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ABSTRACT 

 

Perception is a fundamental task of autonomous driving systems, which gathers all the 

necessary information about the surrounding environment of the moving vehicle. Then a 

decision-making system takes the perception data as input and provides the optimum 

decision given a scenario, which maximizes the safety of the passengers. In this project, we 

have developed variants of the U-Net model to perform semantic segmentation on urban 

scene images to understand the surroundings of an autonomous vehicle. The U-Net model 

and its variants are adopted for semantic segmentation in this project to account for the 

power of the UNet in handling large and small datasets. We have also compared the best-

performing variant with other commonly used semantic segmentation models. The 

comparative analysis was performed using three well-known models, including FCN-16, 

FCN-8, and SegNet. After conducting sensitivity and comparative analysis, it is concluded 

that the U-Net variants performed the best in terms of the Intersection over Union (IoU) 

evaluation metric and other quality metrics. 
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Chapter 1: Introduction  

As technology constantly evolves, autonomous vehicles are becoming more popular, accessible, 

and affordable for more people in different countries and from different economic classes. 

Increasing accessibility results in a safer transportation experience, fewer deaths, and minimal 

injuries due to human-made mistakes that cause catastrophic accidents. To ensure the safety of 

individuals, it is necessary to deploy highly efficient and accurate learning models trained on a 

broad range of driving scenarios to precisely detect the surrounding objects under different 

weather and lighting conditions. This learning procedure via training will adjust the vehicle's 

decision-making process and control mechanism to take the necessary actions.  

Autonomous Vehicle Perception (AVP) in driving systems collects the necessary information 

about the surrounding environment of the moving vehicle. The perception data is then fed to a 

learning model to obtain an optimum decision. The two main methods used in the perception of 

autonomous vehicles: Semantic Segmentation and Object detection; both tasks work primarily 

with images. Semantic segmentation is the process of assigning each pixel in an image to a 

particular class. These class labels could be a person, bicycle, tree, etc. Semantic segmentation is 

considered an image classification task at a pixel level. Object detection is the task of identifying 

and locating an object of interest in an image and draw a bounding box around that object.  

In this paper, we tackled the problem of semantic segmentation using a very well-known 

semantic segmentation model used for biomedical image segmentation tasks, called U-Net. The 

name of the model is inspired by the shape of the architecture, which looks like the letter U. The 

U-Net model is one of the few existing architectures which perform well on small datasets and 

was not previously tested in an autonomous driving scenario with a large number of classes, and 

a small number of training images. After training multiple U-Net models with different 
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activation functions, regularization techniques, and different depths, we proved that U-Net could 

have a promising future in the field of autonomous driving and scene understanding due to its 

ability to answer the “What” and “Where” the object questions.  

To the best of our knowledge, no research work highlights the use of the U-Net model in AVP, 

with an extensive comparison with other commonly used semantic segmentation models. Thus, 

the main contributions of this paper are: 

1) Surveying the most recent research work on the two main methods used in the perception of 

autonomous vehicles: Semantic Segmentation and Object Detection. 

2) Providing a comprehensive overview of the various deep learning method used in the AVP 

3) Building five variants of the U-Net model 

4) Building two variants of the SegNet, FCN-16, and FCN-8 models 

5) Comparison between the above mentioned 11 models 

The rest of this report is organized as follows: Chapter 2. is Literature Review and Related Work, 

Chapter 3. Discusses about the different U-Net models used, the adopted models to compare with 

the best performing U-Net model, the training of the models, and the performance evaluation 

metrics used to evaluate each model, Chapter 4. Discusses the obtained results and compares the 

models based on their results, and finally, Chapter 5. Is the conclusion and future directions.  
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Chapter 2:  Literature Review and Related Work 

Perception is the ability of an autonomous system to extract important information from the 

environment. It is a fundamental task to enable autonomous driving; it provides crucial information 

about the driving environment, including the accessible drivable areas, the locations, velocities, 

and prediction of the future state of the surrounding obstacles. Autonomous vehicles use LiDAR 

and Camera sensors for their perception to accurately detect obstacles and take the appropriate 

actions for a given scenario to avoid potential accidents. The essential tasks for a safe driving 

experience are Semantic Segmentation and Object Detection; these tasks are summarized in the 

following sections. 

2.1 Semantic Segmentation 

Autonomous vehicles rely heavily on semantic segmentation to navigate through routes. It operates 

by assigning each pixel in the image a particular class, and all the pixels that belong to a specific 

class are assigned a single color. As shown in Figure 1, vehicles are painted red, vegetation is 

painted green, buildings are painted grey, etc. 

 

FIGURE 1.  Semantic Segmentation on Cityscapes dataset 
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In [1], the authors tackled the problem of validating the performance of semantic segmentation 

algorithms under various operating conditions of autonomous vehicles, such as precipitation and 

illumination. Because even a slight variation in the environmental conditions could affect the 

classification performance and accuracy of the segmentation model, which can lead to catastrophic 

consequences. To solve this challenging problem, they proposed a pipeline that incorporated a 

Lidar sensor to test the performance of the semantic segmentation of a particular model in different 

real-world scenarios. They were able to distinguish the boundaries of the road around the vehicle. 

They automatically generated a large amount of ground truth road labels by testing the geometric 

properties of the surrounding Lidar points. They chose the ‘Road’ class from the semantic 

segmentation output to compare it with the ground truth generated by the Lidar sensor to prove the 

possibility of obtaining a measure of the classification performance and accuracy to validate the 

model. They also collected a weekly dataset of the area around their campus for 6 months to 

analyze the trained segmentation network performance and compare the validation accuracy of a 

model against datasets with different lighting and weather conditions. They used the proposed 

validation pipeline to compare the performance of two different semantic models, namely ENet 

and Bonnet. By performing these comparisons, they concluded that the best model selection 

depends on the operating conditions, and the accuracy of the models varies depending on the 

dataset. The authors in [2] tackled the problem that current semantic segmentation models face, 

which is the edge of the detected object is not clear. Their method utilized EfficientNet as the 

backbone network, coord convolution is applied to low features to add the position information, 

because of this addition the performance of this method was higher than the existing semantic 

segmentation models, the experiment showed that the application of Direction Convolution led to a 

more accurate edge detection compared to existing techniques. The proposed method was validated 
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on the ‘Cityscape’ dataset and resulted in a high performance, particularly on people and bicycles 

of different shapes. In [3], the authors tackled the need for a large computational resource for 

spatial-to-temporal approaches implemented in autonomous vehicles when tracking the various 

patterns of spatial positions for their motion. They proposed a temporal-to-spatial approach to cope 

with the vehicle’s speed in autonomous navigation by sampling a 1-pixel line at each frame in the 

video. The temporal connection of lines from consecutive frames makes a road profile image 

consisting of vehicles, road, lane mark, roadside, etc., and turning and stopping of ego-vehicle. 

This approach reduces the processing data to a fraction of video to catch up with the vehicle 

driving speed. They used RGB-F images (where F is a channel that describes features around the 

sampling line) of the road profile to perform semantic segmentation to retrieve individual regions 

and their spatial relations on the road. They tested their proposed method on naturalistic driving 

video, and the results were promising.  

A comparison of some of the current research work in semantic segmentation based on the used 

algorithm, available datasets, and the current challenges is provided in Table 1. 

    TABLE 1 Semantic Segmentation Approaches 

Paper Algorithm Dataset Problem 

[1] Enet & Bonnet Cityscapes 

& USYD 

Validating the performance of semantic segmentation 

algorithms under a variety of operating conditions 

[2] Efficient Net Cityscapes The edge of the detected object is not clear 

[3] Road Profile 

Semantic 

Segmentation 

Self-

collected 

The need for large computational resources for spatial-to-

temporal approaches 
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2.2 Object Detection 

Object detection is a fundamental task in any autonomous driving system, which identifies and 

locates object classes of interest in an image and creates a bounding box around those objects. 

Some of the famous object detectors include YOLOv2, YOLOv3, and Viola-Jones algorithm. 

Others use more sophisticated deep learning-based models. A real-time classification based on the 

Real AdaBoost algorithm is introduced in [4]. Lidar 3D point clouds are used to compute various 

features of road objects. The proposed classifier achieved over 90% accuracy in a 50-meter range. 

This algorithm can be used for autonomous driving because it classifies an object in 0.07×10 -

3 seconds. The authors in [5] have tackled the problem of unreliable and noisy 3D maps generated 

by LIDAR sensors for precise mapping and localization of Autonomous vehicles due to the 

existence of moving objects in the map, which leads to bad localization. Their proposed system 

takes 3D points from LIDAR, camera images, and GPS/INS information as input and outputs a 

vehicle-free 3D point cloud map. They used YOLOv2 Vehicle Detection Network (YVDN) to find 

the bounding boxes of the vehicles in an image and used K-Frames forward-backward bounding 

box tracking algorithm to find the missing bounding boxes. The 3D points that fall into the 

detected bounding boxes are then removed from the LIDAR frame. They registered each vehicle-

free LIDAR scan to a global coordinate based on the GPS data to reconstruct a vehicle-free 3D 

point map. They validated their proposed method on the Oxford RobotCar Dataset and proved to 

generate a precise vehicle-free 3D point cloud map. In [6], the authors built a system to detect the 

surrounding vehicles and warn the driver of potential collisions. The proposed method consisted of 

two parts is implemented in a Robot Operating System (ROS). The first part uses the YOLOv2 

algorithm for vehicle detection in an autonomous vehicle environment and is configured to detect 
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four different classes of vehicles: trucks, buses, vans, and cars. The second part uses two ROS 

nodes, the first node is used for distance assessment in the Carla simulator, and the second node is 

used for real-world distance assessment. The evaluation of the proposed method showed promising 

results. The authors [7] focused on object detection and tracking, an integral part of Advanced 

Driver Assistance Systems (ADAS). Object detection and tracking provide necessary information 

for collision avoidance, emergency braking, path planning, etc. The authors used two object 

detection algorithms: Viola-Jones and YOLOv3. The Viola-Jones algorithm was used to create 

nine object detectors classified under four groups: traffic light detector, pedestrian detector, traffic 

sign detector, and vehicle detector. Viola-Jones was compared with YOLOv3 based on their 

Precision, Recall, and processing speed. It was concluded that YOLOv3 achieved higher Precision 

and Recall and has a shorter processing time than Viola-Jones. They also used Median Flow 

tracking and Correlation tracking methods for object tracking. Median Flow tracking has a faster 

processing time, but both methods achieved similar results in terms of Multiple Object Tracking 

Accuracy (MOTA). They validated the proposed method on various datasets, such as German 

Traffic Sign Recognition Benchmark, INRIA Person, Udacity, and Cars datasets. Table 2 provides 

a comparison study between some related work in the literature of object detection. 

    TABLE 2 Object Detection Methods 

Paper Algorithm Dataset Problem 

[4] Real AdaBoost Self-collected Real-time object classification 

using Lidar 

[5] YOLOv2 Vehicle Detection 

Network 

Oxford RobotCar 3D maps are noisy due to 

moving objects which leads to 

inaccurate localization of 

Autonomous Vehicles 

[6] YOLOv2 Vehicle Detection 

Network 

Self-collected Detect surrounding vehicles & 

warn the driver of potential 

collisions 
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[7] Viola-Jones, YOLOv3, 

Median Flow, Correlation 

tracking 

German Traffic Sign 

Recognition Benchmark, 

INRIA Person, Udacity, 

Cars 

Object detection and tracking 

2.3 Deep Learning for Autonomous Vehicle Perception 

Deep learning is the backbone of every autonomous driving system, it is being used by object 

detection and classification algorithms (Supervised Learning) to detect and classify obstacles 

around the vehicle. It is also used for decision-making (Deep Reinforcement Learning) based on 

the observed data. Autonomous vehicles extensively use Convolutional Neural Networks (CNN), 

one of the most famous deep learning models. A CNN model consists of three main layers: A 

Convolutional Layer is used to extract features from the input image by convolving (dot product) 

the input image with a filter of size M x M, and it outputs a feature map. A Pooling Layer is often 

placed after the convolutional layer to reduce the size of the feature map, reducing the 

computational cost of the model. A Fully Connected layer consists of neurons along with weights 

and biases. It is used to connect each neuron to all the neurons in the previous and the next layer. It 

takes the flattened image as a vector as its input and outputs the classification results.   

2.3.1 Deep Learning for Semantic Segmentation 

The authors in [8] address the lack of research in the real-time RGB-D fusion semantic 

segmentation domain, despite accessible depth information. They proposed a real-time fusion 

semantic segmentation network named RFNet. The encoder part consists of two independent 

branches to extract the features of the input RGB and Depth images separately. They chose 

ResNet-18 as the backbone model to extract the features from the input images due to ResNet-18’s 

residual structure and moderate depth. Its small operation footprint makes it compatible with real-

time applications. After every layer of ResNet-18, the output features from the Depth branch are 
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fed to the RGB branch after the AFC module. The SPP produces feature maps with multiscale 

information by collecting the fused RGB-D features from both branches. Finally, they used up-

sampling modules to restore the resolution of the produced feature maps with a direct connection 

from the RGB branch and skipping the Depth branch. They also used Multi-dataset training to 

incorporate small obstacle detection to enrich the recognizable classes, which will help detect the 

unforeseen hazards in real-world scenarios. They used the ‘Cityscapes’ and ‘Lost and Found’ 

datasets to test their model, outperforming previous state-of-the-art semantic segmentation models 

on the ‘Cityscapes’ dataset with high accuracy. The authors in [9] proposed an encoder-decoder-

based deep CNN model in autonomous vehicle scenarios semantic segmentation. The proposed 

model architecture is based on the VGG16 model. The encoder part of the architecture like VGG16 

consists of 13 convolutional layers, which have 3x3 filters. The convolutional stride and the spatial 

padding are fixed to 1 pixel after each convolutional layer. To decrease the size of feature maps, 

Max-pooling layers are used. They used residual learning by performing element-wise addition and 

shortcut connection to preserve the context and spatial information. On the other side, the decoder 

part has a similar structure as the encoder, but with only a few differences, such as the 

convolutional layers are replaced by de-convolutional layers and the Max-pooling layers by Up-

sampling layers. They validated their proposed model on two popular benchmark datasets, namely, 

‘Cityscapes’ and ‘CamVid.’ The experiments incorporated comparative analysis with popular 

networks such as ENet and SegNet, proving that their model outperformed both ENet and SegNet. 

In [10], They argue that the existing Semantic Segmentation methods partition the images into 

several semantically meaningful parts to classify each part into one of the pre-determined classes, 

ignoring the different importance levels of classes. For example, bicycles, other cars, and 

pedestrians are much important than the buildings or the sky in the scene when driving 
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autonomously, so they need to be segmented as accurately as possible to avoid catastrophic 

incidents. They proposed ‘Importance-Aware Loss’ IAL to tackle this problem, emphasizing the 

importance of critical objects in an autonomous driving scene. The IAL is designed based on a 

hierarchical structure, such that classes with different importance levels are located on a different 

level of the hierarchy. They also derived the forward and backward propagation of the IAL on four 

deep neural networks, namely, FCN, ENet, ERFNet, and SegNet. And tested these four networks 

on the ‘CamVid’ and ‘Cityscapes’ datasets, which obtained improved segmentation results on the 

pre-defined important classes. Road lane marking and road edge detection on Lidar-based 

autonomous cars are addressed in [11].This includes the capability of obstacle avoidance but 

cannot detect road lane markings. They solved this problem by installing and calibrating a low-cost 

monocular camera on a Formula-SAE electric car equipped with a Lidar sensor. They first tested 

the system on video recording of local roads to ensure the feasibility of SegNet semantic 

segmentation. Then they tested on the Formula-SAE car with Lidar readings. The obtained results 

from the semantic segmentation performed on the CamVid dataset proved that lane markings and 

road edges could be classified using the proposed method. In [12], the problem of accurate road 

marking extraction is discussed. Addressing the complexity of road marking, they used a Dense 

Feature Pyramid Network (DFPN) based deep learning model, which concatenates the deep feature 

channels with shallow feature channels to help the shallow feature maps with abundant image 

details and high resolution utilize the in-depth features. The proposed deep learning model was 

trained end-to-end on mobile laser scanning (MLS) point cloud to extract the road markings. They 

optimized the deep learning model using the focal loss function. Extensive experiments had proved 

the proposed method outperformed the existing state-of-the-art methods in instance segmentation 

of road markings. In [13], a 3D Semantic Segmentation of point clouds in urban areas using deep 
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learning is introduced. They conducted a comparative study on three novel deep learning-based 

semantic segmentation algorithms, PointCNN, PointNet, and SPGraph. The algorithms were 

trained on an outdoor aerial survey point cloud dataset and were evaluated based on the overall 

accuracy. The evaluation showed that SPGraph, PointNet, and PointCNN achieved 83.4%, 83%, 

and 72.7% overall accuracy for 3D semantic segmentation. 

2.3.2 Deep Learning for Object Detection 

In [14], the authors proposed a method for object detection and identification. They utilized 3-D 

Lidar data to generate object region proposals. Then, they mapped those candidates onto the 

image space from which the ROI (Region of Interest) of the proposals are selected and input to a 

CNN model based on the VGG16 model to perform object recognition. Then, they combined the 

features of the last three layers of the CNN to extract multiscale features from the Region of 

Interests to precisely identify the sizes of every object in the scene. They evaluated the proposed 

model on the KITTI dataset and reached the following conclusions: 

• The processing time of each frame is 66.79ms, which is suitable for real-time processing. 

• 3-D Lidar produces 86 candidate object-region proposals, compared to a sliding window that 

produces thousands of candidates per frame. 

• The average identification accuracy of pedestrians and cars is 78.18% and 89.04%, 

respectively. 

In [15], the authors designed a real-time pedestrian detection system for autonomous vehicles using 

CNN. They created the system from scratch without using any available libraries. They evaluated 

their model on three datasets: INRIA, PETA-CUHK, and real-time video input and achieved 

accuracy ranging between 96.73% and 100%.  Deploying advanced Deep Convolutional Neural 

Network (DCNN) detectors in autonomous vehicles with limited memory and computing power is 
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a challenging task [16]. To solve this problem, it is necessary to design lightweight and robust 

detectors. Recently, a novel algorithm has been proposed named ‘Group Convolution’ to make the 

detection network faster and lighter by reducing the floating-point operations. But the existing 

guidelines do not indicate the optimal number of groups in the Group Convolution to maximize the 

detection speed. This paper introduced three new guidelines to indicate the optimum number of 

groups needed to design a fast and lightweight detector and named this detection network 

‘DenseLightNet’. The proposed method runs three times faster than the existing state-of-the-art 

detector YoloV3 and weights 10.1MB compared to the YoloV3’s 247MB. A Deep Neural 

Network (DNN) based object detector called Single-Shot Detector (SSD) is designed in [17]. The 

SSD architecture consists of a base network and an auxiliary network. VGGNet is used as a base 

network for good quality classification, and the auxiliary network is used to predict detection at 

multiple feature maps. A non-maximum suppression follows the base network and the auxiliary 

network to decide the final detections. The proposed method was evaluated on the KITTI dataset, 

and it outperformed the original object detection model based on precision by 6%.  

In [18], a method for simultaneous detection of people, vehicles, lanes, and non-motor vehicles 

using RGB-D images is discussed. The task consists of two parts: the detection of vehicles, people, 

and non-motor vehicles as a general detection task, and lane detection as a segmentation task. They 

used two separate networks to improve the accuracy and speed, the first network is called LaneNet 

to segment the lanes, and the second is Faster-RCNN to detect the rest. For separate training and 

simultaneous detection of both networks, they introduced a real-time synchronization method with 

multi-GPU. The detection frame rate of the system reached 15 FPS with four 1080Ti GPUs. The 

system was evaluated on a self-collected dataset, and it achieved high accuracy. They also tested 

the system in a real-time scenario on the streets of China, which proved that the system could be 
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applied in real-time autonomous driving. In [19], the authors address the two main tasks involved 

in tracking and localizing vehicles and objects surrounding an autonomous vehicle: detecting and 

classifying obstacles. They proposed a region-based convolutional neural network named Faster-

RCNN trained with PASCAL VOC dataset to detect and classify obstacles such as pedestrians, 

vehicles, animals, etc. This method was implemented on a Titan X GPU and achieved a detection 

frame rate of 10 FPS on a VGA resolution image frame. The achieved fast frame processing rate 

ensures the usability of this system on highways. They validated the detection and classification 

performance of the system on the KITTI and iRoads datasets. They concluded that the performance 

did not vary on different shapes, views of an object, and different climate and lighting conditions. 

In [20], a model to predict the future trajectory of the objects using the Gated Recurrent Unit 

(GRU) is introduced. This model understands the behavior of the surroundings in a mixed scene of 

bicycles, vehicles, and pedestrians. Since these objects have different behaviors, they applied 

different models to other categories. The proposed method takes three observed trajectories with 

varying time steps as input and predicts an accurate future trajectory. The model was then 

compared with GRU and LSTM and resulted in a minor Mean Absolute Error (MAE) and 

converged faster than GRU and LSTM. Deep Reinforcement Learning-based for obstacle detection 

and autonomous navigation, named Deep Q Network (DQN,) on a simulated car in an urban 

environment, has received widespread attention in the last few decades [21]. The model takes input 

camera and laser sensor data placed on the car's front end. They also designed a prototype of a 

cost-efficient high-speed car to run the algorithm in real-time. They placed a Hokuyo Lidar sensor 

and a camera on the car and used an Nvidia-TX2 GPU to run the deep learning models. 

In [22], the brake-lights recognition problem is presented with a focus on deep learning. The 

“Brake Lights Patterns” (BLP) are learned using a Multi-Layer Perceptron (MLP) based classifier 
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that classifies the vehicles in an image as “Normal” or “Brake”. The authors explored road 

segmentation and novel vanishing point ROI determination methods to speed up the detection and 

improve the system's robustness. The validation results conducted on on-road videos collected by 

the authors have shown the efficiency and robustness of the proposed method. In [23], the authors 

worked on autonomous vehicle learning simulation results to drive in a simple environment 

containing static obstacles and lane markings. The algorithm takes an image of the street captured 

by the car front camera as an input. It computes the Q values representing the rewards that 

correspond to future actions taken by the autonomous vehicle. The actions are angles through 

which the vehicles steer at a fixed speed. The system enforces the car to act with the highest 

reward (Q value). The simulation results showed a high accuracy achieved by the model by 

following the lanes and avoiding obstacles. Vehicle speed control using Reinforcement Learning 

methods is addressed in [24]. Their main motivation was the instability of the Q-learning algorithm 

in some games in the Atari 2600. They used an algorithm called Double Q-learning to control the 

vehicle's speed based on the surrounding environment. They proposed a new method that depends 

on the direct perception approach called the integrated perception approach to construct the 

environment. Both low dimensional data processed from the sensors and high dimensional data 

with road information from the video make up the input of the Double Q-learning model. 

Experimental results have shown that the Double Q-learning algorithm outperformed the 

traditional Q-learning algorithm regarding policy quality and value accuracy. The total model score 

is 271.73% times that of Q-learning.  

In [25], a comparative study on object recognition using deep convolutional neural networks 

(CNN) in autonomous vehicle environments is presented. They used four well-known CNN 

models, Faster R-CNN Inception V2, Faster R-CNN Resnet 50, SSD Inception V2, AND Faster R-
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CNN Resnet 101. These models were pre-trained on the COCO dataset, and they were retrained 

with the new dataset using transfer learning. The new dataset was formed using GRAZ-01 and 

GRAZ-02 datasets and consisted of 517 images of 10 objects: Cars, Bicycles, Pedestrians, and 7 

traffic signs. The experimental results have shown that Faster R-CNN outperformed the model 

models, with an accuracy of 85.1%. A collision avoidance system for autonomous vehicles based 

on Reinforcement Learning can learn from mistakes and readdress its movement accuracy [26]. 

They used the Q-learning method to record and update the Q-values in a table for different 

movements, which will be used by the autonomous vehicle to determine how and where to move. 

A deep neural network was used to learn the Q-value table, which encounters many situations from 

different actions performed by the autonomous vehicle. The input to the model is 10000 images 

captured by a depth camera placed on the car's front end. The model was trained for 9000 epochs 

and achieved an obstacle avoidance rate of 95%. The autonomous braking problem is analyzed and 

discussed in [27] through precise decision-making and control to reduce accidents. They proposed 

a Deep Reinforcement Learning-based autonomous braking system in emergencies. They 

considered three key influencing factors: accuracy, efficiency, and passengers’ comfort. These 

factors were fully satisfied by the proposed system. They designed a multi-objective reward 

function for compromising the passengers’ comfort, the degree of the accident, and the achieved 

rewards of different brake moments. To solve the autonomous braking problem, they adopted an 

actor-critic (AC) algorithm called Deep Deterministic Policy Gradient (DDPG), which improves 

the system's efficiency and makes it stable in continuous control tasks. They evaluated the 

proposed method through extensive simulations, which proved its efficiency in driving safety, 

decision-making accuracy, and learning effectiveness.  
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A deep learning model for 3D object proposal generation and detection from point cloud data 

called PointRCNN is proposed [28]. The framework is composed of two stages: The first stage 

generates a small number of high-quality 3D proposals in a bottom-up manner by segmenting the 

point cloud data into background and foreground points, unlike previous methods that used to 

generate proposals by projecting point cloud to bird’s view or from RGB images. The second stage 

transforms the segmented points in the first stage to canonical coordinates to learn much better 

local spatial features. Those spatial features are combined with global semantic features for 

accurate confidence prediction and box refinement. The experiments performed on the KITTI 

dataset showed that the proposed PointRCNN architecture outperforms state-of-the-art methods by 

only using point cloud as its input data.  

For self-driving, a deep learning system can use LiDAR point clouds and depth image-based 

rendering (DIBR) for self-driving [29]. The DIBR is used to generate parallax map information 

and obtain the depth image, which is then combined with LiDAR point cloud to repair the objects 

in the point cloud image. They also combined the Histogram Equalization and Optimal Profile 

Compression (HEOPC) with the accuracy of deep learning to optimize the color image 

enhancement. Based on the restored point cloud image, they used a cutting algorithm to divide the 

areas of interest, such as cars, people, and bus and train a MobileNet-YOLO model to identify 

those three objects. Detecting 3D objects in point clouds is challenging [30]. This problem was 

previously solved by projecting a 3D point cloud into 2D images. This means transforming the 3D 

detection problem into 2D detection. This method produces multiple 2D detection tasks, which 

increases the complexity and limits the performance of the 2D detection algorithm. To solve this 

problem, the authors proposed using a Convolutional Neural Network (CNN) model to perform the 

2D detection task because CNN can predict multiple classes of objects using the same network 
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without using an individual detector for each category. They concatenated two early rejection 

networks with binary outputs before the detection network to improve the detection efficiency. 

Extensive experiments have shown that the proposed method achieved a competitive performance, 

with at least ten times the speed of the latest 3D point cloud detection methods.    

 

In Table 3, a comprehensive comparative study is provided among the state-of-the-art deep 

learning methods in semantic segmentation and object detection. 

   

TABLE 3 Comparison Between Deep Learning Models 

Paper Used 

Algorithm 

Dataset Problem 

[8] RFNet Cityscapes & 

Lost and 

Found 

Lack of real-time RGB-D fusion semantic 

segmentation work 

[9] VGG16 & 

Residual 

Encoder-

Decoder 

Cityscapes & 

CamVid 

Residual Encoder-Decoder Network for 

Semantic Segmentation 

[10] FCN, SegNet, 

Enet, ERFNet 

Cityscapes & 

CamVid 

Semantic Segmentation methods give the same 

importance to all classes 

[11] SegNet CamVid Lidar-based autonomous vehicles are unable to 

detect road markings and road edges 

[12] DFPN Self-collected Road Marking Instance Segmentation Using 

MLS Point Clouds 

[13] PointNet, 

PointCNN, 

SPGraph 

Fused 3D point 

cloud 

3D Semantic Segmentation of Large-Scale 

Point-Clouds in Urban Areas Using Deep 

Learning 

[14] VGG16 KITTI Object detection and identification using 3-D 

Lidar 

[15] CNN INRIA, PETA-

CUHK 

Pedestrian detection using CNN programmed 

from scratch 

[16] DenseLightNet City, Pascal 

VOC 

Limited computing power and memory on 

Autonomous Vehicles for advanced DCNN 

[17] Single-Shot 

Detector 

KITTI On-road object detection using DNN 

[18] Faster-RCNN, 

LaneNet 

Self-collected RGB-D based real-time multiple object detection 

and ranging system 

[19] Faster-RCNN KITTI, iRoads On-road obstacle detection and classification 
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using deep learning to track in a high-speed AV 

environment 

[20] GRU, LSTM KITTI The trajectory of Prediction of Immediate 

Surroundings Using Hierarchical Deep Learning 

Model 

[21] Deep Q 

Network 

Simulated the 

model 

Deep Reinforcement Learning for obstacle 

avoidance and autonomous navigation 

[22] CNN 

(AlexNet) 

Self-collected Appearance-based Brake-Lights recognition 

using deep learning 

[23] Deep Q 

Network 

Simulated the 

model 

Deep Reinforcement Learning for obstacle 

avoidance and lane detection 

[24] Double Q-

Learning 

Simulated the 

model 

Instability of the Q-learning algorithm in speed 

control of vehicles in some games in the Atari 

2600 

[25] Faster R-CNN GRAZ-01, 

GRAZ-02 

A comparative study on different CNN based 

object detection models 

[26] Q-Learning Self-collected Reinforcement Learning based collision 

avoidance system 

[27] Deep 

Deterministic 

Policy 

Gradient 

(DDPG) 

Simulated the 

model 

Deep reinforcement Learning-based autonomous 

braking decision-making strategy in an 

emergency 

[28] PointRCNN KITTI 3D Object Proposal Generation and Detection 

From Point Cloud 

[29] MobileNet-

YOLO 

KITTI Self-driving Deep Learning System based on 

Depth Image Based Rendering and LiDAR Point 

Cloud 

[30] CNN UWA 3D 

Object, CMU 

Oakland 3-D 

Point Cloud, 

Washington 

Urban Scenes 

3D Point 

Cloud 

3D point cloud object detection with multi-view 

convolutional neural network 
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Chapter 3: LEVERAGING U-Net for URBAN SCENE SEGMENTATION 

To perform semantic segmentation for scene understanding in autonomous vehicles, we have 

implemented five different variations of the U-Net model. The U-Net model was previously 

designed and implemented exclusively for medical image segmentation tasks. As the name of the 

model may imply, the model architecture has the shape of the letter ‘U’, as shown in Figure 2. 

 

             FIGURE 2 The U-Net Architecture 

 The U-Net consists of two paths, a contracting path and an expansive path. The contracting path 

also called the down-sampling path, consists of repeated two 3 x 3 convolutions, with a Rectified 

Linear Unit (ReLU) as their activation function, followed by a 2 x 2 max pooling operation with 

a stride of 2 used to down-sample. Each down-sampling step in the contracting path, the number 
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of feature channels is doubled, the image size path gradually decreases the depth increases. The 

expansive path, also called the up-sampling path, consists of up-sampling of feature map and a 2 

x 2 convolution to halve the number of feature channels, ana concatenation with the 

corresponding parallel cropped feature map on the contracting path, two 3 x 3 convolutions, with 

Rectified Linear Unit (ReLU) as their activation function. The final layer is a 1 x 1 convolutional 

to map the feature vectors to the corresponding number of classes. The size of the image in the 

expansive path gradually increases, and the depth decreases. We trained two other U-Net models 

with four times smaller feature channels, as shown in Figure 3, one with ReLU as its activation 

function and the second model with LeakyReLU as its activation function.  

 

 

   FIGURE 3 The U-Net Architecture with Smaller Feature Channels (Small U-Net) 
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We also trained two more U-Net variants and called them “Long U-Net”, because we added two 

layers on the contracting path and two layers on the corresponding expansive path, as shown in 

Figure 4. To help the model generalize better, we used a regularization technique called Dropout. 

We trained one “Long U-Net” model with a Dropout rate of 0.5 and trained another “Long U-

Net” with a Dropout rate of 0.7 to analyze the model performance.  

 

         FIGURE 4 The Long U-Net Architecture 

 

3.1 The Adopted Models 

We have adopted three commonly used semantic segmentation models: SegNet, FCN-16, and 

FCN-8, to compare their performance with the best performing U-Net model. Other than the 

original three models, we have built three other different with the only difference is the Dropout 
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technique added to each model because the best performing U-Net is the one with a Dropout rate 

of 0.5.  

3.1.1 The SegNet Model 

The SegNet model consists of an encoder and a corresponding decoder network, and at the final 

layer, it performs pixel-wise classification of the input image, as shown in Figure 5. Inspired by 

the VGG-16 network, designed for object classification, they used 13 convolutional layers in the 

encoder network. Still, they discarded the fully connected layers to retain higher resolution 

feature maps at the encoder output. By discarding the three fully connected layers of VGG-16, 

the authors drastically reduced the number of SegNet model parameters. Each encoder layer has 

a corresponding decoder layer, meaning the decoder network also has 13 layers. The decoder 

output is fed to a soft-max classifier which produces class probabilities for each pixel, and the 

prediction corresponds to the class with maximum probability at every pixel. 

 

 
   FIGURE 5 The SegNet Architecture [31] 
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3.1.2 Fully Convolutional Network (FCN-16, FCN-8) 

We have implemented the FCN-16 and FCN-8 only because FCN-32 had proven its poor 

performance in the literature, because at the output of conv7, as shown in Figure 6 below, the 

image size becomes very small, to make the segmentation output have the same size as the input 

image 32 x up-sampling is performed, which makes the output very rough because when going 

deeper the spatial location information is lost. That is why FCN-16 and FCN-8 perform better 

because they both use two and four times less up-sampling. In the FCN-16 network, the output of 

conv7 is 2 x up-sampled and fused with pool4 and performed 16 x up-sampling.  In the FCN-8 

architecture, the output of conv7 is 4 x up-sampled and fused with 2 x pool4 and pool3, then 

performed 8 x up-sampling.   

 

 
    FIGURE 6 The Architecture of FCN (FCN-32, FCN-16, FCN-8) [32] 

Training 

The code was written in the Python3 programming language, using the Tensorflow library as the backend 

and the Keras library as the frontend. The models were trained on the Google Colab platform using the 

provided GPU by Google. We used “Adam” as the optimizer for all models, the “Categorical Cross 
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Entropy” as the loss function, and the batch size was set to 32, as per the best practice in Machine 

Learning research. The maximum number of epochs (iterations) was set to 100. Still, we used the early 

stopping method to stop training when the models’ validation mean Intersection over Union (mIoU) does 

not improve after ten epochs.  

Due to memory and GPU time restrictions imposed by Google Colab, we had to use a widely used dataset 

with a small number of images, called the Cambridge – Driving Labeled Video Database (CamVid) [33], 

which consists of 701 overall images.  

3.2 Performance Evaluation Metrics 

Performance evaluation is required to evaluate and optimize any machine learning model and 

compare it with other models. Different evaluation metrics are used in the literature; this section 

describes the most efficient and widely used metrics in semantic segmentation tasks. Intersection 

Over Union (IoU) matric, also known as Jaccard Index, is widely used to evaluate semantic 

segmentation models. It computes the percent overlap between the ground truth mask and the 

prediction output. As shown in Eq.1, IoU measures the number of common pixels between the 

prediction and ground truth masks and divides it by the total number of pixels present in both 

masks. Multi-class segmentation tasks use the mean Intersection Over Union (mIoU) metric for 

model evaluation, which first computes the IoU of each class and then computes the average 

overall classes.  

   𝐼𝑜𝑈 =
𝑇𝑎𝑟𝑔𝑒𝑡 ∩𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑎𝑟𝑔𝑒𝑡 ∪𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
       (1)   

Accuracy is the most commonly used evaluation metric in Machine Learning research, but it is 

unreliable in semantic segmentation tasks. It measures all the correctly identified classes and is 

helpful when all the classes are equally important. The Accuracy is calculated by Eq.2. 
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  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
       (2) 

 

We used F1-Score, a better evaluation metric than Accuracy for imbalanced class distribution, 

and it is measured by calculating the harmonic mean of the Precision and Recall. The F1-Score is 

calculated by Eq.5. 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
     (3) 

        𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
      (4) 

        𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙)
      (5) 

We also used the Dice Coefficient, which is similar to IoU, because they are positively 

correlated. It calculates the area of Overlap between the Ground Truth and the Predicted mask 

and divides it with the total number of pixels in both masks, and multiplies the result by 2. The 

Dice Coefficient is calculated by Eq.6. 

                         𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2 ∗
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑀𝑎𝑠𝑘𝑠
      (6) 
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Chapter 4: Experimental Results and Analysis 

In this chapter, we will showcase and analyze the results of implementing eleven models, and will 

compare them based on their Accuracy, Loss, mIoU, F1-Score, and Dice coefficient. And we will 

also demonstrate the performance of each model on three different images from the test set to be 

able to visually prove the numerical results we obtained.  

4.1 Dataset 

The dataset we used is called The Cambridge-Driving Labeled Video Database (CamVid), it 

provides per-pixel semantic segmentation of over 700 images and their corresponding Ground Truth 

masks (labels), 367 training, 101 validation, and 233 test pairs of 32 semantic classes. The semantic 

classes are of the commonly existing objects in a regular driving scene, ranging from Cars, Pedestrians, 

Animals, Buildings, sidewalks, Traffic Lights, and many more. The overall database consists of ten 

minutes of high quality 30HZ footage, and the images we used to train our models, were captured at 1HZ. 

4.2  Preprocessing 

The images and masks are in separate folders, we paired each image with its corresponding mask, 

both images and masks are resized to 512 x 512. Images are converted to numpy arrays for easier 

tensor calculations and normalized by dividing by 255. The masks are also converted to numpy 

arrays and are mapped to the corresponding classes, the classes are given in an excel sheet with the 

‘r’, ‘g’, and ‘b’ values of each class. 

4.3 Experimental Results 

After building a total of eleven models: 5 U-Net, 2 SegNet, 2 FCN-16, and 2 FCN-8, we can 

conclude that the Long U-Net with Dropout=0.5 performed the best, based on the mean 

Intersection over Union (mIoU) evaluation metric, with mIoU of 0.5731, as shown in Table 4, and 

Figure 12. The superiority of this model lies in the depth of its architecture. The Dropout 

regularization was used, which improved the generalization of the model, and because the model 
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converged at the 100th epoch, unlike other models that converged at a much smaller epoch. We 

also compared the models in terms of their Loss, Accuracy, F1-Score, and Dice coefficient. The U-

Net model with ReLU activation function recorded the lowest loss of 0.3823. The Long U-Net 

with a Dropout rate of 0.7 recorded the highest accuracy of 89.85% and the highest Dice 

Coefficient 0.919, the Long U-Net with a Dropout rate of 0.5 recorded the highest F1-Score of 

0.6384, as shown in Table 4.  

    TABLE 4 A Comparison Between the Models  

Model Loss Accuracy mIoU F1-Score Dice Coef. 

U-Net ReLU 0.3823 89.74% 0.5366 0.6045 0.9183 

Small U-Net ReLU 0.5254 87.96% 0.5331 0.5954 0.9029 

Small U-Net Leaky ReLU 0.4436 87.80% 0.5203 0.5767 0.9039 

Long U-Net(Dropout=0.7) 0.3971 89.85% 0.5442 0.6098 0.9190 

Long U-Net(Dropout=0.5) 0.3901 89.13% 0.5731 0.6384 0.9139 

SegNet 0.4978 85.37% 0.4861 0.5373 0.8820 

SegNet (Dropout=50) 0.5652 83.97% 0.4652 0.5031 0.8665 

FCN-16 0.5027 84.92% 0.5000 0.5623 0.8805 

FCN-16 (Dropout=50) 0.4482 85.85% 0.5102 0.5639 0.8834 

FCN-8 0.4860 86.03% 0.5039 0.5686 0.8891 

FCN-8 (Dropout=50) 0.4216 87% 0.5176 0.5744 0.8938 
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FIGURE 7 The Comparison in Terms of Loss 

 

 

FIGURE 8 The Comparison in Terms of Accuracy 
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FIGURE 9 The Comparison in Terms of mIoU 

 

 

FIGURE 10 The Comparison in Terms of F1-Score 
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FIGURE 11 The Comparison in Terms of Dice Coefficient 

 

 

Below are the mIoU and the Loss graphs of the best performing variant of each of the four models. Figures 

12 and 13 are the mIoU and Loss graphs of the best performing U-Net model, Figures 14 and 15 are the 

mIoU and Loss graphs of the best performing SegNet model, Figures 16 and 17 are the mIoU and Loss of 

the best performing FCN-16 model, and finally the Figures 18 and 19 are the mIoU and Loss graphs of the 

best performing FCN-8 model.          
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   FIGURE 12 The mIoU of the Long U-Net Model with Dropout=0.5 

 

 

   FIGURE 13 The Loss of the Long U-Net Model with Dropout=0.5 
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    FIGURE 14 The mIoU of the SegNet Model 

 

 

    FIGURE 15 The Loss of the SegNet Model 
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   FIGURE 16 The mIoU of the FCN-16 Model with Dropout=0.5 

 

 

 

   FIGURE 17 The Loss of the FCN-16 Model with Dropout=0.5 
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  FIGURE 18 The mIoU of the FCN-8 Model with Dropout=0.5 

 

 

     FIGURE 19 The Loss of the FCN-8 Model with Dropout=0.5 

 

In Table 5, we have three samples of images with different scenarios and lighting conditions, with their 

corresponding ground truth labels and we tested each image on all eleven models. We can see that most U-

Net models performed better in segmenting the images than FCN-16, FCN-8, and SegNet models and their 

variants. But the best segmentations were performed by the two Long U-Net models, as expected by the 

numerical analysis and comparison. They both perform very well in the first two images, due to the good 
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lighting conditions in both images, in the third image we can see that even though the lighting condition is 

poor but the Large U-Net models performed well in segmenting most of the objects, except for the bus, 

which can be traced to the lack of training images with busses in them, and the red segmentations instead of 

pink is due to the height of the bus, which the models are mistaking for a building. 

    

TABLE 5 A Comparison Between the Resulted Segmentations 

Original 

Image 

   

True Label 

   

Long U-Net 

Dropout=0.5 

   

Long U-Net 

Dropout=0.7 
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U-Net ReLU 

   

Small U-Net 

ReLU 

   

Small U-Net 

Leaky ReLU 

   

SegNet 

   

SegNet 

Dropout=0.5 
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FCN-16 

   

FCN-16 

Dropout=0.5 

   

FCN-8 

   

FCN-8 

Dropout=0.5 

   

 

The sensitivity analysis we performed, by building five U-Net models was for the mission of finding the 

best performing U-Net model. We first implemented the original U-Net model with ReLU, and built two 

other models with smaller feature channels one with ReLU and the other with Leaky ReLU as their 

activation functions, at this stage we could not see a difference in terms of mIoU, instead the accuracies 

for the models with smaller feature channels were lower and the losses were higher than the original U-

Net. To see a bigger difference, the model architecture is needed to change, we build two deeper models 
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with two layers added on each path (Long U-Net), with different dropout rates, which learned the 

sophisticated features in the dataset better, the two models scored higher mIoU than the previous models, 

with the model with a dropout rate of 0.5 performing the best. To make a fair comparison with the three 

models: SegNet, FCN-16, and FCN-8, we implemented two variants of each of the three models, the first 

one is the original model and the second variant using the dropout regularization technique with dropout 

rate of 0.5, and the Long U-Net models still outperformed the three other models.           
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Chapter 5: Conclusions and Future Directions 

As the adoption of autonomous vehicles with different levels of autonomy increases, the need for precise 

and accurate perception systems increases drastically to ensure the safety of the passengers, pedestrians, 

and the safety of the surrounding vehicles’ drivers. Based on our extensive experiments presented in this 

project, we can conclude that U-Net can precisely classify and localize a wide range of objects in a 

complex driving environment and can outperform previously used well-known models in terms of mIoU, 

F1-Score, and accuracy. 

In the future, we will train the U-Net models with different data augmentation techniques, with better 

computing power. To tackle the problem of poorly segmenting certain classes, such as the bus in the third 

image or the traffic poles, we will increase the weights on such classes and decrease the weights of other 

less necessary classes, to improve the overall performance of the model. We will also train and test 

different variations of the U-Net model on larger datasets and will compare it with other state-of-the-art 

semantic segmentation models. On the other hand, we will implement ensemble learning algorithms, by 

combining multiple state-of-the-art models together, to achieve the best performance possible. We will 

also take advantage of unlabeled datasets, to train unsupervised learning algorithms, those models can 

automatically learn complex road features with minimal human input.   
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