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Abstract

Generative adversarial networks (GANs) are powerful generative models that are1

widely used to produce synthetic data. This paper proposes a Multi-Group Gener-2

ative Adversarial Network (MGGAN), a framework that consists of multiple gen-3

erative groups for addressing the mode collapse problem and creating high-quality4

samples with less time cost. The idea is intuitive yet effective. The distinguish-5

ing characteristic of MGGAN is that a generative group includes a fixed generator6

but a dynamic discriminator. All the generators need to combine with a random7

discriminator from other generative groups after a certain number of training it-8

erations, which is called regrouping. The multiple generative groups are trained9

simultaneously and independently without sharing the parameters. The learning10

rate and the regrouping interval are adjusted dynamically in the training process.11

We conduct the extensive experiments on the synthetic and real-world dataset. The12

experimental results show the superior performance of our MGGAN in generating13

high quality and diverse samples with less training time.14

1 Introduction15

Generative Adversarial Network (GAN)[1] is a well-known model for generating persuasive and16

agile samples.Though GANs can generate the samples for data augmentations, it suffers from a17

problem called mode collapse [2][3][4][5][6], in which the generator collapses and only generates18

the samples with limited variety. If the discriminator identifies the samples produced by the gen-19

erator as genuine, the generator will always produce similar distributions. It is considered a major20

challenge to extract the feature distributions from complicated datasets with multiple object classes21

(e.g., ImageNet[7]) since it is difficult for GAN to converge and sometimes the Nash equilibrium22

does not even exist. In this case, mode collapse becomes a prominent problem. The mode collapse23

problem is even more severe when using GAN to generate faces. This is because the initial layers24

in the model mostly learn the same fine-grained feature distributions for a specific type of dataset.25

In this phase, the generator is limited to targeting a particular pattern even though the discriminator26

offers the favourable feedback. There are two widely used approaches to deal with the puzzle: 1)27

reinforcing the GANs’ learning ability [2][5][6], and 2) ensuring the GANs can extract a variety of28

modes from different data distributions [3][4][8]. This work takes the second approach.29

In this work, we propose a framework called MGGAN (Multi-Group Generative Adversarial Nets)30

to effectively solve the mode collapse problem and increase the diversity of the generated samples,31

even for the complicated dataset such as face images. MGGAN trains a set of generative groups32

simultaneously, each of which is constituted by a generator and a discriminator. During the train-33

ing, the generators and the discriminators will be regrouped. A generator will be paired with a34

discriminator from another randomly selected generative group. The regrouping gives the system35

the opportunity of inheriting the network parameters from the previous group, which prevents the36

system from dropping the distributions that have been learned.37
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The challenge of introducing multiple generative groups and performing regrouping is as follows.38

After each regrouping instance, a new network is formed in each generative group. The new network39

may produce worse results in the initial period of a regrouping instance because the network starts to40

capture new features, and then recover gradually to generate better samples. This may generate many41

local optimums in the loss curve. We made careful observations to the loss trend during the training42

in this multi-group setting, and propose a learning rate adjustment strategy to allow the network to43

jump out of the local minimums swiftly. Further, we propose a strategy to determine the regrouping44

interval dynamically (i.e., the number of training iterations between two consecutive regrouping45

instances in MGGAN). The learning rate adjustment strategy combined with the regrouping strategy46

can facilitate MGGAN to learning disparate modes and sharing the network parameters efficiently47

among multiple generative groups.48

We conduct the extensive experiments with MGGAN on a synthetic dataset and three realistic49

datasets (MNIST, CIFAR-10, Lfw). In the experiments, DCGAN [9] is implemented with our MG-50

GAN framework and is evaluated in terms of the metrics of IS (Inception Score) and FID (Frechet51

Inception Distance). The experimental results show that MGGAN can generate high quality sam-52

ples while reducing the training time. Moreover, MGGAN can be applied to other GAN variants.53

Namely, we can train several different types of GANs simultaneously by employing MGGAN in the54

same training procedure..55

2 Related Work56

GANs have shown impressive success in generating realistic, high-quality samples when being57

trained on the class-specific datasets (e.g.Faces[10]).However, GANs suffer from the mode collapse58

problem. Many efforts have been made to attack this problem from the following different perspec-59

tives.60

2.1 Covering diverse modes61

Many methods were proposed to solve mode collapse by improving the diversity of the generated62

data[11] [12]. For example, VEEGAN adds a reconstruction network by introducing an implicit63

variational encoder to map from data to noise[11]. GDPP uses the determinantal point process to64

enforce the generated data to have a similar distribution of real data[12].65

2.2 Enhancing the training process of the network66

The Unrolled GAN proposes a novel method to tackle the instability by defining an unrolled opti-67

mization of the discriminator[5], which shows the reduction of mode collapse. WGAN presents a68

new cost function based on the Wasserstein distance that has a smoother gradient [13]. This method69

can improve the generation’s convergence.70

2.3 Using multiple generators and discriminators.71

Another way to reduce mode collapse is by adopting more than one generator or discriminator to72

capture various modes. The MAD-GAN [14] combines multiple generators with one discriminator.73

The system encourages each generator to capture its mode. CoGAN[8] proposes a extension to74

model pairs of corresponding images in two different domains. The model combines two GANs and75

shares the weights of the higher layers of both generator and discriminator. D2GAN [15] propose to76

couple two discriminators with one generator to reduce the mode collapse by minimizing the lower77

bounds of KL and reverse KL. [16] propose a framework to parallel many networks and pick the78

best one to cover modes.79

However, these methods have some disadvantages, which might result in the following problems.80

i) The methods[16] and [14] will make the discriminators much strong, which lead to the vanish-81

ing gradient problem. The generators can not receive enough gradient to make progress from an82

optimal discriminator. A powerful discriminator does not provide enough information for parame-83

ter updating. ii) Some methods increase the complexity of the network structure and loss function.84

It might increase the computation time or make the model even harder to converge [8]. iii) Some85
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approaches [5] and [13] have limited ability of generalization. The methods are based on some86

particular training models, which means it is difficult to apply them to other training networks.87

3 The MGGAN Framework88

3.1 GANs and Generative Group89

In this subsection, we first present the background of Generative Adversarial Network (GAN)90

briefly[1] and the notations we will use in this paper, and then present the generative groups to91

be used in MGGAN.92

GAN aims to model high-dimensional distributions from realistic data. It defines a game of two93

players: a G (Generator) and a D (Discriminator). A generator tries to map a vector z from the noise94

space Z to the realistic data space, generating a sample G(z) to simulate the real data and fool the95

discriminator. The discriminator D takes an input data x and outputs a probability, denoted by D(x),96

that x is a piece of real data. D(x) is computed by determining the probability that x is from the real97

data distribution (denoted by Pdata(x)) and the probability that x is from the samples produced by the98

generator G. For example, when G is fixed, the optimal discriminator uses Eq.1 to compute D(x).99

DG(x) =
Pdata(x)

(Pdata(x)+PG(x))
(1)

The GAN framework can be modelled as a minimax two-player game, in which G and D are trained100

jointly via solving Eq.2[1], in which the first term calculates the expectation of the output of D101

(i.e., D(x)) over all data following the real data distribution while the second term calculates the102

expectation of the output of D over all noise data z that are used by the generator to produce the103

samples (i.e., G(z)).104

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]
(2)

In Eq. 2, minimizing V (D,G) over G can be transformed to minimize the Jensen-Shanon (JS) diver-105

gence between the two probability distributions: Pdata(x) and PG(x), denoted by D js = (Pdata(x) ∥106

PG(x)). At the Nash Equilibrium, the distribution of the generated samples is similar to the real data107

distribution, i.e., Pdata(x) = PG(x). The discriminator gets D(x) = 0.5 for all x, indicating it can not108

tell whether its input data is real or generated.109

To tackle the mode collapse problem in the GAN training, we propose a new GAN training frame-110

work called MGGAN. The standard GAN consists of a generator and a discriminator, which interacts111

in the same network. In MGGAN, multiple generative groups are generated, each of which consists112

of a generator and a discriminator. After a certain number of training iterations (called regrouping113

interval T ) in MGGAN, a generator is regrouped with a discriminator randomly selected from a114

generative group. Between two consecutive regrouping instances, the generative groups are trained115

simultaneously without sharing the parameters.116

Empirically, the generator accepts the data from the noise space, which are of low dimension, to117

produce the samples, while the real data are usually high dimensional data. The high dimensional118

data convey much more information than low dimensional data. Thus after a regrouping instance,119

the samples produced by the generator in a new group will be distinct (new) for the discriminator.120

The regrouping presents the opportunity to improve the diversity of the generated samples because121

a generator needs to produce various samples to fool the new discriminators after each regrouping.122

However, the regrouping also challenges the discriminators’ recognition ability because they have123

to identify the samples produced by different generators, which may slow down the training process124

or even make the training difficult to converge. This is the reason why we propose the strategy to125

adjust the learning rate dynamically.126
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Figure 1: The loss trace of a generator with the G-D regrouping.The graph generated by 2 generative
group based on the DCGAN and CIFAR-10 with E=200, T=100.

3.2 The Strategy of Adjusting the Learning Rate127

Our MGGAN can work with any GAN model based on a single (G, D) group (which we call the base128

GAN model), such as DCGAN [9]. When we implement MGGAN to work with a base GAN model,129

multiple (G, D) groups are generated with each group trains with the base GAN model. During the130

training, regrouping is performed according to our strategy to be presented in this section. Note that131

different generative groups can also train with different base GAN models.132

As we have discussed in previous section, regrouping offers the opportunity to increase the diversity133

of the generated samples. But after each regrouping instance, Generators and Discriminators will134

face new partners and need to capture new features, which may cause the loss to increase after135

regrouping and consequently increase the training time. We conducted the experiments to observe136

the trend of loss as the training progresses with regrouping being performed from time to time. Fig.1137

shows the loss trace of a generator in a randomly selected generative group over epochs (up to 200138

epochs) when training two generative groups on CIFA-10 with DCGAN as the base GAN model.139

After the careful observations and analysis to the loss trace, we found that the training process with140

regrouping can be divided into three periods, which are labelled as A, B and C in Fig. 1.141

Period A is the period before the first regrouping instance. In period A, the loss may oscillate in142

the early stage of the train and then begin to decrease. Period B starts with a dramatic increase in143

loss (point a in Fig. 1). Then the following general pattern occurs throughout period B: the loss144

decreases fast to some point (point c in Fig. 1), increases dramatically again (to point f in Fig. 1)145

and then decreases to a point (point e in Fig. 1), which may be lower than the previous low point146

(i.e., point c). Our experimental records show that the dramatic increases in loss during period B147

are due to the regrouping in the training. This phenomenon is reasonable, because in the initial148

period of each regrouping instance, the samples generated by a generator is new and distinct to the149

discriminator in the new group. If the generator could learn the new features effectively after a150

regrouping, the loss may decrease to a point lower than the previous low point. In Period C, the loss151

becomes fluctuating without showing the decreasing pattern seen in period B. Based on the above152

observations, we propose the following strategy to set the learning rate as the training progresses.153

In period A, we use the learning rate set by the base GAN model. When the loss does not show the154

obvious decrease, we set it as the end of period A and performs the first regrouping. Now the training155

process enters period B. We adjust the learning rate in each generative group back to the value at156

the beginning of period A. This is because after regrouping, each generative group needs to learn157

new features. After the dramatic increase in loss after a regrouping, the loss will typically decrease158

fast (e.g., from point a to c). This is because the network has learned some features in previous159

training iterations. A problem of the regrouping scheme is that many deep local optimums (such160

as point c) appear in period B since the loss decreases fast after last regrouping instance and will161

increase drastically when the next regrouping instance is performed. Without appropriate handling,162

the training may be stuck in a local optimum. This is the reason why the loss may not decrease to163
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Algorithm 1 Adjusting the learning rate in Period B
Input: current iteration (i), the iteration at which the next regrouping is performed (iT ), Learning

rate adjusting region (α), upper limit of learning rate (L), learning rate adjusting ratio (δ ),
Variation Ratio of the Loss (γ), threshold of VRL (γ), current learning rate (L), learning rate
at the beginning of period A (L0)

Output: the adjusted learning rate (L‘)

1 if ( iT −α ≤ i ≤ iT +α and γ ≤ γ) then
2 L+= L∗δ ;
3 if L ≥L then
4 L = L;
5 end
6 end
7 if (i = iT +α +1) then
8 L=L0
9 end

a point lower than the previous low point after a regrouping. In order to address this situation, we164

adopt the strategy outlined in Algorithm 1 to adjust the learning rate in period B.165

Assume the current regrouping interval is T (i.e., T iterations need to be run between the past
regrouping instance and the next regrouping). With T , we can know at which iteration (denoted
by iT ) the next regrouping instance will be performed. When the iteration index is in the range
[iT − α, iT + α] (Line 1), we increase the learning rate by a fraction of δ each time (Line 2 in
Algorithm 1), which aims to help the training escape the local optimum. The training may not be
stable if the learning rate is too high. Therefore, a upper limit (L) is used to cap the learning rate
(Lines 3-4). When the training comes out of the range of [iT −α, iT +α] (e.g., α is 10 iterations),
it means that a new grouping is performed, we adjust the learning rate back to the initial value at
the beginning of period A (L0) to allow the base GAN model to learn new modes. There are the
variables γ and γ in the algorithm. We will present the meaning of them in the next subsection. In
this algorithm, α , δ L and γarethehyper− parametersinthetraining.

3.3 Variation Ratio of the Loss166

In Line 1 of Algorithm 1, the if condition includes a term γ ≤ γ . This is related to a notion we167

propose in this work: Variation Ratio of the Loss (VRL). γ is the current value of VRL while γ is168

the threshold value of VRL. VRL is calculated by Eq. 3, where L(n) is the loss value at iteration n.169

The idea of introducing VRL is based on the following and considerations and observations to the170

training process.171

V RLn = |Ln−1 −Ln|/Ln (3)

First, the reason why we want to increase the learning rate is because we want to jump out of172

the local optimums quickly. But through the observations to the training process, we found that173

when there is a sufficient change in the loss between two consecutive iterations (i.e., |Ln−1 −Ln|)174

compared with the current value of the loss, it is very likely that the training can jump out of the175

local optimums itself without the need of adjusting the learning rate. It is reasonable because when176

there are sufficient changes in the loss between iterations, it means that the current learning rate is177

performing well.178

Second, Algorithm 1 takes iT as input. The value of iT is directly based on the value of the re-179

grouping interval T (we will present how to determine T in next subsection). The computed value180

of T may not be accurate. The consequence of the inaccurate T is that the next regrouping and181

the adjustment of the learning rate are not performed around the local optimum regions (we will182

discuss the impact of inaccurate T in more detail in next subsection). Introducing VRL can serve183

as a remedy scheme in the case where the value of T is accurate. Namely, when we attempts to184

adjust the learning rate, the loss curve is not around a local optimum region. Then it is likely that the185

current training iterations still produce sufficient changes in loss, which can be detected by checking186

whether γ ≤ γ .187
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3.4 The Regrouping Interval188

The regrouping interval is the number of iterations performed between two consecutive regrouping189

instances. We draw an analogy to illustrate the impact of the regrouping interval on the training190

process. Suppose each generative group is a student who needs to solve a set of mathematical191

questions and different students are given different sets of questions. Regrouping is to swap the192

question sets among the students. The regrouping interval T is then the time given to the students193

to work out their questions before they face new questions. If T is set too big, the generators cannot194

learn more features from the current samples and waste the training time. If T is too small, the195

generators do not have enough time to learn the features in the current samples before they are196

forced to learn other features, which may aggravate the concussion during the training, and even197

worse the training may never converge. Therefore, if the value of T cannot be accurately predicted198

anyway, we would rather T to be overestimated than to be underestimated.199

Based on the above discussion, we propose the following strategy to determine the regrouping inter-200

val T . The initial value of T , denoted by T0, is set as the length of period A. Given the current T , the201

next T is calculated by T = T ∗ξ , where ξ is a number greater than one and is a hyper-parameter in202

the training. This suggests that in our MGGAN the regrouping interval increases as more regrouping203

instances are performed. The reasons for this are two-fold.204

First, as a generator has learned more features (modes), it needs, in theory, to spend longer time205

in capturing additional new feature. This is because the network needs to adjust more parameters206

associated with the modes which have been learned to minimize the divergence in the characteristic207

distributions between the generator and the discriminator. As the training progresses, more regroup-208

ing instances are performed and more modes have been learned. Therefore, it should take longer for209

a generative group to learn even more modes. Hence the regrouping interval should be increased as210

subsequent regrouping.211

Second, as discussed above, that we would rather T to be overestimated than to be underestimated.212

We also set an upper limit for T , denoted by T , which is a hyper-paramter in training. The reason is213

because when T is too big, the frequency at which the generative groups are fed new samples will214

be too low. We found this will cause the generative group to regard the new features contained in215

the new samples as the noise. This claim is also supported by our experimental results (Fig. 4 in the216

experiment section).217

4 Experiments218

In this section, we conduct the experiments to evaluate MGGAN and analyze its behaviour. Both219

synthetic data and real-world datasets are used. The synthetic data are used to visualize the generated220

samples and evaluate the learning ability of MGGAN. Meanwhile, we use the real-world datasets221

to demonstrate the reliability and robustness of MGGAN in tackling the mode collapse in a high-222

dimensional data space. We train our model on a GPU server equipped with two 1080Ti GPUs. This223

equipment meets the resource demand for training the GAN.224

4.1 Experimental Setup225

The GAN Structure: In the experiments, we adopt DCGAN[9] as the base GAN model . In addition,226

we can use different types of generative models as the base GAN model in MGGAN. For example,227

we can use both DCGAN and WGAN as the base GAN models. The two GAN models can be228

trained simultaneously and the network shares the parameters between them.229

Datasets: We conducted the experiments on both synthetic data and realistic datasets. The synthetic230

data can evaluate the ability to extract multiple data modes. Though the synthetic data has limited231

modes and diversity, it can be quickly assessed via visual inspection. The large-scale datasets in-232

cludes MNIST [17], CIFAR-10 [18] and LFW [19] (LFW is a dataset of face photographs designed233

for studying the problem of unconstrained face recognition).234

Evaluation Metrics: Inception Score (IS) [6] and Frechet Inception Distance (FID) [20] are used235

as the evaluation metrics. IS is the most widely adopted metric. However, one disadvantage of IS236

is that it might make the wrong decision if the generators only produce one image per class. FID237
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is sensitive to mode collapse. So FID is a better assessment of evaluative image diversity. A lower238

value of FID indicates better image quality and variety.239

4.2 Experimental Results240

4.2.1 Synthetic Data241

In these experiments, we use the synthetic data to evaluate the ability of MGGAN to learn and242

capture multiple data modes and avoid mode collapse. A simple MGGAN architecture is trained on243

a 2D mixture of 8 Gaussians arranged in a circle. The architecture and the list of hyperparameters244

are shown in Appendix A. We did not apply our adjustment strategy for the learning rate and the245

regrouping interval in this training because i) the toy dataset has limited modes and ii) we want to246

evaluate the impact of different regrouping intervals on the training outcome. Figure.2 shows the247

output of MGGAN and the original GAN. The generated samples are around the authentic modes248

of the distribution but usually ignore some specific modes. When we apply MGGAN to the training,249

the generators converge to the real distribution quickly, and the system learns all the modes with the250

suitable regrouping interval. More experimental results will be presented in Appendix B. The top

(a) E=600 (b) E=1500 (c) E=2700

Figure 2: The MGGAN training output on a 2D mixture Gaussians dataset. The columns display the
data distribution after certain epochs, while the first, second and third row show the training output
with the regrouping interval of 0, 25 and 300, respectively. The blue dots are the generated samples,
and the green dots are the targeted distribution.

251
row of Fig.2 shows that the GAN without regrouping ignores a specific mode. The second and third252

rows employ MGGAN and converges to the targeted distribution quickly. However, we notice that253

the data distribution in the second row is more confusing. The distribution spreads out with disorder254

due to the distinct value of regrouping interval T . The learning procedure in the second row has255

more regrouping instances than that in the third row, which means that the model requires sufficient256

time to capture explicit features before they learn new samples.257

4.2.2 MNIST258

Through this experiment, the generated samples demonstrate that our method produces various259

modes of data, which can be seen by inspecting Fig.3. The model without regrouping generates260

the same modes even if it has been trained maturely. The samples in the top row generate same261

digits, such as 3 and 7, after a long time of training. The second row can produce a variety of modes262

from the early stage of training. The images in the second row demonstrate that MGGAN increases263

the quality and diversity of the generated samples.264

4.2.3 CIFAR-10265

CIFAR-10 is a real-world dataset with high-dimensional images and is much more complicated266

compared with the MNIST. Therefore, we test MGGAN on a more effective convolution architecture267

called DCGAN [9]. In this experiment, we employ our learning rate adjustment strategy, but use268

different regrouping interval to examine the impact on the quality and the time cost of the samples.269

We first show the performance in terms of IS on CIFAR-10 collected from the standard GAN and270

MGGAN with the same network structure. We set the output from the standard GAN as the bench-271

mark to evaluate the performance. The positive values in the figures mean that MGGAN returns a272
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(a) E=50 (b) E=400 (c) E=600

Figure 3: MGGAN avoids mode collapse for a GAN trained on MNIST. The top row was generated
by the standard GAN, while the bottom row was generated by MGGAN. The images are generated
by the generators after the specified number of training epoch.

better result. Fig.4(a) and Fig.4(b) shows that MGGAN can improve the capability of the generative273

model in producing the images with high quality and diversity. Fig.4(c) shows the effectiveness of274

MGGAN in accelerating the training.275
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Figure 4: The performance improvement over the epochs using MGGAN on CIFAR-10 with T=0,
25, 50, 65, 85, 100, 200, 300, 500. a) Improvement of IS; b) Improvement of FID; c) Improvement
of training time.

Fig.4 shows that when the regrouping interval is too high (more than 200), MGGAN produces worse276

results than the standard GAN. It suggests the regrouping interval T cannot be too big. The reason is277

because when T is too big, the generative groups are fed with new samples very infrequently. Then278

the generative groups are likely to treat the new features in the new samples as noise. This is reason279

why we set a upper limit for T in the training.280

MGGAN can speed up the training and capture the distribution if enough iterations are provided.281

From Fig.4(c), we can see that our approach can significantly reduce the training cost with suitable282

regrouping interval.283

Finally, we randomly select several samples generated by MGGAN trained on the CIFAR-10 and284

present them in Fig.5. It shows that MGGAN can produce visually appealing images with convo-285

luted features like cars, trucks, aeroplanes and animals.286

Figure 5: Images generated by MGGAN on the CIFAR-10 dataset.
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4.2.4 LFW287

LFW is a fine-grained human face dataset with sophisticated features such as hair, clothes and facial288

expressions. These factors make the training more difficult if we do not improve the capability of289

the generative model. The standard generators often mislay some particular texture, resulting in290

mode collapse and low-quality samples. MGGAN can guide the generators to learn the fine-grained291

features with less training time and increase the learning quality of the base GAN models even for292

the complex data.
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Figure 6: The performance improvement over epochs by using MGGAN on LFW with T=0, 25,
50, 100, 150. a) Improvement of IS for Lfw; b) Improvement of FID for Lfw; c) Improvement of
training time for Lfw

293

Though the data from LFW have much more fine-grained texture than the images from CIFAR-10,294

MGGAN can still save a lot of training time while keeping the quality and diversity of generated295

samples. The figures show that MGGAN has better performance in improving IS. Moreover, training296

process with more epochs can generate the samples with a higher FID value. Fig.7 shows some297

samples produced by MGGAN after training on LFW.

Figure 7: Images generated by MMGAN on the LFW dataset.
298

5 Conculsion299

In this paper, we present a novel GAN framework called MGGAN. In MGGAN, we propose to300

use a set of generative groups. A learning rate adjustment strategy is proposed to help the model301

accomplish faster convergence and reduce concussion during the training. The regrouping interval302

is also craftly determined to ensure the model can capture more modes effectively and efficiently.303

We have conducted the extensive experiments to evaluate the robustness and scalability of MGGAN304

by using the Gaussian mixture distribution and the real-world datasets. The experimental results305

show that MGGAN i) addresses the mode collapse problem well, ii) generates more diverse and306

higher quality samples with different type of images such as aeroplane and animals, iii) achieves307

better results when training with fine-grained and complicated datasets such as human faces, and iv)308

reduces the training cost while maintaining the high quality of the generated samples.309
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