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A Trajectory-based Gesture Recognition in Smart
Homes based on Ultra-Wideband System

Anna Li, Eliane Bodanese, Tianwei Hou, Kaishun Wu, Fei Luo

Abstract—In this paper, we propose a cost-effective ultra-
wideband (UWB) system for gesture recognition in a smart
home environment, where the interference and the device se-
lection issues can be beneficially solved. In the proposed UWB
system, the gesture trajectories obtained by positioning are
employed for recognizing human gestures instead of directly
using wireless signals. To this end, we first collect the datasets of
four different fine-grained gesture activities. Then, we integrate
the squeeze-and-excitation block (SE) into the Convolutional
Neural Network (CNN) seamlessly for gesture recognition, for
convenience, namely the SE-Conv1D model. We compare the
accuracy of various classifiers, which are support vector machine
(SVM), K-nearest neighbor (KNN) and random forest (RF). All
of these activities are correctly recognized with an accuracy
of over 95%, among which our proposed SE-Conv1D model
achieves the best accuracy of 99.48%. Finally, We implement our
system to perform a case study, demonstrating that our proposed
UWB-based system achieves higher recognition accuracy in real-
time in a smart home environment compared to the previous
contributions. We have also publicly archived our UWB gesture
datasets, which may have a number of important implications
for future practice.

Index Terms—Gesture Recognition, Smart home, squeeze-and-
excitation, Trajectory, Ultra-Wideband

I. INTRODUCTION

Gesture recognition is one of the most critical sub-topics in
human activity recognition (HAR), and plays a key role in the
development of multiple applications, including smart home,
health care, and virtual reality [1]. Gesture recognition is able
to remote control the devices without physical contact, which
is convenient and efficient for users. Recent developments in
gesture recognition have heightened the need for smart homes,
e.g., SeleCon [2], which has attracted great attention in using
gestures to control smart devices.

A. Limitation of State of the Art

Previous attempts for gesture recognition utilize sensing
modalities containing cameras, audio-based approaches, Wi-Fi
technique, radio-frequency identifications (RFID), and Blue-
tooth techniques [3]–[5]. They suffer from inherent draw-
backs, including privacy leakage, inconvenience, as well as
limited sensing range and interference. For example, vision-
based approaches have to deal with well-known environmental
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challenges, where the line-of-sight (LoS) is strictly required
between the camera and users [6]. In addition, the feasibility
of the vision-based recognition is impacted by the variability
in brightness, contrast, and exposure. It is worth noting that
both vision-based and speech-based recognition approaches
violate users’ privacy because the recorded video and audio
data contentiously release to the remote cloud servers. To
overcome privacy issues, Wi-Fi, RFID, and Bluetooth tech-
niques are more applicable. However, the Wi-Fi technique is
limited by the low spatial resolution, signal strength, multi-
path reflections, as well as electromagnetic interference [7].
Bluetooth and RFID are greatly restricted to the short-range
sensing capability. Recently, research on radar-based gesture
recognition [8]–[11] has been considered as an alternative
for overcoming the problems as mentioned above. Radar-
based recognition has no privacy and LoS issues, which
stands as a potential solution for fine-grained gesture recog-
nition. However, radar-based recognition also suffers from
interferences from the other devices and the multi-path effects,
which dramatically decrease the signal-to-interference-plus-
noise-ratio of the wireless signals [12]. Most of the solutions
utilize digital signal processing techniques for mitigating co-
channel interference. However, it is still hard to distinguish
the interference for gesture recognition in practice.

Another challenge is previous studies of gesture recognition
have not perfectly tackle the device selection problem, espe-
cially for smart home applications [13], [14]. Only few existing
gesture recognition solutions can select a device and control
it without increasing the tags for each device [2]. In most
of studies, different gestures are assigned to different devices
in smart home. However, assigning semantic tags for each
device, such as ‘light 1’ or ‘light 2’ could burden the users.
With the increasing number of devices in smart homes, this
process becomes cumbersome. Therefore, it is natural to ask
whether we can simultaneously control and select a specific
device without defining massive gestures.

B. Motivations
To solve mentioned problems, we need a practical solution

that can be applied to smart homes. We proposed a low-
cost system based on Ultra-Wideband (UWB) technology,
which is the radio with a wide bandwidth (≥500 MHz).
Although some researchers have investigated it [15]–[17], they
put emphasis on UWB’s high-frequency pulse signals, which
can be expressed in the following formats: time-amplitude,
range-amplitude, the time-range, time-Doppler, range-Doppler
frequency/time-Doppler speed, and time-frequency. However,
these existing studies by using UWB radars do not satisfacto-
rily address interference problems well. In addition, if gesture
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Fig. 1: Architecture of the proposed UWB system.

verification is performed at a distance or direction that is
not used for training, the accuracy may be reduced, thereby
limiting the real-world applications.

Different from the previous study, in this paper, we focused
on the high localization accuracy of UWB, which is regarded
as one of the most accurate and promising technologies. We
proposed a new solution that only uses gesture trajectories
instead of other spectrums to recognize human gestures using
UWB technology. The trajectory of human gestures collected
by UWB is a sequence of coordinates, which contains both
spatial and temporal information. We developed a deep learn-
ing model to recognize human gestures and use different
machine learning algorithms to verify our hypothesis. In this
way, we are able to solve the problem of interference and
improve the performance of our proposed system. In addition,
with our proposed system, we can solve device selection for
smart homes.

C. Contributions

A trajectory-based solution for gesture recognition using
the UWB system, which aims to overcome the constraints of
the existing works and achieves nearly real-time recognition,
was proposed for the first time in this paper. We propose a
deep learning model for recognizing dynamic gestures and use
different machine learning algorithms to verify our hypothesis.
It’s worth noting that this system is not just a radar sensor chip
or a new signal processing algorithm. Instead, it is a complete
end-to-end sensing system specifically designed for tracking
and recognizing fine-grained gestures, as illustrated in Fig 1.
The main contributions can be summarized as follows:
• We first proposed a novel concept of recognizing human

activities only based on trajectories of activities using
our proposed cost-effective UWB system. We collected
datasets of four different fine-grained activities in a
laboratory that simulates the smart home, e.g., turning
on/off the light. In addition, we designed our experiment
that use the same gesture to control different lights.
Finally, trajectories of pre-defined gestures from different
directions and distances were produced.

• We proposed a novel framework for gesture recogni-
tion, for convenience, namely the SE-Conv1D model,
which achieves excellent gesture recognition performance
of 99.48% overall accuracy. We compared our results
to other different machine learning algorithms, which
are support vector machine (SVM), K-nearest neighbor
(KNN), and random forest (RF). All of these activities
are correctly classified with an accuracy of over 95% by
three learning models, in which the SVM algorithm is
shown to yield a high 98.12% classification accuracy.

• We prototype our system to interact with appliances
in practical smart homes. It proves that our proposed
system is a complete end-to-end sensing system specifi-
cally designed for tracking and recognizing fine-grained
gestures. The superiority of our proposed solution is both
interference-free and works robustly against changes in
distance or direction, which means it is more reliable in
real-world applications. In addition, our proposed system
provides a practical method of IoT device selection for
smart homes only using gestures.

D. Organization

The rest of this paper is organized as follows. Section II
presents the related work, in which we will review UWB-
based gesture recognition, learning algorithms, and trajectory-
based solutions. Section III gives a detailed review of the
UWB technology, double-sided two-way ranging, and our
learning models. Section IV shows the experimental setup.
The experimental results are illustrated in section V. Section
VI discusses the future work and concludes this paper.

II. RELATED WORK

This section presents the related work concerning UWB-
based gesture recognition, learning algorithms, and trajectory-
based recognition with different sensors.

A. Radar-based Gesture Recognition

Many studies have investigated radar-based systems for
gesture recognition [10], [18], [19]. For instance, Sakamoto et
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al. [18] utilized a 2.4-GHz continuous wave (CW) Doppler
radar for the automatic recognition of human gestures and
achieved the overall accuracy exceeding 90%. However, a
drawback of an unmodulated CW radar is that it is unable
to measure distance. To solve this problem, the frequency
modulated continuous wave (FMCW) radar, of which the
signals contain both range and Doppler information, was
proposed for gesture recognition. In [19], Peng et al. used a
24-GHz FMCW radar to recognize human gestures at different
ranges. However, in real-world applications, purely range-
based gesture recognition using radars may suffer from the
interferences of the Doppler frequencies of nearby moving.

Recently, there has been renewed interest in UWB tech-
nology, which is regarded as one of the most accurate and
promising technologies to provide high localization accuracy,
high immunity against the multi-path problem, and low output
power [20]. An early study for gesture recognition using
UWB radar was in 2016, Park et al. [21] recognized human
gestures by using impulse radio UWB radar. With the help
of machine learning, they extracted features from the received
signals and then achieved a total gesture recognition accuracy
of nearly 100%. Khan [22] collected gestures based on the
human hand and finger motions with the similar methodology
in [21], which can be used to control different electronic
devices inside a car. It can be taken as progress in real-
world applications by using UWB radars. In [2], Alanwarwe et
al. proposed a pointing approach to interact with different
devices in smart homes, which uses a UWB equipped smart-
watch. Their results demonstrate that it achieves 97% overall
accuracy for gesture recognition. However, radar-based gesture
recognition also suffers from interferences from the other
devices and the multi-path effects. To date, there are few radar-
based studies that have investigated the problem of equipment
selection and interference simultaneously.

B. Trajectory-based Recognition

Trajectory-based methods provide a means of solving in-
terferences [23]. Much of the previous research on trajectory-
based HAR using cameras. Liang et al. [24] proposed a Long
Short-Term Memory (LSTM) model to recognize trajectory
and activity from videos. In [25], Bashir et al. presented
novel classification algorithms for recognizing object activity
using object motion trajectory. However, such approaches have
failed to address the problem of small visual scope because
the trajectories extracted from a video depend heavily on the
azimuth and inclination of the camera. In addition, the privacy
issue is still a much-debated question. Martin et al. [26] used
Global Positioning System (GPS) trajectories to recognize the
human mobility behavior. However, this solution cannot be
used for fine-grained activities. To be noted that, there is little
research in trajectory-based gesture recognition using a UWB-
based system.

C. Learning Algorithms

In the last decade, machine learning techniques have been
widely used in Gesture Recognition. In [27], Camgöz et
al. proposed RF-based model for spotting and recognizing

TABLE I: The Parameter settings of the proposed UWB
system.

Parameters Values
Centre Frequency 3 GHz
Bandwidth 500 MHz
Bit Rate 110 kbps
Range 0-9 m

continuous human gestures. In [28], a weighted KNN was
utilized to achieve real-time gesture recognition. In [29], a
system that aimed to reconstruct gestures by measuring a
user’s tendon movements was proposed.

Since it was reported in 2018, squeeze and excitation
(SE) blocks have been attracting a lot of interest in dif-
ferent fields [30]–[32]. In [30], Rundo et al. incorpo-
rated SE blocks into U-Net for prostate zonal segmenta-
tion of multi-institutional MRI datasets. Their research re-
veals that SE blocks provide excellent intra-dataset gener-
alization in multi-institutional scenarios. In [31], an end-to-
end intelligent recognition of epileptic electro-encephalogram
(EEG) seizure detection framework was proposed by using a
novel channel-embedding spectral-temporal SE network (CE-
stSENet). In [32], a new network architecture based on the
faster region-based convolutional neural network (R-CNN)
was proposed to further improve the detection performance by
using SE mechanisms, which were used for ship detection in
Synthetic aperture radar (SAR) images. As the existing works
using SE blocks have achieved some signs of success, we
incorporate the proposed SE blocks in our 1 dimensional CNN
to improve the accuracy of gesture recognition for smart home
applications.

III. METHODOLOGY

This section gives an overall review of the UWB
technology-based on DWM10001, the theory of double-sided
two-way ranging (DS-TWR) and SE block, as well as our
proposed models.

A. The UWB Technology based on DWM1000

According to the U.S. Federal Communications Commis-
sion, UWB technology, which is the radio with a wide
bandwidth (≥500 MHz). UWB technology is one of the
most potent choices for critical positioning applications that
require highly accurate results [33]. In this paper, we utilized
one type of sensor (DWM1000 module) to implement our
method, which is compliant with the IEEE 802.15.4-2011
UWB standard. The module size is 54 mm × 20 mm × 2.9 mm,
and it integrates antennas, all RF circuits, power management,
and clock circuitry in one module. As shown in Table I, the
center frequency is 3 GHz, bandwidth is 500 MHz, and the
bit rate is 110 kbps.

1The DWM1000 module is based on DecaWave’s DW1000 Ultra-Wideband
(UWB) transceiver IC. For further information on this, please refer to
www.decawave.com.
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Fig. 2: The theorem of double-sided two-way ranging system.

Fig. 3: The schema of SE module.

B. Double-sided Two-way Ranging (DS-TWR)

UWB ranging is suitable for real-time locating systems
(RTLS) [34]. In addition, the wide frequency bandwidth allows
for high-resolution channel impulse response estimation, along
with accurate time-of-flight (ToF) measurements in a dense
multi-path environment [35]. The system used in this paper is
based on the double-sided two-way ranging (DS-TWR) [36],
in which two round trip time measurements are used and
combined to give a ToF result which has a reduced error even
for quite long response delays.

In this paper, three DWM1000 modules were configured
as anchors (receivers) while another was configured as a tag
(transmitter). All the devices were placed at the same height
for localization. The trilateration solver gives two solutions
equidistant from each side of the plane of the anchors, which is
assumed to be all horizontal. The core of a DS-TWR exchange
is shown in Fig. 2, where device A initiates the first round trip
measurement to which device B responds, after which device
B initiates the second round trip measurement to which device
A responds, completing the full DS-TWR exchange. Each
device precisely timestamps the transmission and reception
times of the messages. The remark is the part of the frame
that is assumed to be time-stamped at the device antennas.
The resultant ToF estimate, T̂prop, which is the propagation
time of the message between tag and anchors, is calculated:

T̂prop =
(Tround1 × Tround2 − Treply1 × Treply2)
(Tround1 + Tround2 + Treply1 + Treply2)

. (1)

Finally, if we assume the speed of the radio waves through
the air is equal to the speed of light c, then the distance
between the anchor and tag can be expressed by:

Distance = c× TOF. (2)

C. Squeeze-and-Excitation Block

Recently, squeeze-and-excitation (SE) blocks [37] have be-
come an integral part of models, which are used to rescale the
input feature map to highlight useful channels. Hence, these
blocks able to be lightweight to increase the model complexity

Fig. 4: The proposed SE-Conv1D model.

and computation time, and ease training of the network by
improving gradient flow. The general schema of SE module is
shown in Fig. 3. The input feature map U = [u1,u2, ...,uc] is
considered as a combination of channels ui ∈ W×H , in which
u

c
can be calculated as follows:

uc = vc ∗X =

C′∑
s=1

vs
c
∗Xs, (3)

where vs
c

refers to 2D spatial kernel, vc refers to single
channel, X refers to corresponding channel, and * refers to
the convolution operation. With the help of a global average
pool, the squeeze operation is able to generate channel-wise
statistics, z ∈ RC , by utilizing the contextual information
outside the local receptive field. zs

c
is calculated by computing

Fsq(uc), which is the channel-wise global average over the
spatial dimensions W×H . The c-th element of z is calculated
by:

zc = Fsq(uc) =
1

W×H

W∑
i=1

H∑
j=1

uc(i, j). (4)

For temporal sequence data, the channel-wise statistics is
generated by shrinking U through the temporal dimension T ,
where the c-th element of z is calculated by:

zc = Fsq(uc) =
1

T

T∑
t=1

uc(t). (5)

The aggregated information obtained from the squeeze oper-
ation is followed by the excitation operation, which aims to
capture the channel-wise dependencies. To meet these criteria,
a simple gating mechanism is employed with a sigmoid
activation:

s = Fex(z,W) = σ(g(z,W)) = σ(W2δ(W1z)), (6)

where Fex refers to a neural network, W1 ∈ RC
r ×C and

W2 ∈ RC
r ×C are learnable parameters of Fex , σ refers

to the Sigmoid activation function, δ refers to the ReLU
activation function, and r is the reduction ratio. To limit model
complexity and aid generalisation, W1 and W2 are utilized.
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Fig. 5: Experimental scenario. Office has a size of 4.5 m × 4
m with one sofa, two tables, and three bookcases. The UWB
devices were configured on the table.

Fig. 6: The location of device configuration.

The final output of the block is achieved by rescaling U as
follows:

X̃c = Fscale(uc, sc) = sc · uc, (7)

where X̃ = [X̃1, X̃2, ..., X̃c] and Fscale is the channel-wise
multiplication between the feature map uc ∈ RT and the scale
sc.

D. Our Proposed Network Architecture

We integrate the squeeze-and-excitation block (SE) block
into the Convolutional Neural Network (CNN) models to
enhance recognition accuracy. The structure and learning
method of the proposed framework for gesture recognition, for
convenience, namely the SE-Conv1D model, as illuminated in
Fig. 4. The fully convolutional block contains three temporal
convolutional blocks, which are used as feature extractors. The
SE-Conv1D network is comprised of 2 blocks of (128, 256,
128) filters for all models, with kernel sizes of 16, 3, and
5, respectively. Each convolutional layer is succeeded by the
batch normalization layer and the ReLU activation function.
A global average pooling layer follows the final temporal
convolutional block. During the training phase, All the net-
works are trained using sparse categorical cross-entropy [38].
In [39], the reduction ratio r was set to a value of 16 for the
task of time series classification. To find its optimal setting in
our application, we perform experiments with different values

of r from 2 to 16. Finally, for all SE blocks, we set r to
16. The batch size is 60 for 25 epochs. We use the Adam
optimizer [40], with the final learning rate set to 0.001.

E. Other machine learning classifiers for comparisons
We use three different machine learning classifiers, which

are taken as the baselines to make a comparison with our
proposed SE-Conv1D network.

1) Support Vector Machine (SVM): Support vector ma-
chines (SVM) are learning algorithms, which are able to
select the hyperplanes that maximize the distance between
the nearest training samples and the hyperplanes [41]. In
this paper, we use the radial basis function (RBF) kernel
function [42] to calculate the distance by using the equation
as follows:

K(xi, yi) = exp(−γ ‖ xi − yi‖2), γ > 0, (8)

where γ is the kernel parameter, and cross-validation is used to
tune the hyperparameters. In this paper, two hyperparameters
(C, γ) in SVM-RBF were specified manually. Given a hyper-
parameter space C: [0, 20], γ: [0, 1.0E - 5], a different pair
of parameters will be selected from the hyperparameter space
by using the cross-validation in each training and validation
epoch to build the SVM-RBF model. After training, we can
obtain the optimal parameters for SVM-RBF model. Finally,
in this paper, we find that when C is 10, and γ is 1.0E - 4.3,
the performance is best.

2) K-Nearest Neighbor (KNN): K-nearest neighbor (KNN),
which follows an assumption that similar things are closed to
each other [43]. The Euclidean distance is commonly used for
continuous variables to calculate the distance in KNN, which
can be calculated by [44]:

Dist(Sc, Si) =

√√√√ M∑
p=1

(f cp − f ip)
2
. (9)

We need to calculate the distance between each labeled sample
Sc (1 ≤ c ≤ N) and Si to find k closest samples to Si.
Cross-validation [45] is used to select a suitable value of
k, which can minimize the overall distance between those k
nearest labeled and the unlabeled samples. After this step, the
unlabeled samples will be classified to the class label based
upon a majority vote from the k nearest labeled samples. In
this paper, we perform in-car HAR by using kNN with k = 2.

3) Random Forest (RF): Random Forest (RF) is a holistic
learning method of classification and regression by construct-
ing a collection of decision trees. Gini impurity is the default
metric in a decision tree, which is a method of how often those
randomly chosen elements will be labeled incorrectly, if they
are randomly labeled according to the distribution of labels in
the subset. To calculate Gini impurity with J classes, assume
that i ∈ {1, 2, ..., J}, and let pi be the fraction of items labeled
with class i in the set:

IG(P ) =

J∑
i=1

pi

pk∑
k 6=1

= 1−
J∑

i=1

p2i . (10)

RF is trained by constructing a set of decision trees with the
number of trees specified by a hyperparameter N . Thus, the
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TABLE II: The description of pre-defined gestures.

ID Number Gesture Activity Descripition Case study
0 Swipe right The gesture of swiping the right hand to the right Turn on the light
1 Up and down The gesture of Lifting the right hand from bottom to top and then put it down Coloring
2 Circle clockwise The gesture of rotating the right hand for a circle clockwise. Turn on all lights
3 Push The gesture of pushing the right hand outwards perpendicular to the ground Turn off all lights
4 Others Daily behaviors, e.g., walking and sitting /

random forest consists of N trees. For a new dataset, each
item of the dataset is input to each of the N trees. In this
paper, a RF built with 110 decisions trees is utilized.

IV. EVALUATION SETUP

In this section, experimental setup, including device config-
uration, the experimental environments, gesture sets, partici-
pants, and data processing, are presented.

A. Data Measurement

The UWB data collection was conducted in an office in
Shenzhen University, where we simulated the real smart home
scenarios, which is shown in Fig. 5. In this experiment, three
DWM1000 modules were configured as anchors (receivers)
while another was configured as a tag (transmitter). The
tag was connected to the human body, and radar data were
collected in real-time. As shown in Fig. 6, three anchors were
deployed, namely anchors A, B, and C. Anchors B and C were
located 89 cm above the ground, and anchor A was located
33 cm above the ground. These two anchors were kept fixed
at a separation distance of 4.91 meters from each other.

We predefined a set of gestures to represent different user
commands in smart home, including four continuous gestures
‘swipe right’, ‘up and down’, ‘circle clockwise’ and ‘push’. In
order to explore how our proposed system will be incorrectly
triggered by daily behaviors, e.g., ‘walking’ and ‘sitting’, we
asked volunteers to perform the daily behaviors for 10 minutes.
We defined them as ‘Others’. The standard for each class
is shown in TABLE II. The data were collected from three
volunteers: two males and one female. They were unpaid
volunteers recruited from different departments of Shenzhen
university. The experimenter demonstrated how each gesture
should be performed one by one before starting the data
collection. It is worth noting that all activities were performed
in a naturally different orientation, as would be the case in the
real-world scenario. When the instruction ‘start’ was given, a
volunteer, who faces different directions at different positions,
performs a pre-defined gesture, each of which was performed
around 100 times.

B. Data Processing

Our final dataset comprises 19121 samples in total, in-
cluding 3145 samples of ‘swipe right’, 3291 samples of ‘up
and down’, 4737 samples of ‘circle clockwise’, 3948 samples
of ‘push forward’, 4000 samples of ‘others’, respectively.
Each window contains 18-25 points, which are extracted from
gesture trajectories. The choice of window size is essential
for accurate gesture recognition. If the size is too small, the

signals of a human gesture cannot be entirely captured by
the window. On the contrary, if the window size is too large,
signals of two or more human gestures can be included. After
testing, we then segmented them using a sliding window with
an average length of 20 location points.

V. RESULTS

In this section, firstly, the evaluations of the test dataset by
using different learning algorithms are presented. In addition,
we compare our results with the related work. Finally, the case
study is presented.

A. Evaluation Metrics

The metrics used to evaluate recognition performance from
different perspectives in this paper are: 1) Overall classification
accuracy (OA); 2) Recall; 3) F1-score and 4) Normalized
confusion matrix. The metrics used to evaluate performance
of our system in this paper are defined as follows:

Accuracy =
TP + TN

TP+ TN+ FP + FN
, (11)

Recall =
TP

TP + FN
, (12)

F1 = 2× Precision× Recall

Precision + Recall
, (13)

where TP, FP, TN, and FN denote true positive, false positive,
true negative, and false negative, respectively. During the
training process, we divided the trajectory samples into two
segments: 85% for training, 15% for testing.

B. The results of the proposed SE-Conv1D network

The training loss and validation accuracy of the SE-Conv1D
network are shown in Fig. 8. By using our proposed SE-
Conv1D network, the achieved overall accuracy is 99.48%
and loss less than 0.02. A confusion matrix is commonly
utilized for analyzing recognition performance. As shown in
the normalized confusion matrix of Fig. 9, all gestures are
correctly classified with nearly 100%, except the gesture ‘up
and down’. 1% of ‘up and down’ samples were misclassified
into ‘push’, while the rest of those were misclassified into
‘circle clockwise’.
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Fig. 7: (a) The design of four potential human gesture activities in the car. From left to right: ‘swipe right’, ‘up and down’,
‘circle clockwise’, ‘push’. (b) Trajectories are randomly chosen from different directions and distances produced by UWB.
‘A’, ‘B’, and ‘C’ refers to station A, B, and C.
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Fig. 8: Validation loss and accuracy of the proposed LSTM
and TCN.

TABLE III: Comparison of the classification models.

OA (%) Recall (%) F1 (%)
SVM-RBF 98.12 98.05 98.04

RF 96.51 96.22 96.42
KNN 95.47 95.54 95.48

SE-Conv1D 99.48 99.45 99.49

C. Results of different Baseline approaches

As shown in Table III, the achieved overall accuracies by
SVM, RF, kNN are 98.12%, 96.51%, and 95.47%, respec-
tively. SVM performs best among these three algorithms. As
shown in Fig. 9, the normalized confusion matrix of the
human gesture activities are correctly classified with above
90% by three learning methods. SVM achieves the highest
performance in ‘swipe right’ (97%), ‘push’ (97%), and ‘no
activity (100%). SVM achieves poor performance inactivity
‘up and down’, while 1% of samples have been misclassified
into ‘swipe right’, ‘circle clockwise’ and ‘no activity, respec-

tively, and 2% of samples have been misclassified into ‘push’.
This is because compared with other activities, some trajectory
samples from these classes have a similar pattern to other
activities. RF shows better performance on activity ‘up and
down’ and ‘circle clockwise’. Especially for activity ‘circle
clockwise’, the OA is nearly 100%. However, for activity
‘push’, the OA is only 93%. In conclusion, our proposed SE-
Conv1D network has a huge superiority over than other three
baseline approaches.

D. Analysis About Time Consumption

The hardware platform is a laptop with an Intel(R)
Core(TM) i7-10510U CPU inside, and the CPU clock fre-
quency and the memory size are 2.3 GHz and 16.0 GB,
respectively. The software platform is python with the Tensor-
flow backend, and the operating system is Windows 10. The
SE-Conv1D network consumes around 7min30s for training
and testing all gestures. In real-world applications, gesture
recognition will be asked to be real-time processing. Since the
running time for classifying one hand gesture by the proposed
SE-Conv1D network is only 0.023 s, it is promising to achieve
real-time processing in practical applications.

E. Comparison with Related Work

Table III presents the performance comparison of the pro-
posed approach with the existing state-of-the-art methods.
Ahmed et al. [46] perform gesture recognition within cars
by using impulse UWB radar with CNN, which achieves
an overall accuracy of approximately 97%. Khan et al. [47]
proposed a novel gesture recognition algorithm, which is
able to achieve the best performance of 97%. Maitre et al.
recognized activities of daily living from UWB radars by
using the deep learning methods. In [48], Wang et al. used the
Soli radar developed by Google [49] along with deep-learning
to classify hand gestures. However, all of these works using
UWB technology cannot solve the problem of interference
from the ground surrounding objects and multi-path effects, as
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Fig. 9: Normalized confusion matrix. (a) Normalized confusion matrix using SVM-RBF. (b) Normalized confusion matrix
using RF. (c) Normalized confusion matrix using kNN. (d) Normalized confusion matrix using SE-Conv1D.

TABLE IV: Comparison with Related Works

Study Algorithm Accuracy
This paper SVM 98.12%

Khan et al. [47] K-means 97%
Ahmed et al. [46] CNN 97%
Maitre et al. [15] Stacked-LSTM 97%

Vu et al. [50] HMM 95%
Proposed SE-Conv1D 99.48%

well as the device selection problem. In addition, our proposed
SE-Conv1D network gives a better accuracy rate in trajectory-
based human gesture recognition than other standard gesture-
based learning algorithms. Our trajectory-based activity recog-
nition is a potentially promising method, which significantly
impact the real-world application.

F. Case Study

We prototype our system to interact with appliances in
practical smart homes. We realize its functions responding to
the following pre-defined gestures, which is also shown in
TABLE II:

• Swipe right: Turn on the light.
• Up and down: Coloring.
• Circle clockwise: Turn on all lights.
• Push: Turn off all lights.

The detailed operation is formulated in Alg.1, and the
dynamic trajectory collection process for each person is shown
in Fig. 10. We control the light with the distance between
two lights instead of adding more pre-defined gestures, which
may bring continence to real-world applications. The detailed
demonstration is shown in the link.
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Algorithm 1: The proposed Gesture control algorithm
Input: Location results; Learning parameter
Output: Turning on/off Bulb1 and/or Bulb2; changing

Bulb1 and/or Bulb2 to different colors
Initialize the locations of all BSs and bulbs
foreach A volunteer has been detected do

while Gesture detection: Gesture0 do
Turn on the nearest Bulb;

end
while Gesture detection: Gesture1 do

Change the color of the nearest Bulb;
end
while Gesture detection: Gesture2 do

Turn on both Bulb1 and Bulb2;
end
while Gesture detection: Gesture3 do

Turn off both Bulb1 and Bulb2;
end

end

Fig. 10: The tested experiment with dynamic trajectory.

In order to quantify the user experience for the future
improvement of our system, We made an extensive user study.
For this, we recruit 12 volunteers to try it and quantize their
experience using our designed questionnaires. We record the
user experiences based on the following aspects: convenience,
flexibility, accuracy, robustness, interactivity. For each item,
users are asked to grade their perception into the following
levels, i.e., ’A’ refers to Excellent, ’B’ refers to Very good,
’C’ refers to good, ’D’ fair, or ’E’ does poorly. We acquired
the following options and summarized them. All users find that
our proposed UWB-based system is more convenient than the
traditional method, e.i., Using smartphones, because it does
not ask the users to open the app to choose which device
they want to open. More than 80% of users believe that our
solution is more difficult to be triggered by mistake in daily
usage than the voice-control solution. Hence, compared with
the current popular solutions for smart homes, our solution has
a more convenient user experience based on similar accuracy.
Therefore, our solution has the potential to enable a convenient
smart home gesture-based application.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel solution to perform gesture recognition
by using a low-cost and -power UWB-based system was
proposed for the first time. We collected datasets of five
different fine-grained gesture activities. Our proposed SE-
Conv1D model achieved an excellent result of 99.48% overall
accuracy, which is superior to the results achieved by SVM,
RF, and KNN. We compared this article to the state-of-the-art
approach for activity recognition using UWB. Our proposed
networks outperform the state-of-the-art method. Compared
with previous research, the superiority of this study is that
our solution is interference-free and works robustly against
changes in distance or direction, which means it is more
reliable in real-world applications. It proves that our proposed
novel approach is able to deliver a high recognition accuracy
in nearly real-time. While we are very optimistic about the cur-
rent capabilities of our proposed system, we admit that there
are still exist the following limitations in our current system.
Our system requires the user to wear equipment with UWB,
and it cannot be used by more than one user simultaneously.
Hence, in our future work, we consider improving our system
to support multiple people recognition.
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