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Abstract

In this work, we consider the integration of MPI one-sided communication and non-blocking I/O in HPC-

centric MapReduce frameworks. Using a decoupled strategy, we aim to overlap the Map and Reduce phases

of the algorithm by allowing processes to communicate and synchronize using solely one-sided operations.

Hence, we effectively increase the performance in situations where the workload per process is unexpectedly

unbalanced. Using a Word-Count implementation and a large dataset from the Purdue MapReduce Bench-

marks Suite (PUMA), we demonstrate that our approach can provide up to 23% performance improvement

on average compared to a reference MapReduce implementation that uses state-of-the-art MPI collective

communication and I/O.
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1. Introduction

During the past decade, data-intensive workloads

have become an integral part of large-scale scien-

tific computing [1, 2]. The emergence of machine

learning and data-centric applications on HPC, has

been motivated by the advances in deep learning

and convolutional networks [3], alongside with the

appearance of programming models and tools for

data mining [4]. These developments allow us to
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understand large datasets of unstructured informa-

tion.

In this regard, MapReduce has become one of the

preferred programming models to hide the complex-

ity of process and data parallelism [5, 6]. The power

of this paradigm resides on the definition of simple

Map() and Reduce() functions, that become highly-

parallel operations using complex inter-processor

communication [7]. For instance, this model has

been successfully applied in the past for the tra-

jectory analysis of high-performance molecular dy-

namics (MD) simulations [8], that model important

biological processes that occur on the millisecond

time scale.

Despite traditional HPC clusters offering im-
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mense potential for high-performance data ana-

lytics, it has also been debated that MapReduce

frameworks, such as Hadoop MapReduce [9], pose

numerous constraints on current supercomputers

due to the elevated memory / storage require-

ments and complex job scheduling [10, 2]. Conse-

quently, over the past few years, MPI-based imple-

mentations of MapReduce have originated with the

aim of taking advantage of the high-performance

network and storage subsystems of HPC clus-

ters [11, 12]. These implementations integrate the

highly-optimized collective communication and I/O

of MPI within the different phases of the algorithm.

Notwithstanding, as the concurrency of upcom-

ing HPC clusters is expected to increase 100–

1000× [13], several limitations arise from the use

of master-slave or the inherent coupling between

the Map and Reduce phases of traditional MapRe-

duce frameworks. Given the irregular nature of

certain input datasets, these design considerations

pose performance restrictions when the workload

per process becomes unexpectedly unbalanced. In

such cases, it has been demonstrated that the use

of decentralized algorithms can provide significant

performance benefits [14].

In this work, we set the initial steps to-

wards the integration of a decoupled strategy for

MapReduce on HPC. In particular, we design

and implement MapReduce-1S (i.e., MapReduce

“One-Sided”), a small MapReduce implementation

that uses MPI one-sided communication and non-

blocking I/O [15, 16] to overlap the Map and Re-

duce phases of the algorithm. Processes synchro-

nize using solely one-sided operations. For instance,

conventional put / get operations are employed to

update and retrieve the key-value pairs remotely.

Moreover, the distribution of the tasks during Map

is also decentralized and self-managed (i.e., each

process reads non-overlapping portions of the input

datasets independently).

Using a Word-Count implementation and a

dataset from the Purdue MapReduce Benchmarks

Suite (PUMA) [17], we demonstrate that our ap-

proach provides up to 23% performance improve-

ment on unbalanced workloads compared to a ref-

erence MapReduce implementation that uses state-

of-the-art MPI collective operations [7]. On per-

fectly balanced workloads, however, we also observe

that the opportunities for improvement are negligi-

ble. Nonetheless, MapReduce-1S can still provide

additional advantages, such as novel fault-tolerance

support with the integration of the MPI storage

windows concept [18].

The contributions of this work are the following:

• We design and develop MapReduce-1S, an im-

plementation of MapReduce based on the use

of MPI one-sided communication and non-

blocking IO.

• We provide a custom MapReduce framework

to support our experiments with MapReduce-

1S.

• We illustrate the performance of MapReduce-

1S on Word-Count under balanced and unbal-

anced workloads, using strong / weak scaling

evaluations.

• We provide initial performance measure-

ments for a fault-tolerant implementation of

MapReduce-1S.
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The paper is organized as follows. We present the

design and implementation details of MapReduce-

1S in Section 2. The experimental setup and per-

formance results on Word-Count are presented in

Section 3. We extend the discussion of the results

and provide further insights in Section 4. Related

work is briefly described in Section 5. Lastly, Sec-

tion 6 summarizes our conclusions and outlines fu-

ture work.

2. Decoupled MapReduce

MapReduce emerged in the context of cloud an-

alytics as a programming model for processing and

generating large datasets [5, 10]. The main idea

behind a MapReduce job is to split a certain input

dataset into independent portions or tasks, which

can then be processed in a completely parallel man-

ner inside the Map phase. The output from this

phase is sorted during an intermediate step called

Shuffle. Finally, the ordered output is transferred

to the Reduce phase, where the data is aggregated

to produce the result.

Inside a MapReduce framework, users are re-

sponsible for the implementation of the Map() and

Reduce() operations. In particular, Map() is de-

signed to split the input data into a collection of in-

dividual key-value pairs. Each tuple is then merged

using the Reduce() function, producing an aggre-

gation of all the key-value pairs with identical key.

Despite its simplicity, many real-world applications

can be expressed following this model, such as high-

energy physics data analysis, or K-means cluster-

ing [19, 6].

In the context of HPC, MapReduce imple-

1 Init. Job

Settings

2 Map  

(+ Local

Reduce)

3 Reduce

4 Combine

···

5 Output

Result

P0 P1 P2 PN···

···

···

Figure 1: The use of MPI one-sided communication and non-

blocking I/O enables an effective overlap of the Map and

Reduce phases, specially on unbalanced workloads.

mentations are frequently integrated using state-

of-the-art MPI functionality [7, 11]. For in-

stance, tasks are commonly distributed employ-

ing a master-slave approach with scatter opera-

tions (e.g., MPI Scatter). Fixed-length, associative

key-values can be used to take advantage of the

heavily-optimized reduce operations of MPI (e.g.,

MPI Reduce). In addition, the intermediate data-

shuffle can be mapped to collective all-to-all opera-

tions (e.g., MPI Alltoall), optimizing the commu-

nication between the different phases [12]. When

reading the input, MPI collective I/O can be used

to decrease the overhead of accessing parallel file

systems [15, 2].

Even though these design considerations gener-

ally provide major advantages compared to cloud-

based alternatives [20], we also observe that the

inherent coupling between the Map and Reduce

phases may still produce workload imbalance. This
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is particularly the case when the input datasets

feature an irregular distribution of the data. In

such cases, a decoupled strategy for MapReduce

frameworks can reduce the synchronization over-

head among the processes by overlapping the dif-

ferent phases of the algorithm. We propose to solve

this challenge with the integration of the MPI one-

sided communication model [16, 21]. This model

enables local / remote communication over special-

buffers denoted as MPI windows. The basic oper-

ations defined by the MPI standard to access and

update an MPI window are put and get. Advanced

functionality, such as atomic Compare-And-Swap

(CAS), is also available. In addition, we also con-

sider the integration of MPI non-blocking I/O [15]

to overlap computations and storage operations.

In this section, we present the design and im-

plementation details of MapReduce-1S, a small

MapReduce implementation that uses MPI one-

sided communication and non-blocking I/O. We ad-

ditionally describe a custom MapReduce framework

utilized to support our experiments.

2.1. Design and Implementation

MapReduce-1S inherits the core principles of tra-

ditional MapReduce frameworks, such as Hadoop

MapReduce [9], with subtle variations. In particu-

lar, we opt to divide the execution into four different

isolated phases (Figure 1):

I Map. Transforms a given input into multiple

key-value pairs. Each key-value is assigned to

a target process and stored into a designated

buffer for remote communication. The own-

ership is determined through a hash function

using the key.

II Local Reduce. Aggregates certain key-value

pairs locally, whenever possible. The aim is

to decrease the overall memory footprint and

network overhead [2]. This phase is conducted

within Map.

III Reduce. Aggregates all the key-value pairs

found by the rest of the processes. Remote

memory operations are used to retrieve the tu-

ples. The output is an ordered collection of

unique key-value pairs stored locally.

IV Combine. Combines the aggregated key-

value pairs to generate the final result. This

phase is similar to Shuffle in traditional

MapReduce frameworks, with the difference

that Reduce also performs ordering. Hence,

this step is considerably lighter.

The input datasets are split into equally-sized

tasks, that are later handled in parallel by each pro-

cess. Instead of following a master-slave approach,

we design a mechanism that enable processes to de-

cide the next task to perform based on the rank,

task size, and file offset between tasks. The input

portion for the task is retrieved individually using

non-blocking MPI I/O operations. Hence, while a

certain task is being computed, the subsequent in-

put is already scheduled for asynchronous retrieval.

In order to enable remote memory communica-

tions during the aforementioned execution phases,

we define a multi-window configuration per MPI

process (Figure 2):

• “Status” Window. Defines the current

status for each individual process (e.g.,

“STATUS REDUCE”). The status is updated re-

motely after completing a phase.
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• “Key-Value” Window. This multi-

dimensional, dynamic window contains

buckets to store the key-value pairs, indexed

by the target rank.

• “Combine” Window. Designed for the Com-

bine phase, it contains a single-dimension, dy-

namic window with ordered key-values.

• “Displacement” Window. Two additional dis-

placement windows are defined to support

the “Key-Value” and “Combine” windows de-

scribed1.

When a new key-value pair is found, we use a cus-

tom memory management to store the correspon-

dent <key,value> tuple. Each key-value pair is

mapped inside the current bucket assigned to the

target process. We use this approach as a mecha-

nism to transfer information concurrently [7]. The

target is determined by first generating a 64-bit

hash of the key. Thereafter, a mapping to the as-

sociated chunk inside the Key-Value window is es-

tablished. Thus, remote processes can directly ref-

erence specific key-values, without affecting the in-

formation stored in surrounding buckets. The infor-

mation is encoded by including a fixed-size header

h with the length of the key and value attributes.

This fact implies that our implementation supports

variable-length <key,value> tuples, of arbitrary K

and V bytes, respectively:

1Attaching new allocations to an MPI dynamic window is

not a collective operation. Thus, the MPI standard requires

applications to share the displacement for the buckets at-

tached to the window by other means.

···

Status

Window
P0 P1 P2 PN

Key-Value

Window

P0

P1 P1 P1

P2 P2

PN

···

Combine

Window
L0 L1 ···

Displacement

Window (2)

d0 d2 d3 dN···

d0 d2 d3 dN···

Figure 2: Multiple MPI windows are required to support the

decoupled strategy of MapReduce-1S. This allows processes

to communicate using only MPI one-sided operations.

P0 P1 P2 P3 P4 P5 P6 P7
Level 0

8 Processes

Level 1

4 Processes

Level 2

2 Processes

Level 3

1 Process

P0 P2 P4 P6

P0 P4

P0

Figure 3: Example of the tree-based algorithm that gener-

ates the final result in Combine, inspired by merge sort [22,

23]. For illustration purposes, only 8 processes are depicted.

h key value

Hbytes Kbytes Vbytes

When a process finishes the Map phase, it pro-

ceeds to the Reduce phase by collecting groups of

key-value pairs assigned to this particular process,

from all the other processes. The key-values are

retrieved using MPI one-sided operations over the

Key-Value window with an offset. The offset is es-

timated using the rank and the specific bucket in-

formation defined within the Displacement window.

We use the passive target synchronization for effi-

cient, decoupled communication [16, 21]. After one

group of key-value pairs is retrieved, the process

splits the information by interpreting the headers
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1 ...

2 // Create MR object with MR -1S back -end

3 MapReduce1S *map_reduce =

4 new WordCount ();

5

6 // Init job with the input settings

7 map_reduce ->Init(filename , win_size ,

8 chunk_size , task_size ,

9 s_enabled , h_enabled ,

10 api , sfactor , sunit );

11

12 // Launch execution and output result

13 map_reduce ->Run();

14 map_reduce ->Print ();

15

16 // Close job and release memory

17 map_reduce ->Finalize ();

18 delete map_reduce;

19 ...

Listing 1: Source code example in C++ that illustrates how

to run a Word-Count job using MapReduce-1S as back-end.

and reducing locally the <key,value> tuples.

In this regard, the Status window is required as

a synchronization mechanism to prevent incorrect

data accesses to the Key-Value window. The sta-

tus changes are notified via an atomic put oper-

ation. This is accomplished with a combination

of MPI Accumulate plus MPI REPLACE to enforce

atomicity [24]. Hence, when a key-value pair is

emitted and about to be stored inside Map, we en-

sure first that the status of the target process that

owns the key-value is not already in Reduce. In

such case, we avoid to update the bucket, and the

ownership of the key-value is transferred2.

Lastly, after the Map and Reduce phases are

2Despite the ownership change, the key-value will be re-

duced afterwards during the final Combine phase.

completed, the Combine phase sets up a tree-

based sorting algorithm that fetches the final key-

values of each process to generate the result (Fig-

ure 3). We use an algorithm inspired by merge

sort [22, 23]. The number of levels in the tree is

given by dlog2(numProcs)e + 1. The initial level

stores the local key-value pairs in-order. After this

first step, the processes retrieve the remote key-

values from the previous level using one-sided op-

erations and generate a new level with all the pairs

ordered. This task is repeated until one last process

generates the final level, which corresponds to the

result.

We note that, at this point, we require to enforce

synchronization to prevent race conditions over the

different levels of the tree. To overcome this limi-

tation with MPI one-sided communication, we use

an exclusive lock (i.e., MPI LOCK EXCLUSIVE) over

the Combine window. The lock is acquired by each

process during initialization and released after the

Combine phase is completed. This guarantees that

remote processes are blocked by the MPI implemen-

tation until the Combine window is unlocked and

the access epoch is completed.

2.2. Custom MapReduce Framework

In order to support our experiments, we integrate

MapReduce-1S as the back-end of a custom MapRe-

duce framework3. The implementation is written in

C/C++ and consists of approximately 1,500 lines

of code.

The framework employs a multi-inheritance

mechanism by dividing the responsibilities as a hi-

erarchy of classes:

3https://github.com/sergiorg-kth/mpi-mapreduce-1s
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• Base Class. Defines the main API to interact

with the user, such as initialization or job exe-

cution.

• Back-end Class. Contains the back-end imple-

mentation that performs the phases of the al-

gorithm.

• Use-case Class. Exposes the specific Map() and

Reduce() functions required for MapReduce.

This set of abstract classes allows applications

to easily configure different back-ends over multi-

ple use-cases. Listing 1 provides a source code ex-

ample in C++ where a Word-Count job is created

using MapReduce-1S as back-end. The example

first creates the WordCount object, that contains

the specific definition of Map() and Reduce(), as

well as ReduceLocal(). These functions will be

called by MapReduce-1S as necessary. Thereafter,

the MapReduce job is initialized by providing sev-

eral settings, such as the size of each individual task

within the Map phase, or the maximum number of

bytes that can be transferred simultaneously from

remote processes during Reduce and Combine. The

execution is then launched and the output result

printed.

2.2.1. Reference MapReduce Implementation

We also integrate into our custom framework a

MapReduce-2S (i.e., MapReduce “Two-Sided”) im-

plementation based on the work by Hoefler et al. [7].

In this case, the implementation uses MPI Scatter

to distribute the tasks using a master-slave ap-

proach. The input is read collectively with MPI I/O

to optimize the access to storage. During Reduce,

MPI Alltoallv is used to distribute the variable-

length key-value pairs assigned to each process.

The Combine step follows the same tree-based al-

gorithm of MapReduce-1S, but using point-to-point

communication instead. The mapping and reduc-

tion mechanisms for each key-value pair are also

identical. This includes the optimizations (e.g., Lo-

cal Reduce), as well as the custom memory man-

agement based on multiple buckets per process.

3. Experimental Results

In this section, we estimate the overall per-

formance of MapReduce-1S in comparison with

MapReduce-2S. We aim to understand how our ap-

proach could be integrated into current and future

MapReduce frameworks. After this section, we con-

tinue and extend the discussion on the results.

For this purpose, we use Tegner, a supercom-

puter at KTH Royal Institute of Technology with 46

compute nodes. Each node is equipped with dual

12-core Haswell E5-2690v3 processors running at

2.6GHz, and a total of 512GB DRAM. The storage

employs a Lustre parallel file system (client v2.5.2)

with 165 OST servers. No local storage is provided

per node. The OS is CentOS v7.4.1708 with Kernel

3.10.0-693.11.6.el7.x86 64. The framework is com-

piled with Intel ICC and Intel MPI, both v18.0.1.

Note that all the figures reflect the standard de-

viation of the samples as error bars. In addition,

we neglect from our results the initialization time,

but account for the time required to retrieve the

input datasets and bucket allocation. Lastly, the

terms “MR-1S” and “MR-2S” are used to refer to

MapReduce-1S and MapReduce-2S, respectively.
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Figure 4: (a,c) Strong scaling with a 32GB dataset from PUMA-Wikipedia using MapReduce-2S and MapReduce-1S on

Tegner, under balanced and unbalanced workloads. (b,d) Weak scaling with variable-size datasets from PUMA-Wikipedia

using MapReduce-2S and MapReduce-1S on Tegner, under balanced and unbalanced workloads.

3.1. Performance Evaluation

We evaluate the scalability of MapReduce-1S us-

ing Word-Count [25, 17], a technique that has

major relevance in Big Data analytics. For in-

stance, Word-Count has been proposed in the

past for understanding the quality of articles on

Wikipedia [26]. The basic principle of Word-Count

is to compute the occurrences of individual words

over large collections of documents. Here, the Map

phase emits <word,1> key-value pairs, where word

represents the key and 1 the occurrence found. The

Reduce phase aggregates the occurrences for a given

word to generate its final <word,count>. Finally,

the Combine phase aggregates the key-values to

produce the result.

For our evaluations, we use a large dataset

from the Purdue MapReduce Benchmarks Suite

(PUMA) [17]. This suite emerges as an on-going ef-

fort to provide rigorous benchmarks for MapReduce

frameworks. In particular, we use the Dataset3

from the PUMA-Wikipedia datasets4, that contains

approximately 300GB of data divided into multiple

files. These files include articles, user discussions,

and other metadata originally from Wikipedia. We

4https://engineering.purdue.edu/~puma/datasets.

htm
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Figure 5: Strong / Weak scaling performance with variable-size datasets from PUMA-Wikipedia using MapReduce-1S on

Tegner, under balanced workload. The results illustrate the original version of this implementation and the modified version

with checkpoint support through MPI storage windows.
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Figure 6: (a) Peak memory consumption per node with variable-size datasets from PUMA-Wikipedia using MapReduce-2S and

MapReduce-1S on Tegner. (b) Memory consumption timeline per node with a 256GB dataset from PUMA-Wikipedia using

MapReduce-2S and MapReduce-1S on Tegner. The execution time is normalized for representation purposes.

pre-process the files off-line to generate unified,

large input datasets for concise results. Thus, al-

lowing us to have fine-grained control over the work-

load assigned per process to evaluate both balanced

and unbalanced workloads5. Finally, we use a task

size of 64MB, a limit of 1MB per one-sided oper-

ation, and an initial bucket size of 64MB per pro-

cess. The input files are created with a stripe size

5Unbalanced workloads are simulated by computing the

same task multiple times, but reading the input only once.

Otherwise, we would mostly account for the time required

to retrieve the data from storage.

of 1MB and maximum stripe count (165). The set-

tings are determined empirically for each implemen-

tation prior to running our experiments.

Using a fixed-size input dataset, we observe that

MapReduce-1S scales ideally when duplicating the

number of active processes, but does not provide

significant performance advantages on large pro-

cess counts. Figures 4a and 4c illustrate the per-

formance of MapReduce-2S and MapReduce-1S by

varying the number of MPI processes on Tegner

for a fixed-size input dataset (strong scaling), using

balanced and unbalanced workloads, respectively.
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The process count varies from 16 (1 node) up to 256

(11 nodes). We use a reference input dataset from

PUMA-Wikipedia with 32GB of data. From Fig-

ure 4a, we determine that, if the workload is ideally

balanced, MapReduce-1S provides approximately

4.8% improvement on average over MapReduce-2S

for lower process counts (up to 64 processes). If

the workload is unbalanced, Figure 4c shows that

the average improvement is approximately 20.4%

on average compared to MapReduce-2S. However,

the performance of MapReduce-1S is affected on

large process counts due to the limited workload

per process (e.g., 0.1GB on the last test). In such

situations, the use of collective communication and

collective I/O clearly results in better performance.

By increasing the size of the input datasets and,

consequently, the workload per process, we con-

firm that MapReduce-1S provides performance ad-

vantages on unbalanced workloads. Figures 4b

and 4d illustrate the performance of MapReduce-

2S and MapReduce-1S by varying the number of

MPI processes on Tegner and maintaining the work-

load per process (weak scaling), using balanced

and unbalanced workloads, respectively. Once

again, the process count varies from 16 (1 node)

up to 256 (11 nodes). We use the reference in-

put datasets from PUMA-Wikipedia, with 16GB

up to 256GB of data (i.e., 1GB per process).

When the workload is ideally balanced, we con-

clude that MapReduce-1S provides equivalent per-

formance compared to MapReduce-2S, as illus-

trated in Figure 4b. The average execution time is

111.3 seconds for MapReduce-2S, and 111.8 seconds

for MapReduce-1S (0.5% difference). Nonetheless,

when the workload per process is unbalanced, we

observe evident performance benefits on all the ex-

periments. The average execution times are 649.9

seconds for MapReduce-2S, and 530.8 seconds for

MapReduce-1S. The improvement is 23.1% on av-

erage, with a peak of 33.9%.

4. Discussion

We further extend the discussion concerning the

results given in the previous section.

Considerations for Map and Reduce phases

The experimental results have illustrated that

overlapping the Map, Reduce, and Combine phases

in MapReduce-1S, can provide benefits when the

workload per process becomes unbalanced. We

have additionally observed that the use of MPI one-

sided communication and individual non-blocking

I/O incurs in a performance penalty on large pro-

cess counts if the workload per process is limited

or balanced. In such cases, the use of collective

communication and I/O still provides performance

advantages in comparison. However, we must note

that the benefits of MapReduce-1S directly depend

on the particular use-case. In Word-Count, for ex-

ample, the execution is largely dominated by the

Map phase, with lightweight Reduce and Combine

phases (i.e., execution mostly depends on the time

required to retrieve the input). We expect to an-

alyze additional use-cases in future work, with the

aim of understanding the implications of our ap-

proach compared to other MapReduce frameworks.

Opportunities for fault-tolerant MapReduce

The use of MPI one-sided communication inside

MapReduce-1S provides us with an opportunity to
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Figure 7: Execution timelines with a fixed 32GB dataset

from PUMA-Wikipedia using MapReduce-1S on Tegner, un-

der unbalanced workload. The examples reflect the standard

version of this implementation and the modified version with

“improved” one-sided operations.

integrate the MPI storage windows concept [18].

This project is an on-going effort that proposes the

use of MPI one-sided communication and MPI win-

dows as unique interface to program data move-

ment among memory and storage subsystems. The

approach transparently integrates storage into the

memory management of HPC applications, requir-

ing only subtle source code modifications on al-

ready existing applications that use the MPI one-

sided communication model. Hence, we could easily

define a novel fault-tolerant MapReduce-1S imple-

mentation that establishes a mapping to storage per

window (i.e., transparent checkpoint). Figure 5 il-

lustrate the strong / weak scaling performance of

MapReduce-1S on Tegner, under balanced work-

load. We introduce support for MPI storage win-

dows and extend MapReduce-1S to perform a win-

dow synchronization point6 after each Map task,

as well as after the Reduce phase is completed.

From these figures, we determine that the check-

point overhead is only 4.8% on average. The rea-

son for this optimal result is due to the fact that,

with MPI storage windows, data transferring from

/ to storage is overlapped with computations. The

synchronization points are only required to ensure

consistency.

Memory requirements per dataset

One of the main limiting factors of MapRe-

duce in the context of HPC is the high memory

requirements of this model [2]. In the case of

MapReduce-1S, the need for pre-allocating multi-

ple window buckets to enable one-sided operations

might also become a constraint. Nonetheless, we

employ several optimizations that aim to reduce

the memory footprint. Figure 6a shows the peak

memory consumption per node on Tegner using

the MapReduce-2S and MapReduce-1S implemen-

tations during the weak scaling evaluation. The

workload per process is 1GB (24GB per node).

From this figure, we determine that both imple-

mentations reflect similar memory requirements be-

tween 10.4–13.7GB. The peak consumption is ob-

served during Combine at the end of the execution

(Figure 6b).

6In MPI storage windows, applications can guaran-

tee data consistency with the storage layer through

MPI Win sync. We use this function as a mechanism to en-

sure that the latest window changes are flushed to storage.
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Importance of the MPI implementation

Even though we use the passive target synchro-

nization of MPI one-sided communication, clear

communication patterns are observed when we ana-

lyze the execution timeline of our experiments. The

behaviour is similar to the active target synchro-

nization, which is close to traditional point-to-point

communication. Thus, limiting the performance

benefits of our approach. In order to partially re-

duce these constraints, we included redundant lock

/ unlock operations for each window after all the

Map and Reduce tasks. Figure 7 illustrates an ex-

ample execution timeline of MapReduce-1S before

and after this change. Despite the performance im-

proving approximately 5% on average, evident com-

munication patterns still exist. This effect was ob-

served with recent versions of both Intel MPI and

OpenMPI implementations. We plan to investigate

the behaviour of other MPI implementations in the

future.

5. Related Work

Since its inception, the MapReduce programming

model has been widely adopted by the scientific

community [5, 6]. For instance, Chu et al. [19] pro-

pose MapReduce to parallelize a variety of machine

learning algorithms, such as Locally Weighted Lin-

ear Regression (LWLR).

In the context of HPC, state-of-the-art MPI

functionality is employed to take advantage of

the high-performance network and storage subsys-

tems [11]. Guo et al. [12] propose a fault-tolerant

MapReduce implementation that uses fine-grained

progress tracking to establish locally consistent

states for failure recovery. Recently, Gao et al. [2]

provide an efficient MapReduce library designed to

reduce the overall memory footprint on current and

future supercomputers. While the goal of the afore-

mentioned publications is mostly to bridge the gap

between data analytics and scientific computing, we

consider our approach complimentary. Hence, the

integration of some of the developments described

in this paper could provide further value to their

proposals.

Lastly, we must note that the work by Hisham

et al. [27] share some similarities. Here, the au-

thors propose a MapReduce framework specifically

designed to overlap the Map and Reduce phases to

decrease the constraints on imbalanced workloads.

Their proposal is based on running the Map and

Reduce phases in parallel, and exchanging partial

intermediate results between each phase using MPI.

In our case, we take a different direction and pro-

pose to decouple these phases completely with the

integration of MPI one-sided communication and

non-blocking I/O instead.

6. Conclusion

With the emergence of machine learning and

data-centric applications on HPC, MapReduce has

become one of the preferred programming models

to hide the complexity of process and data paral-

lelism [5, 11]. In this paper, we have presented a de-

coupled strategy for MapReduce frameworks based

on the integration of MPI one-sided communication

and non-blocking I/O operations [16, 15].

Preliminary results have demonstrated that,

while our approach does not provide significant per-
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formance benefits on large-process counts and bal-

anced workloads per process, it does feature per-

formance advantages by overlapping the Map and

Reduce phases of MapReduce if the workload per

process becomes unbalanced.

As future work, we plan to analyze the impli-

cations of a job stealing mechanism based on the

use of atomic MPI one-sided operations. In addi-

tion, we plan to investigate the integration of fault-

tolerance support on MapReduce-1S through the

concept of MPI storage windows [18].
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