes as the DCA is a binary classification
approach.

During signal categorization, the selected features are anal-
ysed using their histograms with respect to the two class labels
(normal and anomaly) presented in the input data set. The
frequency of occurrence of the largest values present in each
attribute from each class was used to decide its signal category.
If the largest values of an attribute has a high frequency of
occurrence in the normal class than that in the anomalous
class, the attribute will be categorized to SS signal, and to
PAMP and DS otherwise.

B. DCA Weight Optimisation by GA

The weights used in Equation 1 are optimised by using
the general optimisation AI approach GA [19]. Briefly, GA
uses techniques inspired by evolutionary biology such as
selection, mutation, crossover, reproduction and elitism for
search and optimization problems [22]. GA evolution starts
with a population of randomly generated individuals, each
being an array of nine random integer numbers. The nine
integers are divided into three groups of CSM , smDC and
mDC with each group having three values corresponding to
PAMP, DS and DS signals. Secondly, the DCA takes in data
items and the three signal categories (SS, DS and PAMP)
from the training data set. Thirdly, DCA uses a weighted
sum function given by Equation 1 supported by the weights
generated from the GA to determine the contexts (smDC and
mDC) of the data items sampled using its normal data items
and signals processing mechanism. The GA fitness function
in this work is defined as the classification accuracy. The GA
iterates until the maximum number of generation is reached
or the error is smaller than a pre-defined threshold. When the
GA terminates, the individual with the optimal accuracy from
the final generation are used as the optimal weights, which
are taken by the DCA to compute smDC and mDC context
values before the clustering process by the K-Means algorithm.

C. Context Assessment by K-Means Algorithm

The K-Means is a clustering method aiming to group the
data points into k clusters by finding a centroid position for
each cluster that minimizes the distance from the data points to
the cluster’s centroid [11]. Given k as the number of clusters,
K-Means clustering algorithm works as follows:
• Randomly select k data points to be the initial centroid;
• Assign each data point to the closest centroid;
• Update the centroids using the current cluster member-

ships by averaging the clustered points;
• If a convergence criterion is not met, repeat step 2 and 3

until convergence occurs.
The inputs of the K-Means algorithm are the number of

clusters (i.e., k) and the selected features from the input data
set. The centroids of the clusters are chosen by issuing a
specific starting points or randomly selected by the algorithm.
Iteratively, the algorithm assign each data point to one of
the k clusters based on the minimum distance of that point
to the centroids. In each iteration, the algorithm computes
the average of all data points within a cluster and make
that average position as a new centroid [11]. This process is
repeated until it converges or if some other stopping condition
is reached. This is performed by minimizing an objective
function as defined below:

J =

n∑
i=1

k∑
j=1

||x(j)i − µj ||2, (4)

Where
∥∥∥x(j)i − µj

∥∥∥2 is the Euclidean distance between data

item x
(j)
i and the cluster centroid µj .

In the context of DCA, DCs are selected randomly to sample
data items and signals. As soon as a DC’s lifespan exceeds the
migration threshold, it ceases to sample any more data items,
and the DC is migrated from the pool. The DC with its ID,
cumulative smDC and mDC context values is passed to the
K-Means clustering algorithm. The overall process is shown
in algorithm 2. The algorithm randomly initialises two cluster



centroids, one for semi-mature and the another for mature. The
smDC and mDC values calculated by the conventional DCA
are used to initialize the initial centroid values in this work.
Each centroid has two dimensions representing the smDC
and mDC. For each DC object, iteratively, the algorithm
assigns it to one of the two clusters based on the distances
of the (smDC and mDC) context values to the centroids.
Subsequently, the algorithm computes the average of all DC
context values within a cluster and make that average position
as the new centroid. The process of context assessment and
centroid adjustment is repeated until the values of the centroids
stabilize. Eventually, cumulative smDC and mDC context
values are sorted according to the minimum distance to the
centroids.

The contexts of the DCs which are assigned to the mature
cluster are set to 1, indicating that the sampled data items
may be anomalous while the contexts of the other DCs in the
semi-mature cluster are set to 0, showing that the sampled data
items are likely to be normal. Once the clustering is performed
for all the data items, the classification phase is performed in
the same way as in the classical DCA. The derived values
for the cell contexts (1/0) are used to determine the nature
of the response by measuring the number of DCs that are
in mature cluster which are represented by the MCAVs. To
perform classification, the MCAV of each data instance is
compared to the anomaly threshold (th), which is calculated
by dividing the number of anomaly data instances presented
in the training data set by the number of data instances in the
data set. For each data item presented in the mature cluster,
the MCAV is determined by dividing the number of times it is
presented by different DCs in the mature cluster by the total
number of sampling and presentation by different DCs. The
data items with greater MCAVs than the pre-specified anomaly
threshold are taken as potential anomalous.

Algorithm 2 Context assessment by K-Means

input : Data items with smDC, mDC values
output: anomalous or normal label for each data item
Arbitrarily initialize two cluster centroids;
repeat

for each DC in pool Pm do
Calculate the distance between the smDC and mDC
values of this DC and the two centroids;
(Re)assign the DC to the cluster with shorter Euclidean
distance;
if (cluster==mature) then

DC-context=1;
else

DC-context=0;
end if
Update each centroid by the mean DC values;

end for
until Convergence

IV. EXPERIMENTATION

To validate and evaluate the proposed approach, the KDD99
[23] intrusion detection dataset was used.

A. Dataset Description

The KDD99 data set is an intrusion detection dataset which
has been widely used for the evaluation of anomaly detection
methods [23]. This data set has also been used to build a
network intrusion detector as a predictive model with an ability
of distinguishing between bad and good connections. There are
four attack categories in the KDD99 data set:

• DOS: Denial of service attacks which intend to limit
legitimate users from accessing the system e.g. syn
flooding, teardrop and smurf.

• Probes: An attempt of gaining access to a computer
and its files by exploiting the weak points available
through surveillance and other probing techniques, e.g.
port scanning.

• U2R: Unauthorized attempt to gain super user priv-
ileges by exploiting vulnerabilities that allow normal
user to gain a root privileges, e.g. buffer overflow and
rootkit attacks.

• R2L: Unauthorized access of a computer resources
from a remote machine, e.g. password guessing and
ftp write attacks.

Notice that it is a common practice to use 10% of the
KDD99 training data set [15], [17], [24]; this work also
follows this practice. This data set consists of 494,021 in-
stances among which 97,277 (19.69%) are normal, 391,458
(79.24%) DOS, 4,107 (0.83%) Probe, 1,126 (0.23%) R2L
and 52 (0.01%) U2R connections. For computation efficiency,
during DCA weights optimization by the GA, only part of the
KDD99 training data set was utilised, which is 6.3% (311,029
instances) of the original training data set, and consists of
19.5% (60593 instances) of normal connections and 80.5%
(250436 instances) of anomaly connections.

B. Experiment Setup

All experiments were performed on Intel Core i5 6200U
2.4GHz - 8GB RAM-HP running windows 8. The proposed
system is implemented in Java using NetBeans IDE 8.2.
Twelve attributes were selected based on the approach pre-
sented in Section III-A to generate the three input signals;
and the detailed categorised features are:
• PAMP: serror rate, srv serror rate, same srv rate,

dst host serror rate, dst host rerror rate, rerror rate,
and srv rerror rate.

• DS: count and srv count.
• SS: logged in, srv different host rate, and

dst host count.
To differentiate data items during signal processing, data

item IDs are created by combining three nominal attributes,
which are protocol, service and flag. This help to trace a
particular data item (i.e., antigen in biological term) in the



system since one antigen is processed by multiple DCs at the
same time.

The inputs to the proposed system are data items and
the three signal categories of PAMP, DS and SS used by
DCs to derive the context values of smDC and mDC,
which are then applied to the K-Means clustering algorithm
for context assessment before classification. To calculate the
value of each signal category, all the selected attributes are
normalized into a range of 0 to 1 utilizing the simple min-max
(MM) normalisation technique [25]. Then the values of each
signal category is calculated as the average of all attributes
that jointly form this signal. Subsequently these values are
combined with the corresponding data items and become input
of the DCA.

In the experiments, the DCA weights were optimised using
the GA, and the results are listed in Table I. A population
of 100 DCs is used in the GA where 10 DCs are selected
randomly to sample data items and signals. The DC migration
threshold is set to 10. To perform classification of data items,
an anomaly threshold is needed to evaluate the MCAVs. The
number of anomalous class data items present in the 10% of
KDD99 data set is 80% and therefore, the anomaly threshold
is set to 0.8. Hence, if the MCAV value is greater than anomaly
threshold (0.8) in the mature cluster, the antigen is classified
as anomalous, otherwise normal.

To evaluate the performance of the proposed approach,
the rate of True Positive (TPR), True Negative (TNR),
False Negative (FNR) and False Positive (FPR) are calcu-
lated in addition to the overall classification accuracy (Acc).
These measures are defined as follows: TPR=TP/(TP+FN),
TNR=TN/(TN+FP), FPR=FP/(TP+FN), FNR=FN/(TN+FP);
and the Acc is equal to the number of correctly classified data
instances divided by the total number of instances classified.

Table I: The optimised DCA weights

Weights Values

CSM
WPAMP 2
WSS 1
WDS 2

smDC
WPAMP 2
WSS 3
WDS 6

mDC
WPAMP 6
WSS 5
WDS 2

Three experiments were carried out in this study:
• The first experiment (classical DCA) was carried out by

using 10% of KDD99 training dataset and the classical
DCA with optimized weights generated by GA.

• The second experiment (DCA+K-Means) was performed
by using the optimized weights plus the K-Means clus-
tering on the same data set. DCA uses its weighted
sum function and the optimized weights to compute
smDC and mDC context values, which are forwarded

to the K-Means clustering algorithm. K-Means follows
the procedures as described in Section III-C to assign
the data items to a cluster with minimum distance to its
centroid.

• The third experiment was conducted to compare the clas-
sification accuracies between the proposed approach and
the DCA when considering different attacks presented in
the KDD99 data set. The KDD99 data set consists of
normal connections and four known attack types (Dos,
Probe, U2R and U2L).

The results led by experiments one and two are presented in
Table II while the results of the third experiment is listed in
Table III.

Table II: Experiment 1 & 2 Classification Results

TPR FPR TNR FNR Acc
Classical DCA (%) 98.52 7.71 92.29 1.48 97.29

DCA+KMeans(%) 98.68 4.72 95.28 1.32 98.01

Table III: Classification results for different attack types

Acc Normal DoS Probe U2R R2L
Classical DCA(%) 89.12 99.42 68.56 29.08 5.72

DCA+KMeans(%) 94.23 99.57 87.54 28.50 13.42

C. Results Analysis and Comparison

The experiments show that the application of the K-Means
clustering algorithm to the DCA context assessment can
improve classification accuracy, as demonstrated in Tables II
and III. The proposed approach has produced higher accuracy
(98.01%) compared to the classical DCA (97.29%). This
indicates an improved percentage of successful classified data
items by 0.71%. Additionally, the TPR, FPR, TNR and FNR
also indicate notable improvements. For instance the TNR
is increased from 92.29% to 95.28%, expressing a positive
improvement of 2.99% whilst the FPR is decreased by 2.99%.
Comparing the performance using different attack types, the
proposed approach outperforms classical DCA as shown in
Table III except for U2R attack type where the classification
accuracy is slightly decreased from 29.08% to 28.50%.

We have also compared the result of the proposed ap-
proach with a recently proposed version of the DCA known
as Fuzzy Classification Dendritic Cell Method which uses
the Gustafson-Kessel clustering algorithm (FCDCMGK) pre-
sented in [17] and other five well-known classifiers which are
J48 Decision Tree (JDT), Naive Bayes (NB), Support Vector
Machine (SVM), Random Forest (RF) and Artificial Neural
Network (MLP). The experiments for JDT, NB, SVM, RF and
MLP classifiers were conducted by using the Weka software
[26] with the parameter values of the algorithms set to the
default.

The comparison was performed in terms of the overall
accuracies on the 10% of KDD99 training data sets and the
results are presented in Figure 2. From this figure, it is clear



Figure 2: Comparison of the Classifiers in Terms of Classifi-
cation Accuracy

that the classification performance of the proposed approach
is comparable to the FCDCMGK approach, and outperforms
JDT, NB, SVM and MLP, in terms of overall classification
result.

V. CONCLUSIONS

This paper proposed an alternative approach for the DCA
context assessment process using the K-Means clustering
algorithm. More precisely, the K-Means algorithm is applied in
this work to cluster the cumulative smDC and mDC context
values into two clusters, namely semi-mature and mature, to
address the challenge of hard context-based separation. The
experimental results demonstrate the efficiency of the proposed
approach in terms of TPR, TNR, FPR and FNR, in addition to
the overall accuracy. Compared to other classifiers, the overall
accuracy result of the proposed approach is comparable to the
recently proposed DCA version based on Gustafson-Kessel
clustering technique (FCDCMGK) [17] and are generally
competitive in reference to other commonly used classifiers
such as JDT, NB, SVM, RF and MLP. Although promising on
the static KDD99 dataset, the proposed approach needs to be
evaluated using real time data set to evaluate its performance
especially when traffic behaviours change rapidly overtime.
In addition, the feature categorisation phase has been further
developed using fuzzy interpolation [27]–[29] to address the
potential non-linearity problem. It would be interesting to
integrate such approaches to explore the full potential of DCA.
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