
A

An Algebraic Framework for the Real-Time Solution
of Inverse Problems on Embedded Systems

Christoph Gugg, Matthew Harker, Paul O’Leary and Gerhard Rath

This article presents a new approach to the real-time solution of inverse problems on embedded systems.
The class of problems addressed corresponds to ordinary differential equations (ODEs) with generalized
linear constraints, whereby the data from an array of sensors forms the forcing function. The algebraic
discretization of the problem enables a one-to-one mapping of the ODE to its discrete equivalent linear dif-
ferential operator, together with an additional matrix equation representing the constraints. The solution of
the equation is formulated as a least squares (LS) problem with linear constraints. The LS approach makes
the method suitable for the explicit solution of inverse problems where the forcing function is perturbed by
noise. The algebraic computation is partitioned into a initial preparatory step, which precomputes the ma-
trices required for the run-time computation; and the cyclic run-time computation, which is repeated with
each acquisition of sensor data. The cyclic computation consists of a single matrix-vector multiplication, in
this manner computation complexity is known a-priori, fulfilling the definition of a real-time computation.
Numerical testing of the new method is presented on perturbed as well as unperturbed problems; the results
are compared with known analytic solutions and solutions acquired from state-of-the-art implicit solvers.
In all performed numerical tests the new method was both faster and more accurate for repeated solutions
of the same ODE. The solution is implemented with model based design and uses only fundamental linear
algebra; consequently, this approach supports automatic code generation for deployment on embedded sys-
tems. The targeting concept was tested via software- and processor-in-the-loop verification on two systems
with different processor architectures. Finally, the method was tested on a laboratory prototype with real
measurement data for the monitoring of flexible structures. The measurement arrangement consists of an
embedded system with a chain of 14 inclinometer sensors connected to it, two additional nodes implement
a total of four constraints. The problem solved is: the real-time overconstrained reconstruction of a curve
from measured gradients. Such systems are commonly encountered in the monitoring of structures and/or
ground subsidence.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-Time
and Embedded Systems; G.1.7 [Ordinary Differential Equations]: Boundary value problems; I.2.2 [Au-
tomatic Programming]: Program transformation

General Terms: Design, Performance, Experimentation

Additional Key Words and Phrases: cyber-physical systems, embedded systems, inclinometers, measure-
ment, numerical solver, ordinary differential equations, inverse problems, constraints, model based design,
automatic code generation, in-the-loop verification

1. MOTIVATION AND PROBLEM STATEMENT
The original motivation for this work was the development of a large scale cyber-
physical system (CPS) to monitor ground subsidence and possible deformation of struc-
tures during the construction of the new City-Circle Line subway in Copenhagen, Den-
mark. Very stringent geo-mechanical monitoring requirements have been established

Author’s address: Chair of Automation, Department Product Engineering, University of Leoben, 8700
Leoben, Austria; URL: automation.unileoben.ac.at; Email: christoph.gugg@unileoben.ac.at;
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

ar
X

iv
:1

40
6.

03
80

v1
 [

cs
.D

M
]

 2
 J

un
 2

01
4

A:2 Gugg et al.

for underground construction projects in urban areas following an accident on March 3,
2009 in Cologne, Germany: the building of the city’s archive collapsed into a Stadtbahn
tunnel under construction on the Severinstraße, killing two people1. The monitoring
concept consists of a large number of vertical holes sunk along the planned path of
the tunnel distributed over a distance of approximately 15 [km]. Each of these holes is
equipped with a series of rods, and each rod is equipped with a pair of inclinometers,
effectively forming a chain of inclinometers. Chains of inclinometers are used in the
monitoring of ground subsidence [Machan and Bennett 2008] and for measuring the
deformation of structures [O’Leary and Harker 2012]. Determining the ground move-
ment from the orientation of the rods is an inverse problem. Additionally, there are
points where constraints are placed on the construction, for example pillars, which in
turn define initial-, inner- or boundary values for the inverse problems. Reconstructing
the deformation under these circumstances requires the solution of an inverse bound-
ary value problem for each chain of rods. Consequently, it is necessary to solve a large
number of inverse initial-, inner- or boundary value problems in real-time for different
sets of measurement data. Each chain of inclinometers is equipped with an embedded
system that acquires and processes the data from the sensors, forming an independent
sensor node. The individual sensor nodes are part of a larger sensor network. Decen-
tralized processing of measurement data introduces an implicit form of parallelism
thanks to distributed computing. The network’s bandwidth demands are lowered due
to the higher information density.

Necsulescu also identified the necessity of solving inverse problems in critical infras-
tructure monitoring [Necsulescu and Ganapathy 2005]. Lee [Lee et al. 2012] identified
that predictable real-time solutions of complex systems, with an understandable con-
currency, are a key issue for future developments of CPS. He points out that this issue
was inadequately dealt with in the past. There are numerous engineering and scien-
tific applications which require the real-time solution of inverse problems, e.g. [Loh
and Dickin 1996]. Therefore, this is clearly an area of research which is of significance.

2. SCOPE OF THE ARTICLE
This article develops a new method for the numerical solution of inverse problems
based on a matrix algebraic approach. It provides global least squares solutions to
inverse initial-, inner- or boundary value problems. The method has been developed
specifically with the aim of solving inverse problems associated with measurement
systems in an efficient manner, whereby multiple measurements are performed over
time and repeated solutions of the same equation are required. The goal is to directly
embed the solver onto the sensor node’s hardware. The main contributions of the arti-
cle are:

(1) A new algebraic approach to the numerical solution of inverse problems is derived.
The method splits the calculations into two portions: a preparatory (offline) com-
putation and a run-time (online) computation. The run-time computation is re-
peatedly performed with each new measurement. Solving the inverse problem at
run-time is reduced to one matrix multiplication and one vector addition. In this
manner, the exact number of floating point operations (FLOPs) is known a-priori,
W (n) = 2n2, where n is the number of measurement points. Additionally, the mem-
ory requirements are known in advance. Consequently, a strict upper-bound O(n2)
can be determined for the execution time on a given processor. This makes the
method, by definition, suitable for real-time applications. Furthermore, the covari-
ance propagation for perturbations of the sensor inputs to the solution is derived.

1An article relating to the incident can be found at http://www.ksta.de/html/artikel/1266930835566.shtml

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.ksta.de/html/artikel/1266930835566.shtml

Real-Time Solution of Inverse Problems on Embedded Systems A:3

This enables the computation of a confidence interval for the solution. The run-
time computational complexity of estimating the confidence is O(n).
Extensive model-in-the-loop (MIL) testing of the method on a personal computer
(PC) is presented to validate the method. The results of a classical Runge-Kutta
type approach are compared with those obtained using the new approach. The
results demonstrate the accuracy of the method and its numerical efficiency.

(2) A model based design (MBD) approach is presented which enables the system
formulation at an abstract level. The presented model only utilizes fundamental
linear algebra operations such as matrix multiplication and vector addition; con-
sequently, automatic generation of C code becomes possible. Software-in-the-loop
(SIL) verification is used to proof the functional equivalence of the model and the
generated code. Embedded targeting enables the deployment of the code directly
onto a microcontroller. The results computed by the embedded processor are com-
pared to the results computed by the model running on a PC via processor-in-
the-loop (PIL) verification. The viability of the model is demonstrated on a very
limited, yet cheap and available, 8-bit microcontroller. Furthermore, a laboratory
setup with a chain of inclinometers mounted on a flexible structure demonstrates
the applicability of the model for real measurement data.

3. CONTINUOUS MEASUREMENT MODEL
The measurement model is central to this article: it defines the class of problem which
is being solved. Furthermore, it defines the requirements for the MBD environment.
The aim is to use MBD to automatically generate the functionally equivalent code
which is capable of solving any example of this problem on an embedded system in
real-time.

The class of inverse problems being considered in this article consist of an ordinary
differential equation (ODE) of degree m of the form

am(x) y(m) + am−1(x) y
(m−1) + . . .+ a1(x) y

′ + a0(x) y = g(x), (1)

where y is a function of x, y(i) is the notation for the ith derivative of y with respect
to x, ai(x) are the coefficient functions and g(x) is the forcing function. Additionally, a
minimum of m independent initial-, inner- or boundary values are required to ensure
that there is a unique solution to the equation. The n measurements, forming the vec-
tor g, correspond to discrete samples of the forcing function g(x). The n measurements
may emanate from n sensors forming a spatial array or from a time sequence of n mea-
surements from one single sensor. In this class of problems, the forcing function g(x),
the input, is considered to be perturbed, since it is formed from measurements which
are subject to noise. Only the forcing function g(x) changes from one measurement to
the next. The task is to recompute y(x) for each new measurement g(x). This type of
problem occurs, for example, in the monitoring of structures [Burdet and Zanella 2002;
Golser 2010; Harker and O’Leary 2013a].

The new method can, however, deal with overconstrained systems, i.e., there are
p independent constraints whereby p > m. The initial-, inner- or boundary values
correspond to constraints on the function value y(x) or its derivatives y(i)(x) at specific
x locations. Both Dirichlet and Neumann boundary conditions are special cases of such
constraints. The nature of the constraints determines if the system is considered to be
an initial value (IVP) or boundary value (BVP) or inner value problem.

One peculiarity of this class of inverse problems is: that the abscissae, i.e., the po-
sitions where the solutions are required, is determined by the measurements; these
positions are called the nodes. In the case of a chain of sensors, the physical position of
the sensor corresponds to the abscissae x. In temporal sequences, it is the time points

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Gugg et al.

of the individual measurements which define the abscissae. Consequently, we are not
free to select the positions of where the ODE is to be solved. This precludes the use of
variable step size algorithms. A further consequence is that a general framework for
this type of inverse problem has to be capable of computing the solution for arbitrary
nodes.

4. THEORY OF ORDINARY DIFFERENTIAL EQUATIONS
Some preliminary theory is required if an objective evaluation of previous work is to
be performed. The numerical solution of an inverse problem requires the discrete ap-
proximation of a continuous system. Consequently, we can derive properties of the con-
tinuous operations which must be fulfilled by the corresponding discrete operators. We
first define the continuous domain differential operator D such that, D(i) y ≡ y(i). Most
commonly, the discrete implementation of the differentiating matrix is implemented
using polynomial interpolation. The properties of D with respect to a polynomial are
essential to the desired behavior of numerical differentiation. Defining a power series
approximation for y with coefficients ci,

y =
m∑
i=0

ci x
i. (2)

Applying the differential operator D yields,

y′ = Dy =

m∑
i=0

i ci x
i−1 =

m∑
i=1

i ci x
i−1. (3)

By definition of the derivative, the constant portion of the polynomial differentiates
to zero, hence the constant coefficient c0 vanishes. We assume that D is composed of
formulae which are consistent, in the sense that in the limit they define a derivative.
If this is the case then the matrix D should satisfy the following properties, such that
D is a consistent discrete approximation to the continuous operator D:

(1) The matrix D must be rank-1 deficient; i.e, its null space is of dimension one.
(2) The null space of D must be spanned by the constant vector 1α; equivalently, the

row-sums of D are all zero,

D 1α = 0. (4)

These conditions ensure that the differentiating matrix D is consistent with the con-
tinuous domain definition of the derivative. Given that, interpolating polynomials are
unique, the formula for the derivative should be independent of the particular polyno-
mials chosen for interpolation. However, differences do lie in the numerical behavior
of different formulas; regardless, a given set of nodes, x, should uniquely define the
differentiating matrix of a given polynomial degree of accuracy.

For the purpose of treating ODEs, we use the general notion of a linear differen-
tial operator [Lanczos 1997]. Specifically, by substituting the continuous differential
operator D for the differentials y(i) in Eqn. (1) yields,

am(x)D(m) y + am−1(x)D
(m−1) y + . . .+ a1(x)Dy + a0(x) y = g(x). (5)

Factoring y to the right yields,{
am(x)D(m) + am−1(x)D

(m−1) + . . .+ a1(x)D + a0(x)
}
y = g(x). (6)

The linear differential operator L for the continuous equation can now be defined as,

L , am(x)D(m) + am−1(x)D
(m−1) + . . .+ a1(x)D + a0(x). (7)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:5

Consequently, Eqn. (1) is written as,

Ly = g(x). (8)

5. OVERVIEW OF NUMERICAL ODE SOLVERS
The Taylor matrix uses the known analytical relationship between the coefficients, s, of
a Taylor polynomial and those of its derivatives, ṡ, to compute a differentiating matrix
D for the solution of ODEs [Kurt and Cevik 2008]. The matrix D together with the
matrix of basis functions arranged as the columns of the matrix B are used to compute
numerical solutions to the differential equations. The method of the Taylor matrix
was extended to the computation of fractional derivatives [Keskyn et al. 2011]. The
most serious problem associated with the Taylor matrix approach is that it requires
the inversion of the Vandermonde matrix, a process which is numerically unstable.
The errors in the differentiating matrix are strongly dependent on the degree of the
polynomial, i.e., the number of nodes and the node placement.

A Chebyshev matrix approach was presented by Sezer [Sezer and Kaynak 1996] and
others [Welfert 1997; Weideman and Reddy 2000; Driscoll et al. 2008; Jewell 2013]. The
approach is fundamentally the same as for the Taylor matrix, whereby the Chebyshev
polynomials are used as an alternative to geometric polynomials. The advantage of
defining polynomials on the Chebyshev points is that they deliver stable polynomials
and differentials. The main disadvantage, however, is that the numerical solution to
the differential equations is restricted to the locations of the Chebyshev points; this
lacks the generality needed for inverse problems2 being considered here.

Synthesizing differentiating matrices for arbitrary nodes is an issue one might as-
sume has been sufficiently dealt with in literature. However, a closer examination of
literature and textbooks shows that some clarification is still necessary. Most books
on spectral and pseudo-spectral techniques, e.g., [Fornberg 1998], approach differenti-
ation matrices from the view point of simulation and do not consider the connotations
of inverse problems. In a simulation, it is in general possible to select the position of
the nodes, so that they are well suited to the solution method, e.g., it is possible to use
either the Chebyshev or Legendre collocation nodes. This luxury is not given with in-
verse problems; the placement of the sensors may be arbitrary and or the time points
for which solutions are required are evenly spaced. Consequently, it is necessary to
generate differentiating matrices for truly arbitrary nodes.

There are a number of papers [Welfert 1997; Weideman and Reddy 2000] which ex-
plicitly claim to compute differentiating matrices using global methods for arbitrary
nodes and there are some toolboxes which suggest this is possible [Jewell 2013]. The
published code for all these methods generate degenerate differentiating matrices with
null spaces of dimensions higher than one. That is, they do not fulfill the prereq-
uisites defined in Section 4. In contrast, the local polynomial approximation to dif-
ferentiation [Savitzky and Golay 1964] with correct end-point formulas [Burden and
Faires 2005] generates a consistent matrix. The poor behavior of high order polyno-
mial interpolation and differentiation is due to Runge’s phenomenon, which will be
always be present due to the uniqueness of interpolating polynomials; hence, approx-
imations of relatively low degree are preferable to global approaches. The published
methods [Welfert 1997; Weideman and Reddy 2000] work reliably only for very small

2This is not dismissing the Chebyshev methods, it simply points out that they are limited in their applica-
tions. Furthermore, the methods in this article work for truly arbitrary node placements. Consequently, the
Chebyshev polynomials are only a special case.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Gugg et al.

problems3, n ≤ 10; this is not sufficient to address most real inverse problems encoun-
tered in engineering applications. We conclude that global techniques for computing
differentiating matrices are not applicable to large scale inverse problems.

Finite difference methods [Strikwerda 2004; Smith 1985] rarely deal with higher
degree approximations, typically 3 or 5 point formulas are used. The issue of correct
end point formulas is sacrificed for the advantage of band diagonal matrices. In gen-
eral, these techniques deal with Dirichlet and possibly Neumann boundary conditions.
However, they provide no method of implementing general boundary conditions of the
form

D(i) y(xj) = d, (9)

where D(i) represents the ith derivation of y evaluated at the point x = xj with the
value d. There may be p ≥ m such constraints.

A new matrix approach for the solution of inverse problems, associated with monitor-
ing of structures using inclinometers, was presented [O’Leary and Harker 2012] and
generalized in [Harker and O’Leary 2013a]. It was proven that ODEs can be formu-
lated as a least squares problem with linear constraints, of the form:

Ly = g subject to CT y = d, (10)

whereby L is the discretized linear differential operator, y is the solution vector sought
(function values), g is the discrete forcing function (measurement values), C defines the
type of constraints and d are the values of the constraints. The least squares solution
makes the method suitable for problems where the forcing function g(x) is perturbed.

The continuous linear differential operator L in Eqn. (7) is discretized as the matrix
L, such that

L , Am Dm + Am−1 Dm−1 + . . .+ A1 D + A0, (11)

where Ai = diag(ai(x)), the matrix Di is a local discrete approximation with support
length ls to the continuous differential operator D(i). Care is taken to implement the
correct end-point formulas, ensuring the degree of approximation is constant for the
complete support. The details of generating these matrices can be found in [Harker and
O’Leary 2013a], as can the explanation for the generation of the constraints CT y = d.
Furthermore, MATLAB toolboxes are available [Harker and O’Leary 2013b; Harker
and O’Leary 2013c] for all the functions required in this article.

6. SOLVING THE INVERSE PROBLEM
Previously the problem in Eqn. (10) was solved using an efficient and accurate solution
which is found in [Golub and Van Loan 1996, Chapter 12]. In this paper we take a
different approach to partitioning the numerical computations, which takes advantage
of the fact that the inverse problem is to be solved repeatedly. Fundamentally, the
new approach delivers exactly the same explicit solution; however, through the new
partitioning of the computation it is possible to ensure that the numerical work W (n)
and the memory required are run-time are known exactly in advance. Consequently, an
exact upper-bound for the execution time can be determined, this by definition makes
the solution suitable for real-time applications4.

The computation of the solution is separated into two portions:

3This can be verified by running the available code with n = 20. Testing the resulting D matrix or its
singular values reveals that a null space of higher dimension is present. As a consequence, the matrix does
not fulfill the necessary prerequisites.
4A real-time system is defined as any information processing activity or system which has to respond to
externally generated input stimuli within a finite and specified period [Young 1982].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:7

(1) The preparatory computations which can be performed offline. They are character-
istic for the equation being solved and change neither with the acquisition of new
measurement data, nor with new values for the boundary conditions. These com-
putations need not be performed on the embedded system and may be computed
with higher precision arithmetic on a host system if necessary.

(2) The online computation, which must be performed repeatedly with each new set
of sensor data. This is the solution which is computed explicitly on the embedded
system in real-time.

6.1. Preparatory Computations
The constraints on the solution are defined by,

CT y = d. (12)

Each column of C, together with the corresponding row of d, defines a constraint. Con-
sequently, p = rank {C } is the number of linearly independent constraints. Addition-
ally, the constraints must be consistent, i.e., d ∈ range

{
CT }. A minimum of p ≥ m

constraints are required to ensure a unique solution to an ODE of degree m. We now
define the matrices: P, such that range {P } = range {C }, i.e., P is the Moore-Penrose
pseudo inverse of CT, hence P = {CT}+; F, an orthonormal basis function set for the
null-space of CT, i.e., FT F = I and range {F } = null

{
CT}; and H , P + F R, where R is

an arbitrary matrix. In this manner the solution for y can be parameterized as,

y = Hd+ Fβ, (13)

where β is the parameter vector. It is important to realize that neither H nor F are
unique. Any function which fulfills the constraints is a valid selection for yc. A function
yc which fulfills the constraints can be defined as,

yc , Hd, (14)
= {P + F R} d. (15)

The matrix R is arbitrary, consequently the values can be selected so that yc fulfills
additional conditions without altering the solution for y. In Fig. 1 three different solu-
tions for the constraints y(0) = 1 and y(1) = 0 are shown, to demonstrate this fact. It
may be advantageous for a specific problem to select a particular solution for yc which
has desirable properties; for example, when solving the ODE for a cantilever it may
be appropriate to select a polynomial solution for yc, since the solution to the ODE
is known to be a polynomial. More formally: the matrix H =

{
CT}− is a generalized

inverse [Ben-Israel and Greville 2003] of CT. A generalized inverse A− of a matrix A
fulfills the condition,

A A− A = A. (16)
The Moore-Penrose pseudo inverse is the particular generalized inverse, where R = 0;
it yields an inverse which minimizes the 2-norm of the solution vector; alternatively,
a QR decomposition can be used to compute a generalized inverse which leads to a
solution vector with a minimum number of nonzero entries. The selection of an appro-
priate solution for yc is more important when solving inverse problems, since it has
implications for the implementation of regularization.

The orthonormal basis functions F for the null-space of CT are also not unique. They
can be obtained directly from CT by applying QR decomposition and partitioning Q
according to the rank {R }. Alternatively, constrained basis functions, e.g. constrained
polynomials, can be used to implement a set of orthogonal basis functions F, Fig. 2
shows an example of such admissible functions for the constraints y(0) = 1, and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Gugg et al.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y
(x
)

Fig. 1: Three different solutions to the con-
straints y(0) = 1 and y(1) = 0.

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

x

y
(x
)

Fig. 2: The first four discrete orthogo-
nal constrained polynomials for the con-
straints y(0) = 1 and y(1) = 0, i.e., the first
4 basis functions from F.

y(1) = 0. In the case of inverse problems constrained basis functions offer a method
of implementing spectral regularization [O’Leary and Harker 2012]. The MATLAB li-
brary required to generate discrete orthogonal constrained polynomials is available
at [Harker and O’Leary 2013b].

CT F = 0 and hence CT Fβ = 0. (17)

Substituting Eqn. (13) for y in Ly = g now yields an unconstrained algebraic equation
for the ODE,

L {Hd+ Fβ} = g. (18)

In the class of inverse problems being considered in this article, the forcing function
g is formed from the measurement values which are perturbed, i.e., is subject to noise.
Consequently, the solution of Eqn. (18) is formulated as a least squares problem to
obtain the unique global minimum of

min
β
‖L Hd+ L Fβ − g‖22. (19)

The least squares approach has been selected since it delivers a maximum likelihood
solution in the case that g is perturbed by Gaussian noise. A further advantage of
the global least squares formulation is that the solution has no implicit direction of
integration. Avoiding a direction of integration eliminates the problem of accumulation
of errors, as are typical with IVP approaches such as Runge-Kutta. Additionally, the
least squares approach yields a solution which is globally minimum with respect to
all errors in Eqn. (19), i.e., it is also minimizing the consequences of the errors in
the numerical computations. Consequently, the method is suitable for solving both
perturbed and unperturbed problems. Now solving the minimization problem defined
by Eqn. (19) yields,

β = {L F}+ {g − L Hd}+ Kγ, (20)

where K is an orthonormal vector basis set for the null-space of L F, i.e., KT K = I and
span {K} = null {L F}. This equation is now expanded into three relevant terms,

β = {L F}+ g − {L F}+ L Hd+ Kγ. (21)

A non-empty vector basis set K indicates that the linear differential operator L is not
sufficiently constrained to ensure a unique solution, i.e., there is no unique solution to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:9

the problem being posed. The requirement for a unique solution is

rank

[
L

CT

]
= n, (22)

where n is the number of nodes. This is a method of determining if the problem is
well defined. Alternately, the singular values of the matrix can be used to determine
if the problem is numerically well posed. We will now assume that the problem is
well posed: with this, the term involving γ vanishes. Now back-substituting for β in
Eqn. (13), yields,

y = F {L F}+ g + Hd− F {L F}+ L Hd. (23)

Defining the following abbreviations:

M , F {L F}+ and N , {I−M L} H, (24)

yields,

y = Nd+ M g (25)
= yh + yp. (26)

The homogeneous portion of the solution yh = Nd is only dependent of the constraint
values and the particular solution yp = M g is only dependent on the forcing function,
i.e., the measurement values. In the problems considered in this paper the constraint
values do not change from one measurement to the next. Consequently, yh can be
computed a-priori and made available as a vector of constraints for the run-time com-
putation.

6.2. Run-Time Computation
Both M and yh are computed a-priori. A standard PC with higher precision arithmetic
can be used for these computations. In this manner, the final errors in M and yh are
dominated by the rounding effects of converting the double precision values to single
precision for the embedded computation, should the embedded system not support
double precision arithmetic. Substituting M and yh into Eqn. (23) yields,

y = M g + yh. (27)

Only the vector of sensor data g changes with each measurement. Consequently, the
run-time solution of the inverse problem is reduced to a single matrix multiplication
and a vector addition. This makes the repeated computation of the solution very effi-
cient. Given n measurement values, the computational cost W (n) is,

W (n) = 2n2. (28)

For example, a sensor chain with n = 21 inclinometers would require W (n) = 882
FLOPs to solve the inverse problem. The computation effort reduces to

W (n) = n2. (29)

if the processor architecture being used supports a multiply-accumulate5 operation.
Both the exact number of FLOPs and memory required are known prior to the run-time
computation. This enables the computation of a strict upper bound for the execution
time of the equation. Consequently, the method is, by definition, suitable for real-time

5See for example the specifications for the ARM Cortex Microcontroller Software Interface Standard (CM-
SIS) at http://www.arm.com/products/processors/cortex-m/.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.arm.com/products/processors/cortex-m/

A:10 Gugg et al.

applications. The computational complexity, O(n2), is independent of the placement of
the nodes, the equation being solved and the support length selected.

6.3. Error Estimation and Confidence Interval
There is uncertainty associated with the solution of any inverse problem. Regulariza-
tion is used to control this uncertainty. The aim now is to quantify the uncertainty
associated with the solution presented here. The are two primary sources of possible
errors involved in the computation of y in Eqn. (27):

(1) Errors in the values contained in M and yh. The numerical testing (see Section 7)
demonstrates that these errors are negligible, when computed in double precision,
in comparison to realistic perturbations of g. For some embedded systems it is
necessary to reduce the values from double to single precision. Software-in-the-
loop (SIL) and processor-in-the-loop (PIL) testing are used to quantify these errors.
In Section 9 it is experimentally verified that these errors can be ignored.

(2) The errors at run-time are dominated by the perturbations of g, these errors are
orders of magnitude larger than the residual numerical errors in M and yh. Con-
sequently, only errors in g are considered for the covariance propagation. There is
also an approximation error in M based on the choice of the interpolating functions.
These may not be insignificant depending on the nature of the solution y.

The following computation assumes that only the forcing function g is subject to
Gaussian perturbation. The covariance Λy associated with the computation of y using
Eqn. (27), can be explicitly [Brandt 1998] calculated as

Λy = M Λg MT, (30)

where Λg is the covariance of the forcing function. In practical applications we de-
termine the magnitude of the noise component for each sensor, using dedicated noise
measurements. In this case, and assuming that the noise is independent identically
distributed (i.i.d.) Gaussian noise with standard deviation σg, then,

Λg = σ2
g I, (31)

where σg is a measured value. Substituting this into Eqn. (30) yields,

Λy = σ2
g M MT. (32)

An upper-bound estimate within a given confidence interval for the vector of standard
deviations for y, is computed as,

σy = σg s, (33)

where M = (mij) and the individual elements of the unscaled standard deviation s
are si = (

∑n
j=1m

2
ij)

1/2, i.e. the square root of the diagonal elements of (M MT). This
term can be computed a-priori; consequently, the run-time computational complexity
for determining the standard deviation of each solution point is O(n).

Alternatively, the error vector ε can be computed for each measurement as the dif-
ference between the forward and inverse problem, i.e.,

ε = g − L (M g + yh) . (34)

A Kolmogorov-Smirnov test can be applied to ε to determine if it is Gaussian. This
yields additional information on the suitability of the model for the specific measure-
ment. Given the standard deviation, the confidence interval with a specific degree of
certainty is computable via the inverse Student-t distribution [Brandt 1998].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:11

7. MODEL-IN-THE-LOOP TESTING
The aim of this section is to verify the numerical accuracy and efficiency of the new
method on a PC, embedded testing is presented later. We have chosen to solve unper-
turbed problems for the first tests, since these enable the comparison with analytical
solutions and with standard engineering approaches such as Runge-Kutta methods6.
The unperturbed tests enable the separation of the errors involved in computing M and
yh from those resulting from the perturbation of g. It is difficult to define a truly ob-
jective method of comparing solution approaches which are fundamentally different7.
Each approach has its own weaknesses and strengths. The tests have been devised to
reflect, as close as possible, the conditions which are to be expected from the applica-
tion specific method.

7.1. Test A: Initial Value Problem 1
The ODE (details can be found in [Adams 2006]) is a third order (m = 3) non-
homogeneous ODE with constant coefficients ai and p = 3 constraints. The equation
is

y(3) + 3 y′′ + 3y′ + y = 30 e−x given (35)
y(0) = 3, y′(0) = −3, y′′(0) = −47

in the interval 0 ≤ x ≤ 8. The analytical solution to this equation is

y(x) = (3− 25x2 + 5x3) e−x. (36)

In the case of the inverse problems being addressed, the position of the solution
points is determined by the measurement. To simulate this condition, the ode45
solver [Shampine and Reichelt 1997] in MATLAB has been used to solve this dif-
ferential equation. This is a variable step size method which yields both a vector of
abscissae x consisting of n = 77 points and the solution vector y. Exactly those n = 77
points on the abscissae and a support length ls = 9 was used for the test of the new
method. Using the ode45 solver in addition to the analytical solution enables the com-
parison of the new method with well established techniques. The results of the three
computations are shown in Fig. 3. The residual errors, i.e., the difference between the
analytical solution, the new method and the ode45 solutions are shown in Fig. 4. The
2-norm of the residual errors |ε|2 and the computation time for k = 10000 iterations8 for
the solution of the ODE are given in Table I for the ode45 method as well as the new
method. The first observation is that the residual numerical errors for the new method

Table I: The 2-norm of the residual errors |ε|2 and the computation time for k = 10000
iterations for the solution of the ODE, for the ode45 method and new method (New).
These computations were performed with an Intel Core 2 Duo CPU P8600 at 2.4 [GHz]
with 2.9 [GB] RAM.

method |ε|2 time (k = 10000)
ode45 1.79 10−3 29.823728 [s]
New 1.14 10−7 0.061681 [s]

6The MATLAB ode45 implementation of a Runge-Kutta method was used for this purpose.
7To support independent verification of our results, we have made the MATLAB code available which we
used to generate all the results presented in this section, see http://www.mathworks.com/matlabcentral/
fileexchange/45947.
8It is not the absolute times which are important, since they will change from one platform to another. It is
the relative speed which shows the potential performance of the new method.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.mathworks.com/matlabcentral/fileexchange/45947
http://www.mathworks.com/matlabcentral/fileexchange/45947

A:12 Gugg et al.

0 2 4 6 8
−10

−5

0

5

x

y
(x
)

Analytical
New
ode45

Fig. 3: The plot shows the analytic solution
from Eqn. (36), the solution with the new
method with ls = 9 as well as the solution
by a Runge-Kutta ode45 method. All so-
lutions are evaluated at exactly the n = 77
points provided by the ode45 method.

0 2 4 6 8
−15

−10

−5

0

x

lo
g
10
(ǫ
)

New
ode45

Fig. 4: Residual errors: difference of the
new numerical solution vs. the analyti-
cal solution and the solution by a Runge-
Kutta ode45 method vs. the analytical so-
lution. The new method is approximately
4-orders of magnitude more accurate than
the ode45 method, for exactly the same
abscissae.

are approximately 4-orders of magnitude smaller than with the ode45 method and the
computation is almost 500 times faster. Reducing the error bound for the Runge-Kutta
method will improve the numerical accuracy, but at the expense of computational ef-
fort. In order to reduce the error by 4-orders of magnitude in the Runge-Kutta solution,
an even higher degree Runge-Kutta method must be formulated, which in turn would
require unreasonably high computational effort. The very small errors are significant:
since, when computing the confidence interval for the solution, they can be neglected
when they are small in comparison with the perturbations of the forcing function.

The comparison of speed is somewhat subjective, since we have no insights into how
much function-call-overhead is involved in the MATLAB implementation; neverthe-
less, it does show the potential speed of the new approach. This test demonstrates the
ability of the new method to compute solutions to the ODE at arbitrary given nodes
with a very high accuracy.

7.2. Test B: Alternative Node Placement for Initial Value Problem 1
In this test the same ODE is solved as in Test A, however, a reduced number of n = 20
evenly spaced nodes has been selected for the new method since systems sampling
in time in general use even spacing. The results are shown in Fig. 5 and 6. The new
method achieves the same solution quality, in terms of accuracy, as the ode45 method,
however with a significantly reduced number of nodes. This corresponds to an accurate
solution of the inverse problem with a small number of sensors.

7.3. Test C: Initial Value Problem 2
The second example is a second order (m = 2) ODE with variable coefficients ai(x) and
p = 2 constraints. This demonstrates the ability of the method to deal with variable
coefficients and with solutions which are irrational functions. The equation is,

2x2 y′′ − x y′ − 2y = 0 given (37)
y(1) = 5, y′(1) = 0

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:13

0 2 4 6 8
−10

−5

0

5

x

y
(x
)

Analytical
New (20)
ode45

Fig. 5: The plot shows the analytic solution
from Eqn. (36), the solution with the new
method with ls = 9 and n = 20 as well
as the solution by a Runge-Kutta ode45
method with n = 77.

0 2 4 6 8
−8

−7

−6

−5

−4

−3

−2

x

lo
g
10
(ǫ
)

New
ode45

Fig. 6: Residual errors: difference of the
new numerical solution with n = 20 vs.
the analytical solution and the solution by
a Runge-Kutta ode45 method with n = 77
vs. the analytical solution.

2 4 6 8 10
0

20

40

60

80

100

x

y
(x
)

Analytical
New
ode45

Fig. 7: The plot shows the analytic solution
from Eqn. (38), the solution with the new
method with ls = 15 and n = 69 evenly
placed nodes as well as the solution by a
Runge-Kutta ode45 method with n = 69
variably placed nodes.

0 2 4 6 8
−10

−8

−6

−4

−2

0

x

lo
g
10
(ǫ
)

New
ode45

Fig. 8: Residual errors: difference of the
new numerical solution vs. the analyti-
cal solution and the solution by a Runge-
Kutta ode45 method vs. the analytical so-
lution.

in the interval 1 ≤ x ≤ 10. The analytical solution to this equations is

y(x) = x2 +
4√
x
. (38)

The solution’s appearance would not suggest that this is a demanding problem. How-
ever, the analytical solution is the sum of a polynomial and an irrational function.
Computing good estimates for the derivatives of such functions can require a high de-
gree of polynomial approximation. The solution obtained using the new method, the
analytical solution and the result of the ode45 solver are shown in Fig. 7. The high
density of nodes at the start of the interval produced by the ode45 method indicates
that the method required disproportionately many steps for finding a solution with suf-
ficient accuracy. The new method is once again more accurate than the ode45 solver.

7.4. Test D: Selecting a Support Length for Initial Value Problem 2
In this test, the same ODE is solved as in Test C. As pointed out in Section 5, there
is an issue in selecting the support length ls (or degree) of the local approximation for

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Gugg et al.

the differentiating matrix D. This matrix and the linear differential operator L have
been implemented for all odd support lengths in the range 3 ≤ ls ≤ 25 and the IVP
was solved for each of these implementations. The relative error was computed for the
corresponding solutions as

ε(ls) =
|ya − y|2
|ya|2

, (39)

where ya is the sampled analytical solution and y is the solution computed with the
new method. The log10(ε) vs. ls is shown in Fig. 9. This result shows that there is
a minimum in the relative error for ls = 15, indicating that there is a justification
for implementing local approximation to derivatives for specific problems with high
numbers of nodes9. The dependence of ε on ls is a function of the equation being solved.
There will be no solution that is optimal for all cases. With the proposed method the
necessary ls is determined during the preparatory computations and not at run-time.

0 5 10 15 20 25
−8

−6

−4

−2

0

Support length ls

lo
g
10
(ǫ
)

Fig. 9: The relative error ε has a minimum for ls = 15.

7.5. Test E: Inverse 3-Point Boundary Value Problem
The following test is an over constrained first order (m = 1) 3-point inverse BVP10;
however, with p = 4 constraints at 3 locations on the abscissae. It belongs to the class
of inverse multi-point BVPs11. The constraints implemented are both: homogeneous
and non-homogeneous; as well as Dirichlet and Neumann boundary conditions. This
example has been chosen to demonstrate the numerical efficiency and behavior of the
method with respect to a perturbed inverse BVP. Furthermore, it demonstrates the
ability of the algebraic framework to deal with generalized constraints. Synthetic data
is produced for a function and its analytic derivatives, in this manner the result of the
reconstruction can be compared with the function from which the data was derived.

The problem being considered is to reconstruct a curve y from multiple local mea-
surements of the curve’s gradients g while fulfilling a set of constraints CTy = d, which
are not restricted to the ends of the support, i.e., inner constraints are also present.

9Many books [Burden and Faires 2005; Lapidus and Pinder 1999; Strikwerda 2004] discuss the possibility of
implementing approximations of higher degree; however, they never actually show comparative numerical
results for practical problems.
10At least one of the constraints is interior, since the constraints are not restricted to the boundaries.
11Although we have been able to find a number of publications on methods relating to multi-point
BVPs [Welsh and Ojika 1980; Agarwal et al. 2003], there is very little literature available on inverse multi-
point BVPs, e.g. [Kurylev 1993]. There are no general approaches available at the present time.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:15

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

x

y
(x
)

0 0.2 0.4 0.6 0.8 1

−1

0

1

x
D
y
(x
)

Fig. 10: First order (m = 1) constrained test function and its analytical derivatives: this
function fulfills all p = 4 constraints specified in Eqn. (41) and (42). The homogeneous
and non-homogeneous Dirichlet and Neumann constraints are marked at the three
locations [0, 0.7895, 1] in the top and bottom plots respectively.

Furthermore, the measurements are perturbed by white noise. The ODE is

y′(x) = g(x) + ε, (40)

where ε is the error caused by the forcing function’s perturbation. This equation is
subject to the homogeneous and non-homogeneous Dirichlet boundary conditions,

y(0.7895) = 0 and y(1) = −0.1 (41)

as well as the non-homogeneous and homogeneous Neumann boundary conditions,

y′(0) = 1 and y′(1) = 0. (42)

A synthetic test function which fulfills these conditions was generated by combining
an arbitrary polynomial of 4th degree,

y(x) = 1.1x4 + 0.4x3 + 0.5x2 − 1.2x− 0.3, (43)

with the four constraints, this yields an 8th degree polynomial12 which also fulfills the
constraints:

yc(x) =− 0.46985x8 + 0.41127x7 + 0.34891x6 + 0.03827x5

+ 1.0323x4 − 1.5886x3 − 0.88426x2 + x+ 0.011895. (44)

The first derivative of Eqn. (44) can be computed analytically, making it a suitable
test function for constrained curve reconstruction from gradients. The function g(x),
its analytical gradient g′(x) and the constraints are shown in Fig. 10.

The analytical gradient is evaluated at n = 21 points13. Then in a Monte Carlo sim-
ulation, with k = 10000 iterations, the gradients are perturbed by artificial Gaussian
noise with a standard deviation of 1% of the maximum value of Dy(x). For each simu-
lation, a reconstruction is performed with the appropriate M and yh and the statistics
are computed. The result of solving this problem using the proposed method is shown
in Fig. 11, together with the error bars corresponding to the standard deviation of
the reconstructed values observed in the Monte Carlo simulation. The error bars have
been magnified by a factor of 10 to increase the visibility.

In Fig. 12, the bias of the reconstruction is shown, i.e., the difference between the
analytical solution and the mean of the Monte Carlo simulations. Additionally, the

12The theory behind this computation can be found in [Harker and O’Leary 2013d].
13For example, these would correspond to the positions of the inclinometers on a structure being monitored.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Gugg et al.

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

R
e
c
o
n
st
ru
c
ti
o
n
s

Analitical
Reconstruction

Fig. 11: Comparison of the analytical solu-
tion and the result of the reconstruction
from the perturbed gradients. The two
Dirichlet boundary conditions are marked
on the reconstruction, the two Neumann
conditions are not shown. The error bars
correspond to the standard deviations, i.e.,
an estimate for the 68.3% confidence inter-
val. They are obtained from a Monte Carlo
simulation with k = 10000 iterations. The
error bars have been magnified by a factor
of 10 to increase the visibility.

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

ǭ
(×

1
0
5
)

0 0.2 0.4 0.6 0.8 1
0

1

2

x

st
d
(ǫ
)
(×

1
0
3
)

P
MC

Fig. 12: Top: Bias of the reconstruction,
i.e., the difference between the mean re-
construction from the k = 10000 Monte
Carlo iterations and the analytical solu-
tion (the result is scaled by 105 to make the
error visible.). Bottom: The standard de-
viation of the reconstruction as predicted
(P) by the covariance propagation accord-
ing to Eqn. (33) and the results from the
Monte Carlo simulations (MC) (the result
is scaled by 103).

standard deviation of the result as predicted by Eqn. (33) and the results of the Monte
Carlo simulation are compared. These results verify that the solution is, for all in-
tents and purposes, bias free and the predicted uncertainty is correct. The method has
been successfully applied to an inverse three-point boundary value problem, with two
Dirichlet and two Neumann boundary conditions. Not only is the problem solved, but
in addition the uncertainty of the solution is delivered by the new method.

7.6. Summary of the Numerical Testing
The implications of the above test can be summarized as follows:

(1) The new method is capable of solving both perturbed and unperturbed inverse
problems, including initial-, inner- and boundary value problems.

(2) The method enables the formulation and solution of problems with constraints
on arbitrary derivatives of the solution function. Consequently, both Dirichlet and
Neumann boundary conditions can be dealt with. The constraints can be both ho-
mogeneous (d = 0) and non-homogeneous (d 6= 0).

(3) The method exhibits significantly smaller numerical errors than the Runge-Kutta
ode45 approach, while being significantly faster. Reducing the error bound for the
ode45 will improve the numerical accuracy, but at the expense of computational
effort. The numerical errors are so small that they can be neglected when solving
inverse problems where the perturbation of the forcing function is significant.

(4) The separation of the solution into a preparatory (offline) and run-time (online)
computation makes the method suitable for embedding in real-time systems.

8. AUTOMATIC CODE GENERATION
The aim of the code generation is, given the definition of specific inverse problem in
terms of a measurement model (see Section 3), to automatically generate the code re-
quired to solve the problem on an embedded computing system. That is, the problem is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:17

defined as a symbolic definition of a differential equation together with a suitable set
of constraints and a source of data. The system will then solve any ODE, regardless
of its nature (IVP, BVP, etc.) from this specification. A similar concept of automatic
code generation (ACG) for the embedding of convex optimization was explained in lit-
erature [Mattingley and Boyd 2012]. Furthermore, it was shown, that numerical ODE
solvers can be deployed on FPGAs using VHDL in [Huang et al. 2013]. During MBD,
the system is designed on an abstract model level based on the system’s requirements
while ensuring the consistency of the system’s physical representation. ACG is the
task of converting the models and their algorithms to usable code, effectively automat-
ing the time-consuming and error-prone process of low-level programming. Basically,
there are three low-level target languages for embedded systems: multi-purpose ANSI-
C code, which is the focus of this article; hardware description language (HDL) for field
programmable gate arrays (FPGA) or application specific integrated circuits (ASIC);
and IEC 61131-3 compliant languages such as structured text (ST) for programmable
logic controllers (PLC).

Code deployment is the integration of code on the embedded systems. In most cases,
the architecture of the development (host) system (x86 or x64) is largely different from
the embedded (targeted) system (ARM, ATmel, etc.). There are two approaches for
solving this issue compilation of code on the target system if an OS and an appropriate
compiler is present; or cross compilation on the host system via processor virtualiza-
tion, a popular tool to perform this task is the LLVM compiler infrastructure.

After MBD is complete, so called production code is generated. The process strips
out all parameters needed during testing and optimizes the code for performance (low
memory usage, high computational speed) or safety (data consistency, robust algo-
rithms).

8.1. Embedded Target Hardware
The goal is to show that even highly abstract and complex mathematical models are
deployable on the simplest embedded hardware, demonstrating the scalability of the
method. The open-source Raspberry Pi or the proprietary BeagleBone Black are pop-
ular entry-level embedded systems for target programming. The WAGO PFC-200 is
an IEC 61131-3 compliant industrial PLC with open source software. These three sys-
tems are based on 32-bit ARM processors and they run an embedded Linux derivative
as operating system (OS); in the case of the WAGO device it’s a real-time OS. The au-
tomated resource management is the main advantage of embedded systems with an
OS. The low end of the systems is represented by the fully open source Arduino Uno
platform. The utilized Atmel 8-bit AVR RISC-based ATmega328 microcontroller has
no dedicated OS, the program logic is directly stored on the chip’s 32 [kB] flash mem-
ory as firmware. The Arduino Uno has been chosen for experimental PIL testing, see
Section 9. A laboratory experiment featuring the BeagleBone Black is presented in
Section 10.

8.2. MBD Software for Code Generation
Most engineering and scientific software for designing mathematical models has the
functionality to automatically generate standard ANSI-C code from its application-
specific syntax, e.g., LabVIEW, Maple or Mathematica. This is usually necessary, be-
cause most industrial controllers are only programmable with C. A short survey on
tools for ACG has been given by Rafique et al. [Rafique et al. 2013]. This article is fo-
cused on the usage of MATLAB and its Coder toolbox, because it is the standard soft-
ware for mathematical MBD. Code generation fully supports linear algebra. Neverthe-
less, the presented approach is so simple, that a C code parser could be implemented
manually without much effort. Two test cases confirmed the correct functionality of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Gugg et al.

algebraic functions generated by MATLAB Coder: C code was generated for QR decom-
position and singular value decomposition. Compiling the code with Microsoft Visual
Studio 2010 for the 32-bit host development system delivered an executable program,
which successfully validated the code via SIL verification. Deploying the same code on
the Arduino Uno confirmed the correct functionality via PIL verification.

generate code

MIL

compile code

PIL

implementation via MATLAB (host system)

m
o
d
el

-d
ri

v
en

 a
rc

h
it

ec
tu

re *.m

*.c / *.h

*.hex

*.ino

SIL

*.mex

*.c / *.h

compile code

integration via Arduino IDE (target system)

model based design and in-the-loop verification for automatic code generation

im
p
o
rt

verify processorverify code

execute deploy

Fig. 13: MBD is an iterative approach. Each step requires verification to ensure that
the (sub)system’s requirements are met. In this article, model-in-the-loop (MIL) ver-
ifies the correctness of the algebraic framework on model level, software-in-the-loop
(SIL) verifies the functional equivalence of the generated C code on code level and
processor-in-the-loop (PIL) verifies the correct computation on the employed microcon-
troller on binary level. This graphic shows the process for the Arduino platform.

8.3. Targeting and Verification Process
The ACG process is completely general, the illustration in Fig. 13 shows the procedure
for the Arduino platform. Following steps must be carried out:

Model-in-the-loop (MIL): The system is identified, designed and simulated on ab-
stract model level in an artificial environment, producing MATLAB model code (*.m).
This is an efficient way to estimate model parameters with varying configurations.
This includes the determination of the optimal support length ls, computation of the
constrained linear differential operator M and the homogeneous solution yh. Further-
more, changes in the requirements can easily be implemented in this early design
stage.

Code generation: The MATLAB Coder toolbox is a sophisticated parser engine. It
converts the model code (*.m) into C code (*.c) and the associated header files (*.h).

Code compilation for SIL: MATLAB Coder features the ability to replace model func-
tion calls with calls for MATLAB executables (*.mex). Such functions are wrappers
around compiled C code, which can be directly called from the MATLAB development
environment.

Software-in-the-loop (SIL): The model and the generated C code must be functionally
equivalent, i.e., a certain input must deliver the same output on all abstraction layers.
This is especially relevant when the target language misses certain features of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:19

model language, e.g. shorter bit-lenghts of variable types or no support for floating
point operations. The consistency of the model must be ensured on all levels.

Code compilation for PIL: The C code (*.c/*.h) is imported into the Arduino IDE.
The header (*.h) files must be included in the Arduino project’s main (*.ino) file. The C
code is cross-compiled for the Arduino platform delivering a (*.hex) file, which is stored
directly on the ATmega328’s flash memory as firmware.

Processor-in-the-loop (PIL): The code runs on the embedded real-time system. The
outcome is not necessarily the same as during simulation, because the hardware plat-
form used during MIL and SIL is different from the PIL target.

9. SOFTWARE- AND PROCESSOR-IN-THE-LOOP TESTING
In Section 7, the viability of the new method was shown during MIL. In this section,
the test cases are directly executed on the Arduino Uno for PIL verification. The micro-
controller features 2 [kB] SRAM and a processing power of 16 million instructions per
second (MIPS). The 23 general purpose I/O lines, the 6-channel 10-bit A/D converter
and the operating voltage of 1.8 − 5.5 [V] makes it a well suited setup for acquiring
and processing sensor data. The problem size must be scaled down in order to fit the
Arduino Uno’s limited system resources. An Arduino Uno double variable requires
4 [B] of memory, so theoretically, the ATmega328 chip stores up to 512 double variables
in its memory of 2 [kB]. Obviously, operations and other variables also require memory
space, therefore the problem size has been shrunk to 10 input signals. This corresponds
in means of problem size to the Arduino Uno’s 6 analog I/O ports, which are usable to
connect sensors to the device. However, the problem classes are still the same.

The constrained linear differential operator M has then a size of (10 × 10) and the
homogeneous solution vector yh has a size of (10 × 1). Both, M and yh, are computed
a-priori during offline calibration. Only the measurement vector g with size (10 × 1)
changes its values from one measurement to the next. Consequently, the result of the
online computation, i.e. the solution vector y, is of size (10× 1).

9.1. Initial Value Problem 1
The test case in Section 7.1 has been modified to have n = 10 evenly spaced nodes in
the interval 0 ≤ x ≤ 0.1 with a support length of ls = 5. The computation time on the
Arduino Uno is t = 1.788 [ms], i.e., a sample rate of > 500 [Hz] is possible. The error
plots of the numerical computations are shown in Fig. 14 and 15.

9.2. Initial Value Problem 2
The test case in Section 7.3 has been modified to have n = 10 evenly spaced nodes in
the interval 1 ≤ x ≤ 2 with a support length of ls = 5. The computation time on the
Arduino Uno is t = 1.228 [ms], i.e., a sample rate of > 800 [Hz] is possible. The error
plots of the numerical computations are shown in Fig. 16 and 17

9.3. Inverse 3-Point Boundary Value Problem
The test case in Section 7.5 has been modified to have n = 10 evenly spaced nodes in
the interval 0 ≤ x ≤ 0.1 with a support length of ls = 5. New constraints have been
defined to conserve the test case’s characteristics:

y(0.0556) = 0, y(0.1) = −0.1, (45)
Dy(0) = 1, D y(0.1) = 0. (46)

The computation time on the Arduino Uno is 1.796 [ms], i.e., a sample rate of > 550 [Hz]
is possible. The error plots of the numerical computations are shown in Fig. 18 and
19. In contrast to the previous test cases, here the SIL verification delivered an error

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Gugg et al.

0 0.05 0.1

10
−20

10
−10

10
0

x

lo
g
1
0
(
ǫ
)

M

A

Fig. 14: The plot shows the error be-
tween the analytic solution and MAT-
LAB’s solution (M), the error norm is
|ε|2 = 4.6771 10−4, as well as the error be-
tween the analytic solution and Arduino’s
solution (A), the error norm is |ε|2 =
4.6749 10−4.

0 0.05 0.1

−2

−1

0

1

2

x

1
0

7
ǫ

Fig. 15: PIL verification: the difference be-
tween MATLAB’s solution and Arduino’s
solution is shown, the error norm is |ε|2 =
3.1999 10−7. The result is scaled by 107 to
increase the visibility.

1 1.5 2

10
−15

10
−10

10
−5

10
0

x

lo
g
1
0
(
ǫ
)

M

A

Fig. 16: The plot shows the error be-
tween the analytic solution and MAT-
LAB’s solution (M), the error norm is
|ε|2 = 4.9541 10−4, as well as the error be-
tween the analytic solution and Arduino’s
solution (A), the error norm is |ε|2 =
4.9568 10−4.

1 1.5 2

−4

−2

0

2

4

x

1
0

7
ǫ

Fig. 17: PIL verification: the difference be-
tween MATLAB’s solution and Arduino’s
solution is shown, the error norm is |ε|2 =
5.4520 10−7. The result is scaled by 107 to
increase the visibility.

vector with norm of |ε|2 = 3.3866 10−14, i.e., the C code’s result is slightly different than
the MATLAB model code’s result.

10. LABORATORY TESTING
The introduced algebraic model is tested on a laboratory setup, see Fig. 20. A chain of
equally spaced one-dimensional inclinometers is mounted on a b = 1.8 [m] long flexible
structure. The arrangement consists of 14 sensors with an additional 2 screw clamps,
effectively forcing 2 pairs, i.e. p = 4, of homogeneous Dirichlet and Neumann con-
straints at the structure’s ends. These leads to a total of n = 16 points for the com-
putation, i.e., the vector of measurement data g is of size (16 × 1). In order to vary
the structure’s bending, a square metal profile with feed size h = 20 [mm] is placed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:21

0 0.05 0.1

10
−20

10
−15

10
−10

10
−5

x

lo
g
1
0
(
ǫ
)

M

A

Fig. 18: The plot shows the error be-
tween the analytic solution and MAT-
LAB’s solution (M), the error norm is
|ε|2 = 4.7958 10−10, as well as the error be-
tween the analytic solution and Arduino’s
solution (A), the error norm is |ε|2 =
2.3902 10−8.

0 0.05 0.1

−1

0

1

2

3

x

1
0

8
ǫ

Fig. 19: PIL verification: the difference be-
tween MATLAB’s solution and Arduino’s
solution is shown, the error norm is |ε|2 =
2.3673 10−8. The result is scaled by 108 to
increase the visibility.

chain of inclinometers with boundary constraints

RS232

RS485
⇠1 = 530 [mm]

⇠2 = 890 [mm]

⇠3 = 1160 [mm]

b = 1800 [mm]

⇠i

b

h = ⇤ 20 [mm] y(1800) = 0

y0(1800) = 0

y(0) = 0

y0(0) = 0

metal profile

Fig. 20: The illustration shows the chain of inclinometers mounted on a flexible struc-
ture. Each of the 14 sensors is connected to an industrial RS-485 bus. This bus is con-
verted to a RS-232 serial interface, which enables the connection of the BeagleBone
Black. The 2 screw clamps force the homogeneous boundary values at the structure’s
ends.

between the structure and the supporting mounting platforms at the ξi positions. The
results for these tests are shown in Fig. 21 to 26. Note, that the reference data has been
acquired with calipers and hardly represents the true value; however, it is a good ba-
sis for comparisons. The constrained linear differential operator M is of size (16× 16).
M and the homogeneous solution yh are computed in a preparatory step. The online
computation is carried out by a BeagleBone Black. The hardware features a RISC pro-
cessor based on the ARMv7 Cortex A8 platform with 1 [GHz] (2000 MIPS) and 512 [MB]

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Gugg et al.

0 500 1000 1500 2000

0

5

10

15

20

25

x [mm]

y
[m

m
]

ŷ

y

Fig. 21: The reference values ŷ and the
computed curve y for the metal profile
placed at ξ1 = 530 [mm] are shown.

0 500 1000 1500 2000

−1

0

1

2

x [mm]

ǫ
[m

m
]

Fig. 22: The difference between both val-
ues ε = ŷ − y is shown, the error norm is
|ε|2 = 4.245 [mm].

0 500 1000 1500 2000

0

5

10

15

20

25

x [mm]

y
[m

m
]

ŷ

y

Fig. 23: The reference values ŷ and the
computed curve y for the metal profile
placed at ξ2 = 890 [mm] are shown.

0 500 1000 1500 2000

−2

−1

0

1

x [mm]

ǫ
[m

m
]

Fig. 24: The difference between both val-
ues ε = ŷ − y is shown, the error norm is
|ε|2 = 2.636 [mm].

0 500 1000 1500 2000

0

5

10

15

20

25

x [mm]

y
[m

m
]

ŷ

y

Fig. 25: The reference values ŷ and the
computed curve y for the metal profile
placed at ξ3 = 1160 [mm] are shown.

0 500 1000 1500 2000

−3

−2

−1

0

1

x [mm]

ǫ
[m

m
]

Fig. 26: The difference between both val-
ues ε = ŷ − y is shown, the error norm is
|ε|2 = 3.114 [mm].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Real-Time Solution of Inverse Problems on Embedded Systems A:23

memory. The measurement data g is acquired via the built-in RS232 serial interface,
the results y are transmitted to a centralized database. The WAGO PFC-200 would
be an industrial-ready alternative hardware solution with similar architecture for this
application. It features a variety of bus interfaces such as Modbus, Profibus and CAN
bus.

11. CONCLUSION AND OUTLOOK
It can be concluded, from the numerical and experimental tests, that the newly pro-
posed algebraic method outperforms previous solutions, both in accuracy and speed,
for the class of problems being considered. The separation of the computation into an
initial preparatory and a cyclic run-time portion yields a highly efficient numeric solu-
tion. The computation complexity of the explicit solution is only a function of the num-
ber of nodes (sensors) used. The automatic generation of C code, and the verification of
its correct functionality on multiple embedded architectures has been demonstrated.
The generation of C code also facilitates the use of the method in conjunction with com-
mercial programmable logic controllers (PLCs), for the control of industrial plants and
machinery. Here, the method was applied to a linear array of sensors. Presently, the
tools are being extended to two-dimensional arrays and the resulting two-dimensional
fields of data.

REFERENCES
R.A. Adams. 2006. Calculus: Several Variables (sixth ed.). Pearson Addison Wesley.
R.P Agarwal, H.B Thompson, and C.C Tisdell. 2003. Three-point boundary value problems for second-order

discrete equations. Computers and Mathematics with Applications 45, 69 (2003), 1429 – 1435.
A. Ben-Israel and T.N.E. Greville. 2003. Generalized Inverses: Theory and Applications. Springer.
Siegmund Brandt. 1998. Data Analysis (third ed.). Springer, New York, NY, USA.
R.L. Burden and J.D. Faires. 2005. Numerical Analysis. Thomson Brooks/Cole.
O. Burdet and L. Zanella. 2002. Automatic Monitoring of the Riddes Bridges using Electronic Inclinometers.

In IABMAS, First International Conference on Bridge Maintenance, Safety and Management.
T. A. Driscoll, F. Bornemann, and L. N. Trefethen. 2008. The chebop system for automatic solution of differ-

ential equations. BIT 48 (2008), 701–723.
Bengt Fornberg. 1998. A practical guide to pseudospectral methods. Vol. 1. Cambridge university press.
J. Golser. 2010. Fallbeispiel zur Bauwerksberwachung mittels online Neigungssensoren. In 25. Cristian

Veder Kolloquium.
G.H. Golub and C.F. Van Loan. 1996. Matrix Computations (third ed.). The Johns Hopkins University Press,

Baltimore.
M. Harker and P. O’Leary. 06 May 2013 (Updated 11 Jul 2013)d. Polynomial Toolbox. (06 May 2013 (Updated

11 Jul 2013)). http://www.mathworks.com/matlabcentral/fileexchange/41658
M. Harker and P. O’Leary. 11 Apr 2013 (Updated 19 Aug 2013)b. Discrete Orthogonal Polynomial Toolbox.

(11 Apr 2013 (Updated 19 Aug 2013)). http://www.mathworks.com/matlabcentral/fileexchange/41250
M. Harker and P. O’Leary. 18 Apr 2013 (Updated 17 Jun 2013)c. Ordinary Differential Equation Toolbox.

(18 Apr 2013 (Updated 17 Jun 2013)). http://www.mathworks.com/matlabcentral/fileexchange/41354
M. Harker and P. O’Leary. 2013a. A Matrix Framework for the Solution of ODEs: Initial-, Boundary-, and

Inner-Value Problems. ArXiv e-prints (April 2013).
Chen Huang, Frank Vahid, and Tony Givargis. 2013. Automatic Synthesis of Physical System Differential

Equation Models to a Custom Network of General Processing Elements on FPGAs. ACM Trans. Embed.
Comput. Syst. 13, 2, Article 23 (Sept. 2013), 27 pages. DOI:http://dx.doi.org/10.1145/2514641.2514650

Nathaniel Jewell. 29 Mar 2013 (Updated 01 Apr 2013). Collocation-based spectral-element toolbox. (29 Mar
2013 (Updated 01 Apr 2013)). http://www.mathworks.com/matlabcentral/fileexchange/41011

Yyldyray Keskyn, Onur Karaoglu, Sema Servy, and OturanÇ Galip. 2011. The Approximate Solution of
High-Order Linear Fractional Differential Equations with Variable Coefficients in Terms of Generalized
Taylor Polynomials. Mathematical and Computational Applications Vol. 16, No. 3 (2011), 617–629.

Nurcan Kurt and Mehmet Cevik. 2008. Polynomial solution of the single degree of freedom system by Taylor
matrix method. Mechanics Research Communications 35, 8 (2008), 530 – 536.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.mathworks.com/matlabcentral/fileexchange/41658
http://www.mathworks.com/matlabcentral/fileexchange/41250
http://www.mathworks.com/matlabcentral/fileexchange/41354
http://dx.doi.org/10.1145/2514641.2514650
http://www.mathworks.com/matlabcentral/fileexchange/41011

A:24 Gugg et al.

Y.V. Kurylev. 1993. Multi-dimensional inverse boundary problems by BC-method: Groups of transformations
and uniqueness results. Mathematical and Computer Modelling 18, 1 (1993), 33 – 45.

C. Lanczos. 1997. Linear Differential Operators. Dover Publications.
L. Lapidus and G.F. Pinder. 1999. Numerical Solution of Partial Differential Equations in Science and En-

gineering. Wiley.
Insup Lee, O. Sokolsky, Sanjian Chen, J. Hatcliff, Eunkyoung Jee, BaekGyu Kim, A. King, M. Mullen-

Fortino, Soojin Park, A. Roederer, and K.K. Venkatasubramanian. 2012. Challenges and Research Di-
rections in Medical Cyber Physical Systems. Proc. IEEE 100, 1 (jan 2012), 75 –90.

W. W. Loh and F. J. Dickin. 1996. A novel computer architecture for real-time solution of inverse problems
[electric impedance tomography]. In Advances in Electrical Tomography (Digest No: 1196/143), IEE
Colloquium on. 22/1–22/3. DOI:http://dx.doi.org/10.1049/ic:19960850

George Machan and Victoria Gene Bennett. 2008. Use of Inclinometers for Geotechnical Instrumentation on
Transportation Projects. Transportation Research E-Circular E-C129 (2008).

Jacob Mattingley and Stephen Boyd. 2012. CVXGEN: a code generator for embedded convex optimization.
Optimization and Engineering 13, 1 (1 March 2012), 1–27.

D. Necsulescu and G. Ganapathy. 2005. Online Solving of Inverse Problems in Critical Infrastructure Mon-
itoring. In Instrumentation and Measurement Technology Conference, 2005. IMTC 2005. Proceedings of
the IEEE, Vol. 2. 1585–1589.

Paul O’Leary and Matthew Harker. 2012. A Framework for the Evaluation of Inclinometer Data in the
Measurement of Structures. IEEE T. Instrumentation and Measurement 61, 5 (2012), 1237–1251.

Omair Rafique, Manuel Gesell, and Klaus Schneider. 2013. Targeting Different Abstraction Layers by
Model-Based Design Methods for Embedded Systems: A Case Study. Real-Time Computing Systems
and Applications (RTCSA), IEEE Computer Society (2013).

Abraham Savitzky and Marcel JE Golay. 1964. Smoothing and differentiation of data by simplified least
squares procedures. Analytical chemistry 36, 8 (1964), 1627–1639.

Mehmet Sezer and Mehmet Kaynak. 1996. Chebyshev polynomial solutions of linear differential equations.
International Journal of Mathematical Education in Science and Technology 27, 4 (1996), 607–618.

Lawrence F. Shampine and Mark W. Reichelt. 1997. The MATLAB ODE Suite. SIAM J. Sci. Comput. 18, 1
(Jan. 1997), 1–22.

G.D. Smith. 1985. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Claren-
don Press.

J.C. Strikwerda. 2004. Finite Difference Schemes and Partial Differential Equations. Society for Industrial
and Applied Mathematics.

J. A. Weideman and S. C. Reddy. 2000. A MATLAB differentiation matrix suite. ACM Trans. Math. Softw.
26, 4 (Dec. 2000), 465–519.

B. Welfert. 1997. Generation of Pseudospectral Differentiation Matrices I. SIAM J. Numer. Anal. 34, 4 (1997),
1640–1657.

Wayne Welsh and Takeo Ojika. 1980. Multipoint boundary value problems with discontinuities I. Algorithms
and applications. J. Comput. Appl. Math. 6, 2 (1980), 133 – 143.

S. Young. 1982. Real Time Languages: Design and Development. Ellis Horwood Publishers, Chichester.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1049/ic:19960850

	1 Motivation and Problem Statement
	2 Scope of the Article
	3 Continuous Measurement Model
	4 Theory of Ordinary Differential Equations
	5 Overview of Numerical ODE Solvers
	6 Solving the Inverse Problem
	6.1 Preparatory Computations
	6.2 Run-Time Computation
	6.3 Error Estimation and Confidence Interval

	7 Model-in-the-Loop Testing
	7.1 Test A: Initial Value Problem 1
	7.2 Test B: Alternative Node Placement for Initial Value Problem 1
	7.3 Test C: Initial Value Problem 2
	7.4 Test D: Selecting a Support Length for Initial Value Problem 2
	7.5 Test E: Inverse 3-Point Boundary Value Problem
	7.6 Summary of the Numerical Testing

	8 Automatic Code Generation
	8.1 Embedded Target Hardware
	8.2 MBD Software for Code Generation
	8.3 Targeting and Verification Process

	9 Software- and Processor-in-the-Loop Testing
	9.1 Initial Value Problem 1
	9.2 Initial Value Problem 2
	9.3 Inverse 3-Point Boundary Value Problem

	10 Laboratory Testing
	11 Conclusion and Outlook

