
The DEEP-ER project:
I/O and resiliency extensions for the

Cluster-Booster architecture
Anke Kreuzer, Norbert Eicker, Estela Suarez*

Jülich Supercomputing Centre (JSC)
Institute for Advanced Simulation (IAS)

Forschungszentrum Jülich GmbH
52425 Jülich, Germany

Email*: e.suarez@fz-juelich.de

Jorge Amaya
Katholieke Universiteit Leuven

BE-3001, Heverlee, Belgium

Raphäel Léger
INRIA Sophia-Antipolis Méditerranée

Sophia-Antipolis, France

Abstract—The recently completed research project DEEP-ER
has developed a variety of hardware and software technologies to
improve the I/O capabilities of next generation high-performance
computers, and to enable applications recovering from the larger
hardware failure rates expected on these machines.

The heterogeneous Cluster-Booster architecture – first intro-
duced in the predecessor DEEP project – has been extended
by a multi-level memory hierarchy employing non-volatile and
network-attached memory devices. Based on this hardware
infrastructure, an I/O and resiliency software stack has been
implemented combining and extending well established libraries
and software tools, and sticking to standard user-interfaces. Real-
world scientific codes have tested the projects’ developments and
demonstrated the improvements achieved without compromising
the portability of the applications.

Index Terms—Exascale; Architecture; Cluster-Booster archi-
tecture; Co-design; Resiliency; I/O; Modular Supercomputing;

I. INTRODUCTION

During the last decade the computing performance of HPC
systems is growing much faster than their memory bandwidth
and capacity [1]. This so-called memory wall is not expected to
disappear in the near future. Additionally, higher failure rates
are predicted for next generation machines due to their huge
number of components. These are two of the main issues most
directly affecting the scientific throughput that can be extracted
from Exascale systems.

The DEEP projects [2] are a series of (by now) three
EC funded projects (DEEP, DEEP-ER, and DEEP-EST) that
address the Exascale computing challenges with their re-
search. All three follow a stringent co-design strategy, in
which full-fledged scientific applications guide the design
and implementation of system hardware and software. Their
requirements, identified by detailed application analysis, guide
all the projects’ developments. The selected codes have also
been adapted to the project platforms and served as a yard-
stick to validate and benchmark the hardware and software
achievements implemented in the course of the projects.

This paper describes the technology developed within the
DEEP-ER project to improve the I/O and resiliency capa-
bilities of HPC systems. In particular, the heterogeneous

Cluster-Booster architecture [3] (first introduced in DEEP) was
extended by a multi-level memory hierarchy. This served as
a foundation of a complete I/O and resiliency software stack.

Section II of this paper presents the DEEP-ER system
architecture, including the underlying Cluster-Booster concept,
the specific hardware configuration of the DEEP-ER prototype,
and its memory hierarchy and technologies. The software
stack is explained in Section III, including the programming
environment already introduced in the predecessor DEEP
project, and – more detailed – the DEEP-ER I/O and resiliency
software developments. The co-design applications are shortly
described in Section IV. A selection of results obtained during
the evaluation of the DEEP-ER concepts are presented in
Section V, while Section VI puts them in context with related
work. Finally, the conclusions of the paper are summarized in
Section VII.

II. SYSTEM ARCHITECTURE

Cluster computing enables building high-performance sy-
stems benefiting from lower-cost of commodity of the shelf
(COTS) components. Traditional, homogeneous clusters are
built by connecting a number of general purpose processors
(e.g. Intel Xeon, AMD Opteron, etc.) by a high speed network
(e.g. InfiniBand or OmniPath). This approach is limited by the
relatively high power consumption and cost per performance
of general purpose processors. Both make a large scale homo-
geneous systems extremely power hungry and costly.

The cluster’s overall energy and cost efficiency can be
improved by adding accelerator devices (e.g. many-core pro-
cessors or general purpose graphic cards, GPGPUs), which
provide higher Flop/s performance per Watt. Standard hetero-
geneous clusters are built attaching one or more accelerators to
each node. However, this accelerated node approach presents
some caveats. An important one is the combined effect of the
accelerators’ dependency on the host CPU and the static arran-
gement of hardware resources, which limits the accessibility
of the accelerators for other applications than the one running

Xeon

N
V
M

Xeon

N
V
M

Xeon

N
V
M

Xeon

N
V
M

KNL

N
V
M

KNL

N
V
M

KNL
N
V
M

KNL

N
V
M

KNL

N
V
M

KNL

N
V
M

KNL

N
V
M

KNL

N
V
M

KNL

N
V
M

KNL

N
V
M

NAM

NAM

Cluster Booster

(a) Sketch of the Cluster-Booster architecture as
implemented in the DEEP-ER project (KNL: Knig-
hts Landing; NVM: non-volatile memory; NAM:
network attached memory).

(b) Picture of
the DEEP-ER
prototype, at JSC.

Fig. 1: Cluster-Booster architecture in DEEP-ER.

on the host CPU. Furthermore, both CPU and accelerator have
to compete for the limited network bandwidth in this concept.

A. Cluster-Booster concept

The Cluster-Booster architecture (Fig. 1a) integrates hete-
rogeneous computing resources at the system level. Instead of
plugging accelerators into the node and attaching them directly
to the CPUs, they are moved into a stand-alone cluster of
accelerators that has been named Booster. It is capable to run
full codes with intensive internal communication, leveraging
the fact that accelerators therein are autonomous and do
communicate directly with each other through a high-speed
network without the help of an additional CPU.

The Booster is attached to a standard HPC Cluster via a
high-speed network. This connection, together with a uniform
software stack running over both parts of the machine (see
Section III), enables Cluster and Booster acting together as
a unified system. This opens up new prospects to application
developers, who have now full freedom to decide how they
distribute their codes over the system. In contrast to accelera-
ted clusters the Cluster-Booster concept poses no constraints
on the combined amount of CPU and accelerator nodes that
an application may select, since resources are reserved and
allocated independently. Performance benefits of an applica-
tion distributed over Cluster and Booster on the DEEP-ER
prototype are discussed in [4].

B. Prototype hardware configuration

The first prototype of the Cluster-Booster concept was
designed and built in the course of the DEEP project [2].
The later DEEP-ER prototype (Fig. 1b) is the second ge-
neration of the same architecture and was installed at the
Jülich Supercomputing Centre (JSC) in 2016. It consists of 16
Cluster nodes and 8 Booster nodes. The system’s configuration
is detailed in Table I. Cluster and Booster modules are
integrated into a single, air-cooled 19” rack. This rack also
holds the storage system (one meta-data, two storage servers,
and 57 TB of storage on spinning disks). A uniform high-
speed Tourmalet A3 EXTOLL fabric runs across Cluster and

TABLE I: Hardware configuration of the DEEP-ER prototype.

Feature Cluster Booster
Processor Intel Xeon E5-2680 v3 Intel Xeon Phi 7210
Microarchitecture Haswell Knights Landing (KNL)
Sockets per node 2 1
Cores per node 24 64
Threads per node 48 256
Frequency 2.5 GHz 1.3 GHz
Memory (RAM) 128 GB 16 GB – MCDRAM

96 GB – DDR4
NVMe capacity 400 GB 400 GB
Interconnect EXTOLL Tourmalet A3 EXTOLL Tourmalet A3
Max. link bandwidth 100 Gbit/s 100 Gbit/s
MPI latency 1.0 µs 1.8 µs
Node count 16 8
Peak performance 16 TFlop/s 20 TFlop/s

Booster, connecting them internally, among each other, and to
the central storage [5].

1) Non-volatile Memory: The DEEP-ER prototype is en-
hanced by advanced memory technologies. A multi-level me-
mory hierarchy has been built providing a total memory capa-
city of 8 TBytes, to enable the implementation of innovative
I/O and resiliency techniques (see Sections III-C and III-D).
Each node in the DEEP-ER prototype (in both Cluster and
Booster) feature a non-volatile memory (NVM) device for
efficient buffering of I/O operations and writing checkpoints.
The chosen technology is Intel’s DC P3700, a device aimed to
replace SSDs, with 400 GByte capacity. It provides high speed,
non-volatile local memory, attached to the node via 4 lanes
of PCIe gen3. Extensive experiments and a wide range of
measurements with I/O benchmarks and application mock-ups
have been performed, which shows substantial performance
increase over conventional best-of-breed SSDs and state-of-
the art I/O servers (see Section V-A, in particular for scenarios
with many I/O requests in parallel).

Virtex 7
690T
FPGA

PCIe + Power

HMC
(2GB)

HDI6
EXTOLL

Fig. 2: Network Attached Memory (NAM) board.

2) Network Attached Memory (NAM): DEEP-ER has also
introduced a new memory concept: the network attached
memory (NAM) [6]. It exploits the RDMA capabilities of
the EXTOLL fabric, which enable accessing remote memory
resources without the intervention of an active component
(as a CPU) on the remote side. The NAM board (Fig. 2) is
built using a PCIe form-factor and acts fully autonomously.
The PCIe connection is only utilized for power supply and
debugging functionality. The NAM combines Hybrid Memory
Cube (HMC) resources with a state-of-the-art Xilinx Virtex 7
FPGA. The DEEP-ER prototype holds two NAM devices with

a capacity of 2 GBytes each. This relatively small size is due to
current HMC technology limitations. The FPGA implements
three functions: the HMC controller1, the EXTOLL network
interface with two full-speed Tourmalet links, and the NAM
logic. Together, they create a high-speed memory device,
which is directly attached to the EXTOLL fabric and therefore
globally accessible by all nodes in the system.

The libNAM library has been implemented to give system
and application software access to the NAM memory pool [6].
The library operates on top of the existing EXTOLL RMA
API. The function calls provided by libNAM are very similar
to EXTOLL’s libRMA, such that existing applications that use
the latter can be modified without much effort. Reading and
writing is performed via send and receive buffers organized in
a ring structure. The EXTOLL/NAM notification mechanism is
used to handle the buffer space, i.e. to free up locations when
data has been transmitted (put) or received (get). Fig. 3
presents bandwidth and latency measurements applying these
operations on the NAM, for various message sizes. Latency
and bandwidth results to read and write data from and to
the NAM are very close to the best achievable values on the
network alone.

1

10

100

1000

10000

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

B
an

d
w

id
th

 [
M

B
yt

e
/s

]

Message Size [Bytes]

PUT
GET
EXTOLL max. (12,5 Gb/s)

0

5

10

15

20

La
te

n
cy

 [
µ

s]

Message Size [Bytes]

PUT
GET
EXTOLL min. (1µs)

Fig. 3: RMA benchmarks (bandwidth and latency) on the
NAM. Best values achievable with Extoll are also plotted.

As a first NAM use-case, an improved checkpointing/restart
functionality has been implemented. It utilizes the NAM’s
FPGA to pull the required data from the compute nodes and to
calculate parity information meant to be stored on the device
locally. By this means most of the checkpointing overhead is
offloaded to the NAM. At the same time this is transparent

1The HMC controller has been released as Open Source [7].

to the applications enabled to use SCR. Results obtained
from applications using this functionality are presented in
Section V-B, Fig. 9.

III. SOFTWARE ENVIRONMENT

The main guiding principle in the software development
for the Cluster-Booster concept has been to stick, as much as
possible, to standards and well established APIs. The specific
software features required to operate Cluster and Booster as
a unified system are implemented in the lower layers of the
software stack and are as transparent as possible to application
developers. In the end they experience a software environment
very similar to the one found on any other current HPC system.
By this means they do not have to deal with the underlying
hardware complexity. Furthermore, their codes stay portable
and can run practically out-of-the-box on this new kind of
platform, as well as on any other HPC system.

A. Programming Environment

The ParaStation MPI library has been specifically optimized
to efficiently run within both, Cluster and Booster, and also
across them. This global MPI provides an efficient way of
exchanging data between the two parts of the system [8]. It im-
plements a heterogeneous, global MPI by exploiting semantic
concepts long existing in the MPI-standard. In particular, the
MPI-2 function MPI_Comm_spawn realizes the offloading
mechanism, which allows spawning groups of processes from
Cluster to Booster (or vice-versa).

B. OmpSs abstraction layer

Directly employing the MPI_Comm_spawn function call
forces the programmer to coordinate and manage two or more
sets of parallel MPI processes. This includes the explicit
handling of the required data exchanges between Cluster and
Booster. This approach may become cumbersome for large
and complex applications. To reduce the porting effort, an
abstraction layer employing the global MPI has been im-
plemented already in the DEEP project. It is based on the
OmpSs data-flow programming model [9]. OmpSs enables
application developers offloading large, complex tasks by
simply annotating those parts of their code that shall run on a
different part of the system via pragmas [10].

C. I/O

The non-volatile memory of the DEEP-ER prototype (see
Section II-B1) is used as the foundation of a scalable I/O
infrastructure. The resulting software platform combines the
parallel I/O library SIONlib [11] with the parallel file system
BeeGFS [12]. Together, they enable the efficient and transpa-
rent use of the underlying hardware and provide the functio-
nality and performance required by data-intensive applications
and multi-level checkpointing-restart techniques.

The I/O library SIONlib acts as a concentration-layer for
applications employing task-local I/O. It aims for the most
efficient use of the underlying parallel file system. For this,
SIONlib bundles together all data locally generated by appli-
cations, and stores it into one or very few large files, which

the parallel file system manage more easily. Furthermore, in
DEEP-ER SIONlib bridges between the I/O and resiliency
components of the software stack (Section III-D1).

The file system utilized in DEEP-ER is BeeGFS. It provides
a solid, common basis for high-performance, parallel I/O
operations. Advanced functionality, such as a local cache layer
in the file system, have been added to BeeGFS during the
DEEP-ER project. The cache domain – based on BeeGFS
on demand (BeeOND) [13] – stores data in fast node-local
NVM devices and can be used in a synchronous or asynchro-
nous mode. This speeds up the applications’ I/O operations
(Section V-A) and reduces the frequency of accesses to the
global storage, increasing the overall scalability of the file
system.

D. Resiliency

The DEEP-ER project has adopted an improved application-
based checkpoint-restart approach, in combination with a task-
based resiliency strategy.

1) Checkpoint/Restart: The Open Source Scalable
Checkpoint-Restart library (SCR) offers a flexible interface
for applications to write checkpoint information and to restart
from those checkpoints in case of failure [14]. The user
simply calls SCR and indicates the data required by the
application to restart execution. This library keeps a database
of checkpoints and their locations in preparation for eventual
reinitializations.

Combining SCR features with project-specific software and
hardware developments, four checkpoint/restart strategies can
be employed in DEEP-ER, listed here ordered from most basic
to more advanced:

• Single: The SCR_SINGLE feature stores checkpoints
locally on each node. This enables applications to recover
from transient errors.

• Buddy: This enhancement of the SCR’s Partner
mode combines SCR, ParaStation MPI, SIONlib, and
BeeGFS. The standard SCR_PARTNER mode first saves
checkpoint-data to the local node, re-reads it from there,
sends it to a Partner node and writes it to its local
storage. This strategy enables application to restart even
after node-failures, recovering data from the companion
node. Thus, the application can continue with minimum
time-loss. The DEEP-ER Buddy enhancement utilizes
SIONlib to skip the intermediate step of reading the data
from the local storage before sending it to the partner
node, reducing the checkpointing overhead. While SCR
in this approach keeps track of the association between
host nodes and buddies, SIONlib takes care that all MPI
processes running on a single node jointly write their
checkpoint-data into a single file on the buddy-node.
Finally, BeeOND stores the data itself on the cache file
system on the local NVMe, eventually transferring it
asynchronously to the permanent global storage.

• Distributed XOR: Both SCR_PARTNER and
DEEP-ER’s Buddy mode save the whole checkpoint-data
twice. This obviously doubles the required amount of

0

20

40

60

80

100

2 4 8 16

C
h

e
ck

p
o

in
ti

n
g

ti
m

e
 [

s]

Nodes

Single

SCR_PARTNER

Buddy

Distributed XOR

NAM XOR

Fig. 4: N-body code testing various checkpointing strategies
on the DEEP-ER Cluster (weak scaling).

memory per node and generates significant overhead due
to the additional writing time. An alternative strategy
is to generate and store parity information, instead of
copying the full checkpoints. SCR can perform this by
applying an XOR operation to the checkpointing data. In
a second step it distributes the resulting parity data over
all nodes. If one node fails, the missing checkpoint-data
can be reconstructed by combining the parity data and
the checkpoint data from the remaining nodes. This
method saves the checkpoint data on the node-local
NVMe (as in the Single mode) and distributes and
remotely stores only the parity data, which is much
smaller than the full checkpoints.

• NAM XOR: The network-attached memory (NAM)
technology developed in DEEP-ER is an ideal vehicle
to accelerate the Distributed XOR strategy. SCR and
SIONlib call libNAM to trigger data collection and parity
computations on the NAM. Furthermore, XOR-data is
stored on this central location. This enables application
developers to transparently checkpoint/restart to/from the
NAM without modifying their codes. The high read/write
performance of the NAM (Fig. 3) and its accessibility
at network-speed from all nodes in the system, largely
reduces the checkpointing overhead when compared to
the previous mode. At the same time it provides a similar
level of resiliency as the Buddy mode.

Weak-scaling results obtained testing these functionalities
on the DEEP-ER Cluster with the N-body code are presented
in Fig. 4. The Buddy and NAM XOR methods developed in
the DEEP-ER project are both faster than the equivalent SCR
functions: SCR_PARTNER and Distributed XOR, respectively.
Results of a full application comparing the Distributed XOR
with the NAM XOR modes are discussed in Section V-B.

2) OmpSs resiliency: The OmpSs programming model has
been also enhanced by three new resiliency features.

• Lightweight task-based checkpoint/restart mechanism
writes the input of the OmpSs tasks into main memory
before starting them. Thus, they can be restarted in
case of failure. If no error occurs and the task finishes
successfully, the checkpoint is evicted.

• Persistent task-based checkpointing saves all input
dependencies of a task. When the application is restarted
after a crash, OmpSs transparently identifies the execution
as a recovery and fast-forwards it to the point where the
failure occurred, restoring the appropriate data.

• OmpSs resilient offload is applied specifically to the
offload mechanism developed in the DEEP projects
(Section III-B). The ParaStation process management
daemon has been extended by an interface to query
resiliency-related status information from the MPI layer
and thus also from the OmpSs runtime environment.
ParaStation MPI itself is now able to detect, isolate
and clean up failures of MPI-offloaded tasks, which
can be then independently restarted without requiring a
full application recovery. This enables to recover failed
offloaded tasks without losing the work that had been
performed in parallel by other OmpSs tasks.

Application benchmarks utilizing the third OmpSs resiliency
approach are described in Section V-B.

IV. CO-DESIGN APPLICATIONS

Seven real-world HPC applications were chosen to steer and
evaluate the design of the DEEP-ER hardware and software
developments (Sections II and III), and to benchmark their
functionality and performance. The DEEP-ER applications
come from a wide range of scientific areas, representing the
typically broad user portfolio of a large-scale computer centre.
For the sake of brevity, details are given here only for three of
the codes. Their results (Section V) cover almost all the I/O
and resiliency features developed in DEEP-ER:

• xPic is a simulation code from KU Leuven (Katholieke
Universiteit Leuven) to forecast space weather related
events like e.g. damage of spacecraft electronics or
GPS signal scintillation. It simulates the inter-planetary
plasma using the Moment-Implicit method [15]. Like
most particle-in-cell codes, xPic consists of two parts,
a particle solver and a field solver: The particle solver
calculates the motion of charged particles in response
to the electromagnetic field and the gathering of their
moments (e.g. net current and charge density); the field
solver computes the electromagnetic field evolution in
response to the moments.

• GERShWIN [16] assesses human exposure to electro-
magnetic fields and is provided by Inria (Institut National
de Recherche en Informatique et en Automatique). This
application uses a Discontinuous Galerkin - Time Domain
solver of the 3D Maxwell-Debye equation system [17]
to simulate the propagation of electromagnetic waves
through human tissues. This field of research studies for
instance the effect of wireless communication devices on
head tissues or the implantation of antennas in the human
body for the purpose of monitoring health-related devices.

• FWI [18] is a seismic imaging code developed by the
Barcelona Supercomputing Center (BSC). Seismic ima-
ging uses sound waves to acquire the physical properties
of the subsoil from a set of seismic measurements. The

application starts from a guess (initial model) of the
variables (e.g., sound transmission velocity), the stimulus
introduced, and the recorded signals. For the inversion se-
veral phases of iterative computations (frequency cycles)
are done until the real value of the set of variables being
inverted is reached (with an acceptable error threshold).

Further applications used in DEEP-ER are:
• SKA data analysis pipeline by ASTRON (Netherlands

Institute for Radio Astronomy).
• TurboRvB from CINECA (Consorzio Interuniversitario

del Nord-Est per il Calcolo Automatico).
• SeisSol from LRZ (Leibniz-Rechenzentrum der Bayeris-

chen Akademie der Wissenschaften).
• CHROMA: by the University of Regensburg.
The role of the applications in DEEP-ER is two-fold: on

the one hand, their requirements have provided co-design
input to fix the characteristics of hardware and software
components; on the other hand, the codes have evaluated the
project developments by running different uses cases on the
DEEP-ER prototype. Examples of the co-design influence are
the determination of the amount of memory to be available
per node, the required MPI functionality when offloading
code from one side to the other of the system, or the way
in which the NAM should be addressed. A selection of the
application results achieved by the first three listed codes
(xPic, GERShWIN, and FWI) is presented in the next section.

V. RESULTS

The hardware and software concepts developed in
DEEP-ER have been evaluated using the co-design applica-
tions. Unless stated otherwise, all measurements have been
obtained on the DEEP-ER prototype (Section II-B). The codes
have been used in various simulation scenarios in order to test
different system features (e.g. input parameters leading to more
data communication were used to stress I/O features).

A. I/O application results

The features described in Section III-C have lead to several
I/O improvements in the DEEP-ER applications. Some of
them are shown here since the I/O capabilities have a direct
impact on checkpointing performance. The setup of all I/O
experiments in this section is described in Table II.

Fig. 5 shows the reduction of data writing time for the
GERShWIN application when using SIONlib to collectively
carry out task-local I/O operations into a reduced number of
files. Different use cases where tested, varying the Lagrange
order of the calculations (order three (P3) requires more data
and provides higher precision than order one (P1)). Significant
performance improvements are achieved when using SIONlib:
up to 7.4× faster for P1, and up to 3.7× for P3.

Even with the help of SIONlib, using the file system to
execute I/O operations to the global storage from a large
number of compute nodes may still lead to a bottleneck at the
storage: once the maximum storage bandwidth is reached, the
bandwidth per node decreases when additional nodes partici-
pate in I/O. In DEEP-ER this I/O scalability issue is targeted

0

1

2

3

4

5

6

16 64 256 512 1024

W
ri

ti
n

g
 t

im
e

 [
s]

MPI tasks

P1

P1 with SIONlib

P3

P3 with SIONlib

Fig. 5: I/O improvement through SIONlib measured with
GERShWIN.

by the BeeGFS caching-layer, which transparently employs
the node-local NVMe devices (Section II-B1) as scalable local
storage. This has the effect of a constant storage bandwidth
per node, significantly increasing the I/O performance and
scalability of applications.

Due to the small size of the DEEP-ER prototype, such
scaling effects had to be measured on an alternative platform.
The QPACE3 system was selected, which is a Booster-like
platform with 672 KNL nodes [19], large enough to perform
scalability measurements. Fig. 6 shows weak-scaling studies
with xPic on QPACE3.

A software configuration similar to the DEEP-ER platform
could be installed on QPACE3. Since this system lacks node-
local NVMe devices, these had to be emulated by RAM-disks
residing in the local memories of each node. The absolute
performance numbers are not comparable to NVMe (RAM
on KNL is 75× faster than NVMe) but the advantage of
using local storage devices with respect to the global storage
system is clearly demonstrated, as well as the evident gain in
performance when increasing the number of nodes. In fact, the
application scales almost perfectly when using local storage.
This makes the application 7× faster compared to writing
directly to QPACE3’s global file system which is also BeeGFS.

0

400

800

1,200

1,600

2,000

1 2 4 8 16 32 64 128 256

R
u

n
ti

m
e

 [
s]

Nodes

global FS

local (BeeOND)

Fig. 6: xPic on QPACE3: writing on global file system vs.
using node-local storage with BeeOND.

As demonstrated on QPACE3, the concept of writing to

TABLE II: Experiment setup used in GERShWIN and xPic
during the I/O measurements.

xPic on the
Experiment GERShWIN xPic on QPACE3 DEEP-ER

prototype
Written 3 GB (P1)
data per 6.6 GB (P3) 10 GB per node 8 GB
checkpoint
Number of
CPs

1 2 11

node-local storage does not necessarily require NVMe devices
to be attached to the compute nodes. The same strategy
can be employed with other node-local storage technologies,
leading to different absolute performance numbers. Fig. 7
presents xPic measurements on the DEEP-ER Cluster. Here
both NVMe and hard disks (HDD) are attached to each
node. Writing to the NVMe storage is up to 4.5× faster than
writing to the node-local HDD. The absolute performance
gain depends on the number of nodes performing I/O and,
as explained above, the actual benefit from the NVMe-based
local storage actually manifests when the node-count is very
large.

0

100

200

300

400

500

600

700

800

2 4 8 16

W
ri

ti
n

g
ti

m
e

 [
s]

Nodes

local HDD

local NVMe

Fig. 7: I/O operations to node-local NVMe vs. node-local
HDD storage, measured by xPic on the DEEP-ER Cluster.

B. Resiliency

During the DEEP-ER project multiple resiliency features
have been developed (Section III-D). The setup of the resi-
liency experiments described here can be found in Table III.

Fig. 8 displays the overhead and benefit of using the SCR
library to save checkpoints (CP) on the node-local NVMe
(SCR_PARTNER). An xPic benchmark was selected that exe-
cutes 100 iterations in the simulation. The benchmark was run
with and without SCR_PARTNER. In the latter case check-
points are written every 10 iterations. Two error scenarios were
tested: the first completes without error; in the second an error
happens after 60 iterations and then the application is restarted
and runs through. The measurements show that the overhead
incurred by writing checkpoints with SCR is in average only
8%, while it saves 23% of the execution time if a failure occurs
according to the scenario.

The checkpointing overhead can be further reduced cal-
culating parity data (Section III-D1). Fig. 9 shows a com-

0

50

100

150

200

250

1 2 4 8 16

R
u

n
ti

m
e

 [
s]

Nodes

w/o CP - w/o Error

with CP - w/o Error

w/o CP - with Error

with CP - with Error

Fig. 8: xPic testing SCR_PARTNER. Tests done writing check-
points (with CP) or not (w/o CP), for runs when an error occurs
(with) or not (w/o).

0

10

20

30

40

50

60

2 4 8 16

W
ri

ti
n

g
 t

im
e

 [
s]

Nodes

XOR on local NVMe

XOR checkpointing on NAM

Fig. 9: Distributed XOR vs. NAM XOR checkpointing strate-
gies, evaluated with xPic.

parison between the Distributed XOR and the NAM XOR
checkpointing strategies. The latter realizes an up to 3× higher
bandwidth, and leads to much better writing times: between
50% and 65% of time is saved when storing XOR data to the
NAM instead of storing it to the node-local NVMe devices.

An alternative strategy applied in DEEP-ER to increase the
applications’ robustness against system failures is the OmpSs-
offload resiliency functionality (Section III-D2). Fig. 10 shows
the results achieved when testing this approach with the FWI
code, on an Intel Sandy Bridge cluster (MareNostrum 3, at
BSC). An error occurring right before the end of the execution
nearly doubles the FWI runtime if no resiliency technique is
activated. The new OmpSs feature enables up to 42% time
savings (an only 15% longer execution when compared to a
run without failures) and its overhead is negligible (<1%).

TABLE III: Experiment setup for the resiliency measure-
ments.

Experiment xPic SCR xPic NAM FWI
Processed 32 GB per node 20 GB per node 1 GB per node
data 8 GB per CP 2 GB per CP

4 CPs 10 CPs

0

2000

4000

6000

8000

10000

12000

2 4 16 32

R
u

n
ti

m
e

 [
s]

Nodes

w/o CP - w/o Error

with CP - w/o Error

w/o CP - with Error

with CP - with Error in Worker

with CP - with Error in Slave

Fig. 10: OmpSs task-based resiliency tested with FWI (with
and without (w/o) checkpoints, with error - in worker or slave -
and w/o errors).

VI. RELATED WORK

The work on resiliency presented in this paper is based on
the Scalable Checkpoint-Restart library(SCR) [14]. During the
DEEP-ER project a tight integration of SIONlib [11] into SCR
was established. Task-local I/O as done by SCR typically uses
many independent files. SIONlib concentrates them into single
or few shared files on a parallel file-system, what makes this
type of I/O much more efficient. In DEEP-ER SIONlib is used
as an abstraction-layer for both, buddy checkpointing (similar
to SCR PARTNER) and NAM integration – which might be
seen as an hardware acceleration of SCR’s XOR checkpoin-
ting feature. Both approaches significantly improve the I/O
performance by preventing unnecessary read operations when
creating partner and XOR checkpoints.

A similar approach as SCR is realized in the Fault Tolerance
Interface (FTI) [20]. In the meantime an effort was started to
create a common abstraction of SCR and FTI, to help ap-
plication developers avoiding code-adaptations to the specific
checkpointing tool installed on a given HPC system.

Transparent system level checkpointing is realised in Ber-
keley Lab Checkpoint Restart (BLCR) [21]. In this approach
applications do not have to be modified in order to checkpoint
them like it is necessary in SCR or FTI, where explicit store
and load operations have to be introduced into the codes in
order to create checkpoints with all relevant data. The draw-
back of transparent checkpointing is that checkpoint wills grow
much larger, since the whole memory of the application has to
be dumped onto the underlying storage system. Furthermore,
this type of checkpointing is harder to implement since all MPI
communication has to be brought into a globally consistent
state in order to get properly checkpointed, too.

The same approach as BLCR is used by the Distributed
MultiThreaded Checkpointing (DMTCP) efforts [22] therefore
sharing the pros and cons.

VII. CONCLUSIONS AND OUTLOOK

The DEEP-ER project has introduced several hardware
and software innovations to improve the I/O and resiliency
capabilities of the Cluster-Booster architecture, and of HPC
systems in general. The central component is a multi-level

memory hierarchy employing non-volatile memory (NVM)
devices, locally attached to each of the nodes in the system.

The DEEP-ER I/O software system combines proven file-
systems and libraries with extensions that allow optimal ex-
ploitation of the capabilities of the memory and storage pool.
The project’s resiliency strategy relies on the combination of
complementary functions to recover from different kinds of
errors with reduced overhead. Building upon the infrastructure
provided by the Scalable Checkpoint/Restart library SCR,
the DEEP-ER extensions reduce the checkpointing overhead
keeping the same level of resiliency. An example is the
Buddy checkpointing functionality that employs SIONlib to
optimize SCR_PARTNER. Application resiliency is achieved
with even better performance employing the network-attached
memory (NAM) technology developed in DEEP-ER. This
special “memory node” is globally accessible from all nodes
and enables calculating and storing parity data of application
checkpoints much faster than if done on the nodes themselves.
The achieved improvements in performance and resiliency
have been demonstrated with real-world applications.

The Cluster-Booster architecture – which was first prototy-
ped in the DEEP projects series – has gone into production
in the meantime. The JURECA Cluster, running at JSC in
Germany since 2015 [23], has been recently accompanied by
a KNL-based, 5 PFlop/s Booster. The JURECA Booster is
planned to become available to users in Q1/2018.

The DEEP-ER project is now completed and success-
fully evaluated by external reviewers. Building on its results,
the successor (DEEP-EST) project generalizes the Cluster-
Booster concept to create the Modular Supercomputing ar-
chitecture [24]. It combines any number of compute modules
into a single computing platform. Each compute module is
(as the Cluster and the Booster) a system of a potentially
large size, tailored to the specific needs of a given kind of
applications. To demonstrate its capabilities, a three-module
hardware prototype will be built, covering the needs of both
HPC and high performance data analytics (HPDA) workloads.

ACKNOWLEDGEMENTS

The authors thank all members of the DEEP-ER consortium
for their strong commitment in the project, which led to
several results described in this paper. Special gratitude goes
to J. Schmidt (University of Heidelberg) for the NAM results,
A. Galonska (JSC) for buddy-checkpointing benchmarks, and
S. Rodrı́guez (BSC) OmpSs resiliency tests with FWI.

Part of the research presented here has received funding
from the European Community’s FP7/2007-2013 and H2020-
FETHPC Programmes, under Grant Agreement n◦ 287530
(DEEP), 610476 (DEEP-ER), and n◦ 754304 (DEEP-EST).
The present publication reflects only the authors’ views. The
European Commission is not liable for any use that might be
made of the information contained therein.

REFERENCES

[1] S.A. McKee, Reflections on the Memory Wall, Proceedings of the 1st
Conference on Computing Frontiers (CF ’04), p. 162, (2004) isbn = 1-
58113-741-9, [doi = 10.1145/977091.977115].

[2] http://www.deep-projects.eu
[3] N. Eicker and Th. Lippert, An accelerated Cluster-Architecture for the

Exascale, PARS ’11, PARS-Mitteilungen, Vol. 28, p. 110–119 (2011).
[4] A. Kreuzer, J. Amaya, N. Eicker, E. Suarez, Application performance

on a Cluster-Booster system, Accepted for publication at the 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops
Proceedings (HCW), IPDPS 2018 Conference, Vancouver (2018).

[5] EXTOLL GmbH website: http://www.extoll.de
[6] J. Schmidt, Network Attached Memory, Chapter 4 of the PhD

Thesis: Accelerating Checkpoint/Restart Application Performance in
Large-Scale Systems with Network Attached Memory, Ruprecht-
Karls University Heidelberg (Fakultät für Mathematik und Informa-
tik) http://archiv.ub.uni-heidelberg.de/volltextserver/23800/1/dissertation
juri schmidt publish.pdf

[7] http://www.uni-heidelberg.de/openhmc
[8] N. Eicker, Th. Lippert, Th. Moschny, and E. Suarez, The DEEP Project -

An alternative approach to heterogeneous cluster-computing in the many-
core era, Concurrency and computation: Practice and Experience, Vol. 28,
p. 2394—2411 (2016), [doi = 10.1002/cpe.3562].

[9] A. Duran, E. Ayguadé, R.M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, OmpSs: A proposal for programming heterogeneous multi-
core architectures, Parallel Processing Letters, Vol. 21(2), p. 173-193
(2011) [doi = 10.1142/S0129626411000151].

[10] F. Sainz, J. Bellón, V. Beltran, and J. Labarta, Collective Offload
for Heterogeneous Clusters, 2015 IEEE 22nd International Confe-
rence on High Performance Computing (HiPC), p. 376-385 (2015)
[doi = 10.1109/HiPC.2015.20].

[11] W.Frings, F. Wolf, and V. Petkov, Scalable Massively Parallel I/O to
Task-Local Files, Proceedings of SC’09, Portland, USA New York, ACM,
Technical papers, Article. No. 17, p.1-11 (2009) isbn = 978-1-60558-744-
8. http:// juser.fz-juelich.de/record/4447

[12] https://www.beegfs.io/content/
[13] https://www.beegfs.io/wiki/BeeOND
[14] A. Moody, G. Bronevetsky, K. Mohror, B.R. Supinski, Design, Mo-

deling, and Evaluation of a Scalable Multi-level Checkpointing System
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10,
IEEE Computer Society, p. 1-11 (2010) isbn = 978-1-4244-7559-9,
[doi = 10.1109/SC.2010.18].

[15] S. Markidis and G. Lapenta, Multi-scale simulations of plasma with
iPIC3D, in Mathematics and Computers in Simulation, Vol. 80, No. 7,
pp. 1509-1519 (2010).

[16] R. Leger, D. Alvarez Mallon, A. Duran, S. Lanteri, Adapting a Finite-
Element Type Solver for Bioelectromagnetics to the DEEP-ER Plat-
form, Chapter in Book ”Parallel Computing: On the Road to Exas-
cale“, Advances in Parallel Computing, Vol. 27, p. 349-359 (2015).
[doi = 10.3233/978-1-61499-621-7-349].

[17] S. Lanteri and C. Scheid, Convergence of a Discontinuous Galerkin
scheme for the mixed time domain Maxwell’s equations in disper-
sive media, Article in Journal ”IMA Journal of Numerical Analysis”,
https://hal.archives-ouvertes.fr/hal-00874752, Vol. 33, No. 2, pp. 432-
459 (2013). [doi = 10.1093/imanum/drs008].

[18] http://www.deep-projects.eu/applications/project-applications/
enhancing-oil-exploration.html

[19] http://www.fz-juelich.de/ ias/ jsc/EN/Expertise/Supercomputers/
QPACE3/ node.html

[20] L. Bautista-Gomez, et al. FTI: high performance fault tolerance interface
for hybrid systems. Proceedings of 2011 international conference for high
performance computing, networking, storage and analysis. ACM, 2011.

[21] P. H. Hargrove, J. C. Duell, Berkeley Lab Checkpoint/Restart (BLCR)
for Linux Clusters. Proceedings of SciDAC 2006: June 2006

[22] J. Ansel, K. Arya, G. Cooperman, DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop, Proceeding of the 23rd
IEEE International Parallel and Distributed Processing Symposium”,
May 2009, Rome, Italy

[23] D. Krause, and Ph. Thörnig, JURECA: General-purpose supercomputer
at Jülich Supercomputing Centre, Journal of large-scale research facili-
ties, Vol.2, A62, (2016), [doi = 10.17815/jlsrf-2-121].

[24] E. Suarez, N. Eicker, Th. Lippert, Supercomputing Evolution at JSC,
Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12, (2018), [online:
http:// juser.fz-juelich.de/record/844072].

