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Abstract—Cloud service providers offer a low-cost and conve-
nient solution to host unstructured data. However, cloud services
act as third-party solutions and do not provide control of the data
to users. This has raised security and privacy concerns for many
organizations (users) with sensitive data to utilize cloud-based
solutions. User-side encryption can potentially address these
concerns by establishing user-centric cloud services and granting
data control to the user. Nonetheless, user-side encryption limits
the ability to process (e.g., search) encrypted data on the cloud.
Accordingly, in this research, we provide a framework that
enables processing (in particular, searching) of encrypted multi-
organizational (i.e., multi-source) big data without revealing the
data to cloud provider. Our framework leverages locality feature
of edge computing to offer a user-centric search ability in a real-
time manner. In particular, the edge system intelligently predicts
the user’s search pattern and prunes the multi-source big data
search space to reduce the search time. The pruning system is
based on efficient sampling from the clustered big dataset on the
cloud. For each cluster, the pruning system dynamically samples
appropriate number of terms based on the user’s search tendency,
so that the cluster is optimally represented. We developed a
prototype of a user-centric search system and evaluated it
against multiple datasets. Experimental results demonstrate 27%
improvement in the pruning quality and search accuracy.

Index Terms—Edge Computing, User-based Sampling, Markov
Chain, Privacy-Preserving Big Data, Encrypted Clustering.

I. INTRODUCTION

Cloud services provide flexible and scalable solutions to
host and process big data. The number of businesses and
individuals using cloud solutions for big data is skyrocketing
and the volume of data stored on cloud is expected to surpass
44 ZB in near future [1]. However, data privacy concerns
still preclude many businesses, specially those with sensitive
and confidential data (e.g., criminal reports or financial doc-
uments), to utilize cloud services. One noticeable recent data
privacy incident was Panama paper leaking in which around
11.5 million documents of the Panama paper were leaked.
The documents contained detail financial and attorney-client
information for more than 214,488 offshore bank entities
including actors, politicians, athletes, and businessmen [2].
Thus, data privacy has remained a major concern in using
cloud services to host data [3].

Organizations are in need of solutions that securely store
their large document sets in the cloud and enable opera-
tions (e.g., real-time search) on them without revealing the
documents to unauthorized and malicious users. With the
prevalence of thin-clients (e.g., smart-phones), users expect
lightweight solutions that impose a minimal load on the user

device. Particularly for big data, sophisticated search methods,
such as semantic search [4], are desired. The reason is that in
big data a concept can be potentially expressed in various
ways. For a given search query, semantic search can find all
documents that contain phrase(s) conceptually or ontologically
related to the search query [5].

The motivation of this study comes from multiple law-
enforcement departments (e.g., detectives, criminologists, and
sheriffs) desire to perform semantic search on a large docu-
ment set of criminal reports [6], stored in a cloud environment.
These documents are confidential and access to them must be
limited to the law-enforcement officers who need to search the
data using their hand-held devices in a real-time manner. As
such, the law-enforcement governing body desires a solution
to protect confidentiality of the big document set against
external or internal attackers in the could, while maintaining
the semantic search ability.

User-side encryption [7], [8] is an approach to achieve
data privacy against internal and external attacks [9], [10].
In this approach, documents are encrypted with the user key,
before outsourcing them to the cloud and only users possessing
the encryption key can decrypt the documents. However, the
problem in user-side encryption is losing the ability to perform
operations (e.g., semantic search) on the encrypted documents.
Another problem, which is particularly prominent for big
datasets is to maintain the real-time response in processing
the encrypted documents.

Searchable encryption systems (e.g., [11]) enable search
over encrypted documents. These systems generally maintain
an index to map the keywords with their associated docu-
ment [12]. However, with big datasets, the index size can
become extensively large [13] and the real-timeness of the
system is affected. To make searchable encryption systems
scalable, solutions are provided to partition the encrypted
keywords of the index structure into several clusters based on
the topical relatedness of keywords [7] [14]. Then, for a given
search query, a pruning method is used to limit the search
space only to clusters relevant to the query [5]. However, the
current searchable encryption systems for big data introduce
two challenges:

1) Although pruning method reduces the search time, it
impacts the search precision because of covering only
a subset of the indexed keywords. In fact, pruning is
achieved based on abstracts that include sample key-
words from each one of the encrypted clusters. The
abstracts are utilized on the user side in an unencrypted
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form to navigate the search only to relevant clusters.
To improve search precision, the sampled keywords of
an abstract should precisely capture the topics of a
corresponding cluster. In addition, sampling quantity for
an abstract (i.e., number of keywords in an abstract) must
reflect user tendency in searching within a particular
cluster.

2) The search systems introduce a significant overhead to
the user’s thin-client. Several resource-intensive compo-
nents of the search system (e.g., creating and updating
abstracts, document encryption, keyword extraction, and
pruning) reside on the user side that overwhelmes the
user’s thin-client.

To address these challenges, in this study, we propose a
method to dynamically sample from each encrypted cluster
and form a summary (i.e., abstract) structure that qualitatively
represent topics of each cluster and quantitatively reflect the
user search interest to the cluster. As the keywords in the
clusters are encrypted and we cannot infer anything about their
semantics, we base the sampling method on the keywords and
phrases already searched by the users. Our proposed method
functions based on Markov Chain model [15] to analyze users’
search tendency and nominate keywords whose inclusion in
the abstracts can improve the search quality. Quantity of
keywords in each abstract is determined based on the variety
of search queries navigated to a given cluster.

Edge/fog computing has emerged to fill the gap between
client machines and remote cloud datacenters. As we move
from the cloud to user premises, communication latency
decreases but trustworthiness increases [16]. There are edge
computing solutions, such as Fortivault produced by Fortinet
ltd [17], that act as a gateway between the user premises and
cloud and its goal is to secure accessing to cloud datacenters.
In such solutions, because edge machines are on the user’s
premises, both the client and edge machines are deemed
trustworthy. We leverage the edge computing machines to
eliminate the overheads of creating abstracts and other search
components (e.g., keyword extraction) from the user side
device (thin-client). In addition, edge computing helps in
reducing redundant processing needed to generate abstracts
for users within the same department and with similar search
interests.

In summary, contributions of this study are as follows:

• Developing an edge computing framework that enables
lightweight semantic search on encrypted unstructured
big data, hosted in cloud, in a real-time manner.

• Proposing a theory to efficiently sample from encrypted
clusters. The theory enables sampling each cluster to an
abstract whose quality of its elements represents topics
of the cluster and quantity of it elements reflects the user
search tendency.

• Evaluating and analyzing the search quality of the pro-
posed framework against existing and established meth-
ods.

The rest of the paper is organized as follows: In Sec-
tion II, we review recent studies undertaken in this area. Then,
Section III provides an overview of the system architecture
and explains functionality of each component. Section IV
describes the proposed theory of our solution. Section V
provides security analysis for edge tier. Section VI evaluates
the performance of the proposed theory based on real-world

datasets. Finally, Section VII concludes the paper and explains
avenues of future work.

II. RELATED WORK

In this section, we review research studies recently under-
taken in cloud-based search solutions and position our con-
tribution with respect to them. More specifically, we consider
four related areas, namely user behavior model in information
retrieval, user search pattern analysis, sampling from encrypted
data, Secure Semantic Search.
User Behavior Model in Information Retrieval. To guess
user intention while searching a query in the system, there
has been extensive research work to analyze user behavior.
Different models have been applied to analyze user behavior
as an example reinforcement learning [18], Neural Model
[19]. The final goal is to retrieve highly related documents
on top ranks based on user search. The user behavior can
vary in a different domain. As an example, Palotti et al.,
[20] analysis logs from different medical sources and shows
that the search behavior varies from medical professionals
to laypeople. Though our research objective does not limit
to a specific domain, it contains the encrypted unstructured
document sets on the cloud server and the data set are divided
on different cluster based on relevancy. The precision of
the retrieved document highly dependent on finding out the
relevant cluster after a search is performed by the user. As,
we are able to extract only data volume information from
the cloud server, we consider analyze user behavior is the
appropriate option to project the data characteristics of a
cluster.
User Search Pattern Analysis. In the information storage
and retrieval area, several studies have been undertaken on
analyzing the users’ search behavior (e.g., [21]). Dias and
Vermunt [15] proposed a model-based clustering approach
based on user search pattern to understand what type of
information online market users demand in their interaction
with the websites. They used Markov Chain to categorize a
series of web pages visited by users and predict the probability
that a user would visit a web page at a given time t. Ai et al.,
[22] analysis email search behaviors and observed that user
tend to find out specific keyword in the mail search rather
than a generalized term. Benevenuto et al., [23] analyzed user
surfing behaviors in online social networks to understand the
frequency and the time duration people spend on social media.
They analyzed the streamed data to identify patterns of use
in social networks. Rose et al., [24] presented a framework
to understand the goals of a user searching on the web. This
research works focus on predicting users’ behavior on the web.
Alternatively, we are inspired to incorporate the idea of user
behavior analysis on encrypted unstructured documents and
clusters built on them. Another difference is in our objective,
which is to utilize user search behavior knowledge to improve
the accuracy of our search system.
Sampling from Encrypted Data. Sample size determination
for plain-text data is well established [25], [26]. Many research
works focus on domain-specific sampling (e.g., for genomes
data) and determining the minimum sample size based on the
purpose of analysis in that domain [27]. Eng [28] proposed
five parameters that can determine the appropriate sample size
from a population. These parameters are namely, estimated
measurement variability, desired statistical power, significance



criterion, and the shape of planned statistical analysis. Mini-
mum sample size determination depends on the way the data
is collected and the nature of the data. To the best of our
knowledge, there is no research work targeting sample size
determination for encrypted clustered data, which is our focus
in this research.
Secure Semantic Search There have been a few research
works that expand the idea of semantic search over encrypted
data [5], [7]. Research works based on a fuzzy keyword search
on encrypted data have been undertaken to overcome the
semantic search on encrypted data. Liu et al., [29] proposed
a secure search schema based on fuzzy matching of keywords
in which the value of matching between two keywords varies
between zero and one. They proposed a method to reduce
the index size, hence, reducing the search time. Fu et al.,
[30] also presented a method based on the semantic rela-
tionship between concepts in encrypted datasets. S3BD [5]
is a semantic search system based on user-side encryption
and pruning technique on a cluster of encrypted data to
reduce the search time.Our research uses Woodworth’s user-
end encryption method, however, we leverage edge computing
paradigm that enables lightweight client-side and provides us
more control over the searched data to improve the search
precision.

III. EDGE-BASED ARCHITECTURE FOR SECURE SEARCH
OVER BIG DATA

Our secure search system is composed of three tiers: user
tier, edge tier, and cloud tier. Figure 1 provides a bird’s-eye-
view of primary components of each tier and major processes
of the system. The details of each tier is as follows:

User Tier. User tier is composed of a lightweight interface
to search over the encrypted data on the cloud. It is hosted
on the users’ thin-clients that assumed to be trusted. User’s
search query is sent to the edge tier. The search result is sent
back to the user from the cloud provider in form of a list of
documents ranked based on their relevance.

Edge Tier. The edge tier is a computing facility on
the users’ premises (organization), hence, considered to be
trusted. Query Processor module receives the search query,
pre-processes it by removing stop-words, stemming, split-
ting multi-phrase queries to capture partially-matching doc-
uments [7]. Then, the query is augmented to encompass
the conceptual and antological semantics of the query [7].
Abstracts is a set of lists of unencrypted keywords that each
one represents a sample of clustered keywords reside on the
cloud. There is a one-to-one association between each list (i.e.,
abstract) and a cluster. Abstract Manager is a module that
monitors the search queries to identify users’ search interest
within an organization and accordingly updates the abstracts.
This module operates periodically and in an offline manner.
For a given search query, Pruner module determines the most
related abstracts and limits the search operation only to the
corresponding clusters. The edge tier (particularly, Abstract
Manager and Pruner modules) is the main module explored in
this paper (see Section IV).

Cloud Tier. It is a third-party cloud provider with large stor-
age and computing services. We consider the cloud provider
as honest but curious, hence, cannot be trusted. The cloud
storage service is used to store encrypted documents and to
cluster their encrypted keywords. Clustering is performed on
the cloud based on the keywords extracted from documents
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Fig. 1. Bird’s eye-view of Edge-Based Architecture for Secure Search System
Architecture and major processes.

and their co-occurrence frequency [5]. These information are
extracted during the document upload process.

To avoid searching the entire dataset and perform effective
pruning, clusters need to be topic-based, so that semantically
related terms are co-located in the same cluster [31]. Because
of encryption, extracting the topic of terms is not feasible,
hence, topic-based clustering is carried out based on statistical
semantics [32]. Particularly, in S3BD [5], for topic-based clus-
tering of encrypted terms, terms’ frequency of co-occurrences
across documents is considered as the statistical semantics. In
this case, we define semantic relatedness between two given
terms based on the intersection of their appearances across
documents.

Once the semantic relatedness between terms is defined,
K-means algorithim [33] can be used to cluster the terms.
For that purpose, k encrypted terms must be chosen as the
centroids. Term ω is chosen as a centroid if the number of
documents uniquely associated with ω is more than the number
of documents it shared with other terms. Once the centroids
are chosen, other terms are clustered with the centroid that
they share the maximum semantic relatedness. Further details
about clustering can be found in [5].

The cloud computing service is used to search over a subset
of (i.e., pruned) clusters, upon receiving a search request.
Then, the results are ranked based on the relevance to the
search query, before sending them to the user. Our objective,
in this study, is to protect the data stored in the cloud from
illicit access by internal and/or external attackers.

IV. SAMPLING FROM AN ENCRYPTED CLUSTER

A. Overview
Recall that there is a one-to-one association between an

abstract and a cluster. In fact, each abstract is a representation
of its corresponding cluster that resides on the edge tier, can



be quickly compared against the search query, and navigates
the search only to relevant clusters (i.e., pruning).

Accurate pruning and choosing relevant clusters strongly
depends on how representative the corresponding abstracts
are. In fact, quantity and quality of sampled terms from a
cluster determine representativeness of the abstract structure.
The quantity refers to the sample size from the corresponding
cluster, whereas the quality of the abstract depends on how
the chosen terms conceptually express the cluster.

As for the optimal abstract (sample) size, we should note
that, too small sample size impacts representativeness of the
abstract, inaccuracy of pruning, and subsequently, the search
precision. In contrast, too large abstract size increases the
overhead and impacts the real-time quality of the search
operation.

The search precision is impacted by the abstract quality
(sampling quality). For a given search query, based on the se-
mantic relatedness between abstracts and the query, the Pruner
determines which clusters on the cloud must be excluded or
included in the search operation. Therefore, each term chosen
for an abstract should semantically represent a portion (i.e.,
sub-topic) of the corresponding cluster and the union of such
chosen terms in an abstract should represent topics of the entire
cluster. Moreover, the abstracts should reflect the changes
occur to the dataset (e.g., because of document addition or
removal). As such, the Abstract Manager should have the
flexibility of dropping sampled terms that lose their importance
over time and replacing them by more representative ones.

According to Figure 1, the Abstract Manager module in the
edge tier is in charge of constructing and populating abstracts.
As the terms in the clusters are encrypted, the Abstract
Manager cannot use them to build abstracts. Therefore, we
propose to infer the abstract items from users’ search queries
and their metadata. In particular, we propose to determine
the quality and quantity of the abstract terms based on the
following factors: user search pattern, users’ interest to a
cluster, and number of cluster terms (aka cluster size). In
the rest of this section, we elaborate on the impact of these
factors on the quality and/or quantity of terms that form an
abstract. We also describe calculating these factors for a given
cluster and determining the most representative terms for its
corresponding abstract.

B. Analyzing Users’ Search Pattern

Abstract Manager considers users’ search pattern as an
accessible metadata and leverages that for quality sampling
that can semantically project the topics of the cluster. In
addition, analyzing search pattern enables us to learn about
search queries that potentially appear in near future. This
knowledge can be leveraged to improve the precision of
pruning and subsequently the search operation.

To predict users’ search queries, we develop a method
based on Markov Chain model, because it can describe a
sequence of possible events where the probability of each
event depends only on the state attained in the previous event.
For that purpose, we create an adjacency graph that contains
the sequence of search queries made by users to a particular
cluster and leverage that to predict search queries that can
potentially appear in the near future.

Let W be the set of m searched terms (we have W :
{w1,w2, ....,wm}) appear in the system during a certain time
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Fig. 2. An overview of user search pattern analysis using Markov Chain. The
states represent user search terms and the arrows and their weights represent
the transition probability from one state to another. The ovals denote the start
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interval and hit a particular cluster c. Elements of W form
the states of a Markov Chain. Figure 2 represents Markov
Chain in form of a graph where each vertex wk shows a
search term and each edge (wk,w j) shows the probability that
term w j is searched right after wk. This probability between
adjacent vertices is termed transition probability and denoted
as Pk j. Then, the n-step transition probability between wi and
w j, denoted wi j(n), is defined as the compound probability of
searching term w j, after n steps from searching wi. Equation 1
formally shows how wi j(n) is calculated.

wi j(n) =
m

∑
k=1

wik(n−1)·Pk j (1)

The state probability of term wi, denoted Ps
i , is defined as

the likelihood of the term being searched in future. The initial
value for the state probability of wi is calculated based on
the ratio of searching frequency for wi to the total number of
searched terms in cluster c.

For the set of all terms wi ∈W , the state probabilities form
a matrix with m elements and transition probabilities form
a m×m matrix. Then, the probability of searching terms in
future is obtained by multiplying the state probability matrix
with transition probability matrix iteratively, until the state
probability matrix converges. The converged state probability
matrix also indicates the appropriate terms that can be chosen
for the abstract (called qualified terms). Specifically, the state
probability of term wi can be used to add or replace an term
in the abstract structure of that cluster.

C. Users’ Interest to a Cluster
To perform accurate pruning and navigate search to relevant

clusters, in determining the quantity of terms in each abstract,
we should consider the users’ interest to the corresponding
clusters. The clusters that are targeted more frequently (i.e.,
higher users’ interest) should be sampled more granularly (i.e.,
have larger abstracts) and vice versa.

For a given encrypted cluster i, the number of search queries
hit the cluster show its popularity and can be leveraged to
infer the topics covered by that cluster. In particular, cluster
popularity can be vary because the cluster covers several topics
and/or because users are interested to the few topics of that
cluster. Popularity of a cluster is measured with respect to the
number of queries other clusters receive. In practice, distribu-
tion of queries across clusters is unbalanced [5]. Therefore,
to measure popularity of a given cluster i, we use the ratio



of deviation of number of queries hit cluster i to the mean
number of queries each cluster should ideally receive. Let qi
the number of queries hit cluster i and q̄ the average number of
queries each cluster should receive. Then, popularity of cluster
i is defined as: σi = (qi− q̄)/q̄.

Let 0 ≤ δi(a,b) ≤ 1 represent the semantic similarity be-
tween queries a and b that hit encrypted cluster i. Then, the
average semantic similarity of all queries that hit the cluster
(denoted δ̄i) show variations of topics contained by cluster i.
In particular, dissimilar search queries (i.e., δ̄i→ 0) imply that
the cluster terms cover several topics. Alternatively, δ̄i → 1
indicates that the cluster terms are concentrated on a few
topics.

We define users’ interest to cluster i, denoted βi, based
on their interest to the topics of that cluster. As such, both
the popularity of the cluster (σi) and the average semantic
similarity of queries hit the cluster (δ̄i) can be used to measure
the users’ interest to cluster i. Therefore, we calculate βi as:
βi = 1/(δi +σi).

D. Cluster Size
For a given cluster i, the number of terms in that cluster

(i.e., cluster size) is positively correlated with the quantity of
terms need to be sampled from that cluster. The relationship
between population and sample size is not linear and it varies
based on different application and data nature [27]. Hence, to
determine the number of terms for the abstract representing
cluster i, in addition to users’ interest to cluster i, we consider
the number of terms in the cluster (denoted as γi).

E. Procedure to Add or Remove Terms in Abstract Structures
Initially, abstracts are populated with equal number of (e.g.,

ten) terms, chosen based on the number of document associa-
tion in each cluster [5]. Then, while users issue search queries,
the edge tier collects metadata and refines the abstracts’ terms
based on the factors mentioned in the previous part and by
using the following main steps:

1) Analyzing users’ search pattern and determine if a
searched term is qualified to be placed in the abstracts
or not.

2) If the term is qualified, then the appropriate abstract is
selected.

3) Within the selected abstract, it is determined either to
add the qualified term or replace it with an existing term.

In the rest of this section, we elaborate on each one of these
steps.
1. Determining qualified terms to be placed in the ab-
stracts. Successful search queries issued by users are exam-
ined against the Markov Chain model explained in Section 1
to learn their potential use in future. The terms that have a
significant user interest can be considered as an abstract term
and are called qualified terms.
2. Selecting appropriate abstract. To select an appropriate
abstract for a qualified term, semantic similarity of the quali-
fied term and existing members of each abstract is measured
based on Wu Palmer method [34]. The abstract that offers the
highest semantic similarity with the qualified term is selected
as the target abstract. Ties are broken by selecting the abstract
that is more often used, when the qualified term is searched.
3. Determining adding or replacing the qualified term in
the selected abstract. Assume abstract i is selected for a

Fig. 3. Example of semantic radius (SR=0.38) for term Viewer in an abstract.
Blue terms are within and black term (Frozen) is outside of the semantic
radius. Numbers show semantic similarity between the Viewer and other terms.

qualified term w. Term w is added to abstract i, if w introduces
a topic that is not covered by existing terms in the abstract.
Otherwise, w replaces the most semantically similar term exist
in the abstract i, only if it has a higher probability to appear
in future than the existing abstract term. Accordingly, the
decision to add or replace w in abstract i is made based on
the cluster size(γi) and the user interest to the corresponding
cluster (βi). That is, the higher the cluster size and the more
user interest for a cluster imply a larger abstract size.

We define semantic radius for abstract i, denoted SRi, as
the threshold semantic similarity to add or replace terms in
abstract i. For a qualified term w, if it is within the semantic
radius of an existing term t of abstract i (i.e., δi(w, t)≥ SRi),
then it implies that the topic w represents is already being
covered by t. In this circumstance, the competition between w
and t is resolved based on the future appearance probability of
the two terms that is calculated based on the Markov Chain
model. Alternatively, if w is not in the semantic radius of
any term in the selected abstract i (i.e., δi(w,∀t ∈ i) < SRi),
it implies that the topic has not been covered by the existing
abstract terms. Hence, it has to be added to abstract i. The
value of SRi is calculated based on Equation 2.

SRi =
1

δi +σi + log(γi)
(2)

Figure 3 visually shows and example of a semantic radius,
where the value of SR is assumed to be 0.38. In this example,
Viewer is an existing abstract term and Frozen, Portrait,
Broadway, Mirror, and Photo are considered as qualified terms.
Semantic similarity of all the qualified terms with Viewer
are shown. The calculated semantic similarity of Frozen and
Viewer is 0.00. Hence, Frozen represents a topic that is
not covered by Viewer and its being added to the abstract.
However, semantic similarity of other terms with Viewer fall
within the semantic radius that implies topical overlapping.
In this case, the term with the highest future appearance
probability becomes a term in the abstract and other terms
are discarded. It is noteworthy that the terms lose users’
interest over time become less competitive and are replaced
with qualified terms.

V. SECURITY ANALYSIS

Using clouds, data owner loses his/her full control over the
outsourced data. Our threat model considers internal and/or
external attacks to privacy of the outsourced cloud data and the
goal is to preserve the data privacy. Our solution preserves data



privacy by maintaining documents, their metadata (clustered
terms), communication, and processing only in encrypted
format. Hence, the attacker can learn nothing about documents
and cluster tokens, once they are out of the user (trusted)
premises.

Edge computing paradigm is predominantly used for low-
latency communication [16]. From data control perspective,
however, this paradigm brings multi-layer data control archi-
tecture to cloud-based storage solutions. From security per-
spective, edge computing resides at the user’s premises, hence,
can be considered trusted. For instance, Fortinet ltd. [17] has
developed a secure edge platform, called Fortivault, that is
deployed on a trusted hardware at the user’s premises to
facilitate secure access to the cloud [8]. Using edge-based
platforms, the further data get from the users’ machine, the
less privacy it is provided with. However, as edge resources
still reside in user’s premises, they offer more control and
privacy in compare to third-party clouds. In this study, our
aim is to leverage the secure property of edge computing to
enable accurate, real-time, and yet lightweight search solution
while maintaining big data privacy.

We note that, even though edge is considered trusted, it
does not have access to user’s private key. It only contains the
abstract structures to facilitates the search. In case, the edge is
attacked, the attacker can only learn about the topics of each
cluster and user’s queries. However, documents and clusters
terms remain private and secure.

VI. PERFORMANCE EVALUATION

A. Experimental Setup and DataSet

For performance evaluation, we implemented a prototype
of the proposed system in the context of S3BD. We used two
datasets, namely Amazon Common Crawl Corpus (ACCC)
[35] and Request For Comments (RFC) [36], that have dis-
tinct characteristics and volumes. ACCC is ≈ 150 terabytes,
contains web contents, and is not domain-specific. RFC is
domain-specific and contains topics about Internet and net-
work protocols. It includes 6298 documents and the size is
≈ 247 MB. All the experiments were carried out on 10-core
2.8 GHz E5-2680v2 Xeon processor with 64 GB memory.
On this machine, we created three Virtual Machines (VMs) to
represent client, edge, and cloud tiers.

To simulate users’ search behavior and evaluate our system,
we synthesized 1,000 benchmark queries for the RFC and
2,000 for the ACCC dataset. To synthesize queries from these
datasets, we used Maui [37], a term extractor tool, to obtain 15
keywords from a subset of documents in each datasets. Then,
we concatenate three keywords extracted from each document
to generate one search query. We used 70% of the benchmark
for learning users’ search pattern and the rest of 30% queries
for evaluating our proposed system in identifying the right
cluster.

1) Quality of Clusters’ Sampling in Abstracts: The quality
of sampled terms (i.e., abstracts) depends on how well those
terms cover the topics within the whole cluster population.
To evaluate the quality of sampling from the clustered terms,
in Figure 4, we visually show the dispersion of sampled
terms (red-cross symbols in the figure) throughout a cluster.
In addition, we show the terms whose topics are captured with
the abstract terms (shown in blue dots) and those topics that
are not captured (shown in black dots).

Fig. 4. Visualizing samples (abstracts) of four clusters of RFC dataset. Red-
cross shows abstract terms of a cluster, blue and black dots, respectively, show
terms whose topics are covered and not covered by the abstract terms.
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As we can see in this figure, most of the terms in the cluster
are represented by the abstract terms and the abstract terms
are well distributed throughout the clusters.

2) Evaluating Pruning Accuracy: The sampling (i.e., ab-
stract) quality from clusters is crucial for accurate pruning
and targeting relevant clusters to search. To evaluate pruning
accuracy, we run the benchmark queries and measure the
percentage queries that hit the relevant clusters and compare
it with the original approach in S3BD. The result of this
experiment is shown in Figure 5 for different datasets. We
observe that, for both RFC and ACCC datasets, our ap-
proach remarkably outperforms the original S3BD approach
in pruning and navigating the search to relevant clusters. The
difference between our edge-based approach and S3BD is
more remarkable for ACCC dataset, because this dataset is not
domain-specific and its topics are more diverse, so that they
cannot be captured by only sampling from highly associated
documents.

We also observe that pruning accuracy of the edge-based
approach for the ACCC dataset is lower than the RFC dataset.
The reason is that, in ACCC, there are numerous noun phrases
(e.g., for location and institution names) that has no general
meaning. However, to keep generality in the abstracts, we
opted out those specific terms. Hence, when such terms are
searched, the pruner cannot navigate the search to relevant
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Fig. 6. The impact of abstract size in RFC and ACCC datasets on pruning
accuracy and abstracts’ overhead. The vertical axis shows both the percentage
of queries navigated to relevant clusters and the abstracts’ overhead.

clusters. We can conclude that our edge-based approach par-
ticularly performs well in sampling general terms as opposed
to specific ones.

3) The Impact of Abstract Size on Pruning Accuracy:
The proposed abstract manager determines both the quality
and quantity of terms to be sampled in abstracts. In this
experiment, we concentrate on the quantity aspect of sampling,
controlled by the semantic radius. We note that larger samples
generally increase the pruning accuracy, however, they in-
crease the overhead too. As such, in this experiment, we study
the impact of different ways to determine semantic radius
and their respective impacts on both the pruning accuracy
and overhead. We name the semantic radius mentioned in
equation 2 as the edge-based approach and compare it against
two other approaches for the semantic radius: (A) user interest
(β); and (B) cluster size plus variation of topics (γ+δ).

As shown in Figure 6, for different datasets, we measure
the percentage of benchmark queries navigated to relevant
clusters. We also measure the abstracts’ overhead based on
the sample size to the total number of dataset terms.

In RFC and ACCC datasets, using user interest (β) semantic
radius leads to ≈99% pruning accuracy, however, it creates
prohibitively large abstracts (≈41.07% and ≈29.23% of the
dataset terms) that cannot be called samples anymore. In case
of γ+δ, we observe that the pruning accuracy is unacceptably
low, because the abstract sizes are small and are not represen-
tative of the clusters’ topics. Alternatively, in the edge-based
approach, we observe that the pruning accuracy is relatively
high and the overhead is negligible (≈0.02%).

4) Analyzing Search Time and Space Overhead of the Edge-
Based Approach: Although we showed that the proposed
edge-based approach improves pruning accuracy and, subse-
quently, the search precision, the approach comes with an
overhead. In this experiment, we elaborate on details of the
induced overheads, both in terms of the search time and
occupied space. The overall Search time in the edge-based
approach is dominated by the time to search abstracts on
the edge tier and the time to search clusters on the cloud
tier. As such, to evaluate the search time overhead in this
experiment, for each benchmark query, we measure the overall
search time, and the overhead time on the edge and cloud
tiers. To realize the overhead growth, we examined datasets
with various volumes. We used ACCC dataset and created
subset datasets ranging from 50 GB to 200 GB. To cluster
these datasets, we used the method implemented in S3BD for
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Fig. 7. Analyzing search time overhead of edge-based system. Overall search
time, the time overhead for edge tier and cloud tier are reported. Vertical axis
shows time (in S) and horizontal axis shows subsets of the ACCC dataset
with different sizes (in GB).
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Fig. 8. Analyzing memory overhead of edge tier for datasets with different
volumes. Vertical axis shows memory overhead of the edge tier (in MB) and
horizontal axis shows subsets of the ACCC dataset with different sizes (in
GB).

clustering encrypted data. We created 100 benchmark queries
that include one to three keywords and run them against the
created datasets. Then, we measured the average of the overall
search times, plus the average overhead time of on the edge
and cloud tiers. The result of this experiment is shown in
Figure 7. In this figure, the horizontal axis shows the size
of different datasets created in GB. The vertical axis shows
both the overall search time and the overhead of edge tier (in
seconds).

Figure 7 shows the average of overall search time taken to
complete the search queries. We observe that as the dataset
size increases, the overall search time also increases. We also
observe that the overall search time is dominated by the edge
tier and not the cloud tier. The reason is that in S3BD, always
three clusters are chosen to be searched, however, to find
those three clusters, all abstracts must be checked against each
search query. As the size of datasets increases, the number of
terms in abstracts also increases, hence, the pruning operation
dominates the search time.

In the second part of this experiment, we analyze the space
overhead of the edge-based approach. The only space overhead
imposed in this approach is in the edge tier, thus, we measured
memory consumption in the edge tier for various dataset sizes
(ranging from 50 GB to 200 GB). The result of this analysis
is presented in Figure 8.

We observe that there is a linear relationship between the



dataset size and the memory overhead of the edge tier because
of the space consumed to maintain the users’ search history
that is used to analyze their search patterns and constructing
effective abstracts. We note that, the space overhead of the
edge tier is only about ≈0.01% of the size of the dataset stored
in the cloud.

VII. CONCLUSION AND FUTURE WORK

In this research, we developed an edge-computing-based
framework that offers a user-centric search ability on encrypted
big data in cloud. The framework is composed of three tiers
namely, user tier, edge tier, and cloud tier. It enables real-
time search over encrypted big data by pruning the search
space and limiting the search to only relevant clusters of data.
For accurate pruning, the edge tier leverages the users’ search
patterns and creates dynamic samples (aka abstracts) for each
cluster. The framework determines quantity of items (terms)
in each abstract and populates the abstract with terms that
qualitatively represent topics of its corresponding cluster. We
evaluated the pruning quality and navigating the search queries
to relevant clusters by comparing the proposed framework
against the one used in S3BD search system. Experimental
results from different datasets show that the pruning quality
is improved by ≈27%. This gain in performance is attained
without imposing a major overhead to the system.

There are several avenues that this research can be extended.
One avenue will be incorporating the impact of aging on
historic users’ search queries. Another avenue will be pro-
viding a method to evaluate quality of samples created from
an encrypted cluster.
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