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Abstract—Fog computing is an emerging distributed com-
puting model for the Internet of Things (IoT). It extends
computing and caching functions to the edge of wireless net-
works. Uncrewed Aerial Vehicles (UAVs) provide adequate
support for fog computing. UAVs can not only act as a relay
between mobile users and physically remote edge devices to
avoid costly long-range wireless communications but also are
equipped with computing facilities that can take over specific
tasks. In this paper, we aim to optimize the energy efficiency
of a fog computing system assisted by a single UAV by
planning the trajectories of the UAV and assigning computing
tasks to different devices, including the UAV itself. We
propose two algorithms based on the classical Ant Colony
and Particle Swarm Optimization techniques and solve the
problem by continuous convex approximation. Unlike most
existing studies where the trajectories are assumed to be
straight lines, we account for the effect of obstacles, such as
buildings, and deliberately avoid them during the trajectory
planning phase. Through extensive simulation experiments,
we demonstrate that our proposed approach can achieve
significantly better energy efficiency than existing benchmark
algorithms.

Index Terms—Fog Computing, Task Assignment, Un-
manned Aerial Vehicles (UAV), Trajectory Planning, Opti-
mization Algorithm

I. INTRODUCTION

Driven by the concept of the Internet of Things
(IoT) [1], a large quantity of data are produced and col-
lected by terminal mobile devices such as smart phones
and tablets. To improve the efficiency of executing rel-
evant tasks that utilize these data, fog computing has
been proposed to move the computational functions from
data centers in a centralized location to the edge of the
network [2]. Architectures with task computing capa-
bilities, such as micro data centers [3] or base stations,
have been deployed at the edge of the network that are
geographically closer to mobile devices. By shortening
the average distance of wireless transmissions, signifi-
cant improvements in various aspects including energy
efficiency, transmission reliability and latency control
have been achieved since fog computing techniques are

widely adopted. However, it is usually not commercially
profitable to deploy edge devices in regions where the
density of mobile devices (MDs) is relatively low. Such
coverage holes may create difficulty in handling tasks
generated by MDs in remote locations.

The deployment of unmanned aerial vehicles (UAVs)
is considered as a promising addition for fog comput-
ing especially in the above-mentioned scenario [4]. The
advantages of UAVs and fog computing are strong com-
plements for each other. In a fog computing architecture,
UAVs can be considered as special edge nodes that can
act as both a wireless access point and a computing facil-
ity. Particularly, UAVs, with their mobility nature, offer
flexible cloud-to-thing connectivity for MDs in different
geographical locations [5].

On the other hand, due to the hardware constraints,
UAVs have limited battery capacities, and are generally
less powerful in computing tasks compared to traditional
edge devices. Therefore, it is crucial to plan different
stages of the computing process, including assigning
tasks to different devices, allocating power and channels
for different transmissions, planning trajectories of UAVs,
and determining the location for a UAV to transmit its
targeting MD, in order to fully exploit the advantages of
integrating UAVs in fog computing.

Optimization problems related to task assignment and
trajectory planning in UAV-based mobile edge comput-
ing have received wide attention. For example, Zhao
et al. [6] proposed a cooperative multi-agent deep rein-
forcement learning framework to jointly minimize the
execution delays and energy consumption while con-
sidering trajectory design, computation task allocation,
and limited communication resource. The authors of
[7] solved a joint optimization problem incorporating
both the energy consumption and task latency by three
decision-making algorithms. Li et al. [8] planned UAV
trajectories to minimize user transmission power given
the service requirements by the Dinkelbach algorithm
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and successive convex approximation technique.
For formulations that concurrently involve multiple

dependent objectives such as latency control and energy
saving, decomposing the joint optimization problem to
a number of single-objective problems has been a par-
ticularly popular approach to reduce the computational
complexity [9]–[12]. Another common assumption, that
we will also follow in this paper, is that the UAV flies
at the fixed altitude while taking care to avoid collision
with obstacles such as buildings [8]–[10], [13].

This paper aims to propose a more practical optimiza-
tion framework for the scenario of UAV-assisted compu-
tational offloading in fog computing, to fill in the above-
mentioned gaps in existing research. The contributions
of this paper are summarized as follows,

• We consider a formulation that takes into account
most practical issues in UAV-assisted fog computing,
including 1) energy consumption for UAV move-
ment, task computation and communication, 2) de-
lay for task computation and communication, and 3)
obstacle avoidance in the trajectory planning phase.

• We optimally allocate wireless channels for trans-
mission between the UAV and MDs based on the
number and sizes of tasks from each MD to improve
the overall efficiency in transmission.

• We design an Ant Colony-based algorithm to plan
the trajectory of the UAV. The algorithm will return
an optimal trajectory that minimizes the energy
consumption for the movement of the UAV while
avoiding obstacles.

• We propose a Particle Swarm Optimization based al-
gorithm to solve the non-convex optimization prob-
lem that deals with task assignment, power allo-
cation, and processing frequency distribution at a
specific time instance. We then identify the optimal
point on the trajectory for the UAV to stop moving
and start transmission by a greedy approach that
computes and compares relevant performance met-
rics if the UAV starts transmission at any point along
the planned optimal trajectory. The outputs from the
two algorithms will then be combined to obtain the
final solution to the joint optimization problem.

• We demonstrate, by numerical simulation results,
that our proposed method achieves significant im-
provement in energy efficiency compared to existing
benchmark methods. Also, we show that our pro-
posed method has a faster convergence speed than
current state-of-art approaches.

The remainder of this paper is organized as follows.
We will describe the model in Section II and our pro-
posed algorithms in Section III, respectively. The sim-
ulation design and numerical results are presented in
Section IV. Finally, Section V concludes this paper.

II. NETWORK MODEL

Let R+ and N+ represent the sets of positive reals and
positive integers, respectively.

We consider a basic structure of a UAV-assisted fog
computing network, where K ∈ N+ MDs (e.g., smart-
phones), a single UAV, and a remote data center are
presented. The MDs are initiating computing tasks fol-
lowing a Poisson process. The tasks could be executed
locally and offloaded to the UAV or the remote data
center. The total number of available wireless channels
for transmission among the UAV and MDs is Nc ∈N+.

Fig. 1. The structure of a UAV-assisted fog computing network.

We illustrate the network structure in Fig. 1, where
the UAV can establish short-range transmissions with
MDs. Time is divided into slots, and the length of every
timeslot is denoted as L ∈ R+. We assume that the UAV
always flies at a constant altitude h, while all MDs are on
the ground with an altitude of 0. For ease of reference,
we list the main notations used in this paper in Table I.

A. UAV Movement Model
The communication between the UAV and an MD

can be established only if they are sufficiently close to
each other and there is a Line-of-Sight path between
them. During the flight, the UAV should strictly comply
with aviation control, and the flight altitude can not
exceed the building. Based on the above requirements,
we carry out optimal trajectory planning for the UAV
currently completing the ith task. Therefore, the UAV
must constantly move to attain different MDs’ tasks at
different times. The following equations can summarize
the movement of the UAV. Denote the location of the
UAV at the tth timeslot as (x(t), y(t)) at the tth timeslot,
and the flight altitude is a constant h [13]. Given velocity
vector v(t), the travel distance of the UAV at the tth
timeslot can be expressed as:

∆(x(t), y(t)) =
(
vx(t), vy(t)

)
· L (1)

du(t) =
√
(x(t)− x(t− 1))2 + (y(t)− y(t− 1))2. (2)



TABLE I
TABLE OF NOTATIONS

Notation Definition

K The total number of MDs

Nc The total number of wireless channels

Nj The number of arrived tasks at the jth MD

No The number of obstacles

Nt The number of turns taken by the UAV

L The length of every timeslot

T The total number of timeslots during the
UAV to end all tasks and return

h The flight altitude of the UAV

(xj, yj) The location of the jth MD

(x(t), y(t)) The location of the UAV at the tth timeslot

Cj(t)
The number of channels assigned to the
jth MD at the tth timeslot

v(t) The velocity vector of the UAV at the tth
timeslot

IP The inertial factor of particles in the PSO

AP1, AP2 The acceleration factors of particles in the
PSO

PHi The pheromones of ants in the ACO

HVi The heuristic values of ants in the ACO

ρ
The pheromone evaporation rate in the
ACO

L(t) The weighted sum of network energy
consumption and delay at the tth timeslot

p(t)
The transmission power of a Virtual
Machine (VM) in the UAV at the tth
timeslot

pmax(t),pmin(t)
Maximum and minimum transmission
power of a VM in the UAV at the tth
timeslot

pj(t)
The jth MD’s transmission power at the
tth timeslot

pmax
j (t),pmax

j (t) Maximum and minimum transmission
power for jth MD at the tth timeslot

f (t) The processing frequency of a VM in the
UAV at the tth timeslot

f max(t), f min(t) Maximum and processing frequency of a
VM in the UAV at the tth timeslot

f j(t)
The processing frequency of the jth MD at
the tth timeslot

f max
j (t), f min

j (t) Maximum and minimum processing
frequency of the jth MD at the tth timeslot

EMD
ij (t),

EUAV
ij (t), EDC

ij (t)

The energy consumption of executing the
ith task from the jth MD locally, at the
UAV, or the DC at the tth timeslot

DMD
ij (t),

DUAV
ij (t), DDC

ij (t)

The delay of executing the ith task from
the jth MD locally, at the UAV, or the DC
at the tth timeslot

It is desirable for the UAV to follow a shorter trajectory
and make fewer turns due to power consumption and
lifespan issues. In this regard, we define the trajectory
planning value R as follows,

R =
T

∑
t=1

du(t) +
Nt

∑
z=1

(
θz

180

)φ

, (3)

where T is the total number of timeslots during the UAV
to end all tasks and return to charging, Nt is the number
of turns that the UAV makes, θz is the angle of vu before
and after the zth turn, and φ is a coefficient determined
by the acceleration at the time of turning. The value of
R quantifies the requirements in trajectory planning. A
smallerRwill be achieved with moving distance, smaller
turning angles, or fewer turns.

B. Task Arrival and Channel Allocation Model

Since the arrival pattern of tasks is not fully known, we
build a task arrival model to realize the continuous aux-
iliary computing process that takes the dynamic arrival
characteristics of the tasks into consideration. To ensure
the randomness of tasks arrival, we assume that the task
arrivals from jth MD conform to a Poisson process with
an arrival rate of λj. For the ith task from the jth MD,
we denote cij as the number of CPU cycles required to
process each input task, and sij, oij as the input and
output task data size, respectively. The values of sij
and oij are random variables that follow the exponential
distribution.

After determining the mission arrival mode, the key
is to allocate the limited wireless channel. In order to
allocate the wireless channels according to the task sizes
efficiently, we assume that the proportion of channels
allocated to the jth MD follows the Gamma probability
distribution with shape parameter α and scale parameter
β, denoted as,

ωj(t) =
βα

Γ(α)
sα−1

ij eβsij , (4)

where we set the parameters α = β = 2. The proportion
of the probability density function value generated by
taking the task sizes as the variable in the total quantity
will be the proportion of the ωj(t) in the Nc. Hence, the
number of channels allocated to the jth MD at timeslot t
is Cj(t) = Nc · ωj(t). The size of the task also called the
storage capacity, will determine the number of channels
required to transmit the task at the current moment.
When the size of a certain arrival task sij is too large, it
will occupy too many computing resources and reduce
the execution efficiency of UAV. Such a setting provides
more opportunities for the task with great demand to
transmit channels. At the same time, it is punitive to a
single task with a large storage capacity to prevent the



channel from being monopolized and guarantee a certain
level of transmission efficiency.

C. Task Assignment Optimization Model
At the tth timeslot, for tasks from the jth MD, we

define the utility function considering delay and energy
consumption for transmission and computation as,

Dj(t) =
Nj

∑
i=1

(
(DMD

ij (t) · xMD
ij (t) + DUAV

ij (t) · xUAV
ij (t)+

DDC
ij (t) · xDC

ij (t)) + ε(EMD
ij (t) · xMD

ij (t)

+EUAV
ij (t) · xUAV

ij (t) + EDC
ij (t) · xDC

ij (t))
)

,

where we define xij(t) = (xMD
ij (t), xUAV

ij (t), xDC
ij (t)) as

an array of binary variables indicating the executing
location of the ith task from the jth MD at the tth timeslot.
ε is a weighting factor that accounts for the relative
importance between energy consumption and delay in
the utility function. When the tasks are more urgent in
nature and thus require a shorter delay, ε may take a
relatively small value to emphasize the contribution of
delay to the utility function. Conversely, when the energy
is short in supply, and the main objective is to reduce
energy consumption, we can set a higher ε. Then, we
define S(t) = ∑K

j=1
(
Dj(t)

)
as the sum of the utility

function for all MDs.
We aim to minimize the total consumption of the UAV-

assisted fog computing network, including the consump-
tion for completing the tasks and the consumption for the
UAV movement. In other words, we also need to account
for the energy consumed by the UAV for its movement.
The joint optimization problem is formulated as,

Minimize
xij

L(t) = S(t) + εEu(t)

subject to v(t) ≤ vmax

∑K
j=1 Cj(t) ≤ Nc

f min ≤ f (t) ≤ f max

f min
j ≤ f j(t) ≤ f max

j
pmin ≤ p(t) ≤ pmax

pmin
j ≤ pj(t) ≤ pmax

j
xMD

ij (t) + xUAV
ij (t) + xDC

ij (t) = 1
xMD

ij (t), xUAV
ij (t), xDC

ij (t) ∈ {0, 1}
j ∈ {1, . . . , K},

(5)

where Eu(t) = 0.5M · L · ‖v(t)‖2 is the energy consump-
tion for the movement of the UAV, and M is the mass of
the UAV. Note that processing frequencies f (t), f j(t), and
transmission powers p(t), pj(t) are all functions of the
decision variables xij(t). The frequencies and powers in
turns would determine the total consumption. Detailed
relationships can be found in a number of existing liter-
ature, e.g., [7].

Note that Problem (5) is by nature non-convex. There-
fore, the traditional approaches to solve it are computa-
tionally prohibitive.

III. ALGORITHMS

A. Overview
Our proposed solution to Problem (5) mainly consists

of two global optimization algorithms. The first algo-
rithm focuses on assigning tasks and allocating resources,
including transmission power and frequency, by the
Particle Swarm Optimization technique. In contrast, the
second determines the UAV’s optimal trajectory based on
Ant Colony Optimization. Finally, the optimal trajectory
and resource allocations at every point on the trajectory,
namely the output of the first two algorithms, are inte-
grated to determine the optimal position for the UAV to
start transmission with the MD.

B. Task Assignment, Power and Frequency Allocations
The ith task from the jth MD at the tth timeslot can

be executed in the jth MD itself locally, the UAV, or the
remote data center. To ensure that all the computational
resources are efficiently utilized during the transmission
and computation of user tasks, it is essential to deal
with the task scheduling policy and the corresponding
transmission parameter settings.

We consider solving this problem by Particle Swarm
Optimization [14]. As mentioned before, assignment de-
cisions are represented by xij = (xMD

ij , xUAV
ij , xDC

ij ). For the
convenience of presentation, we group the task assign-
ment decision, transmission power and processing fre-
quency together as a particle group sm = (xij, pj(t), f j(t))
in the particle swarm, where m ∈ {1, ..., M}. Then, we
decide the location of the particle groups by uniformly
sampling M ∈ N+ particle groups. To find the optimal
solution iteratively, we initialize the velocity of the par-
ticle groups and update according to the method in [14].
We terminate the algorithm when the difference between
results in two consecutive iterations is smaller than a
threshold ξ. The algorithm outputs the minimum value
S∗, the optimal task assignment decision x∗ij, transmis-
sion power p∗j (t), and processing frequency f ∗j (t).

C. UAV Optimal Trajectory Planning
Assume that there are No ∈ [Nmin

o , Nmax
o ] obstacles

randomly deployed within the region. We use O =
{(xo

i , yo
i )} to denote the set of locations of all obstacles,

where i ∈ {1, 2, ..., No}. The heights of all the obstacles are
larger than or equal to h, so the UAV needs to avoid all of
them. Avoiding obstacles can be considered a constraint
for the UAV in the optimization problem, and changing
the direction at the tth timeslot could ensure that the
coordinates of the UAV in the next timeslot will not fall
within the coordinates of the obstacles.



Algorithm 1 (PSO) Task Assignment, Power and Fre-
quency Allocations based on Particle Swarm Optimiza-
tion
Input: The intervals of xij, pj(t), f j(t), AP1, AP2, IP
Output: S∗(t); x∗ij; p∗j (t); f ∗j (t)

1: for m = 1 to M do
2: Initialize partilces’ location Xm
3: Initialize velocity Vm
4: Initialize pBestm to its location pBestm ←− Xm
5: end for
6: Initialize gBest(0) ←− argmin f it(pBestm), where f it

represent the equation to compute S∗(t); n = 1
7: do
8: for m = 1 to M do
9: Update Vm and Xm by acceleration factors

AP1, AP2 and IP
10: if f it(Xm) < f it(pBestm) then
11: pBestm ←− Xm
12: if f it(pBestm) < f it(gBest) then
13: gBest(n)←− pBestm
14: end if
15: end if
16: n←− (n + 1)
17: end for
18: while |gBest(n + 1)− gBest(n)| < ξ
19: S∗(t)←− f it(gBest)
20: (x∗ij; p∗j (t); f ∗j (t)) ←− gBest
21: Output S∗(t); (x∗ij; p∗j (t); f ∗j (t))

We compute the movement trajectory by Algorithm 2
based on the Ant Colony Algorithm [15] to minimize R,
so as to get the optimal movement path. We first initialize
the pheromones PH0 and heuristic values HV of the
ants, and the evaporation rate ρ. While implementing the
algorithm, the UAV could be considered as an ant, and
we record the motion state and the location of the ant
at each timeslot, the number of UAV turnings φ, as well
as the turning angle θz, velocity vu(t), and acceleration
at each turn. Finally, the minimum trajectory planning
value R is obtained through several iterations, and the
information of each coordinate through which the ant
moves constitutes the final output, namely the optimal
trajectory of the UAV.

D. Optimal Transmission Position of the UAV

With the optimal trajectory determined previously, we
can confirm the coordinates of the UAV at each timeslot,
assuming that it sticks to the optimal trajectory. A reason-
able assumption is that the UAV will remain at a fixed
location once it starts transmission with the targeted MD,
in order to guarantee the reliability of the transmission.

Algorithm 2 (ACO) Trajectory Planning based on Ant
Colony Optimization
Input: (xj, yj); [Nmin

o ,Nmax
o ]; ρ; HV

Output: Rmin; (xk(t), yk(t))

1: Randomly generate No ∈ [Nmin
o ,Nmax

o ] obstacles
record the location as coordinates (xo

i , yo
i ) ∈ O

2: for m = 1 to M do
3: do
4: Randomly set initial coordinate (x(0), y(0))
5: while (x(0), y(0)) ∈ O
6: for each edge do
7: Set initial pheromone PH
8: end for
9: for each ant k do

10: Initial coordinates (xk(t), yk(t)) = (x(0), y(0))
11: for each edge do
12: do
13: Choose the next coordinate with the

probability by PH and HV
14: while (xk(t + 1), yk(t + 1)) ∈ O
15: output (xk(t + 1), yk(t + 1))
16: end for
17: Compute and output the length ∑T

t=1 du(t) of
the path by the kth ant and the R value

18: for each edge do
19: Update the ith pheromone value PH by ρ
20: end for
21: end for
22: end for
23: Compute and output the Rmin by equation (3).

We consider a straightforward approach to determine
the optimal position on the optimal trajectory for the
UAV to stop moving and start transmission. We it-
eratively check the coordinate (x∗(t), y∗(t)) for every
timeslot t = 1, 2, · · · on the optimal trajectory obtained
by Algorithm 2, and invoke Algorithm 1 to compute the
consumption S∗(t) with the optimal task assignment and
resource allocation if the UAV is transmitting at (x∗(t),
y∗(t)). Finally, we compare the values of L∗(t) for all
t = 1, 2, · · · , and identify the optimal timeslot t∗ for the
UAV to start transmission as t∗ = arg mint L∗(t).

The procedures to obtain the optimal timeslot and cor-
responding coordinates for the UAV to start transmission
are summarized in Algorithm 3.

IV. PERFORMANCE EVALUATION

A. Experiment setup
In this section, we perform numerical simulations on

systems with a range of parameter values to evaluate the
effectiveness and adaptability of our proposed solutions.
We consider that K MDs are deployed in an area of S× S.



Algorithm 3 (TDO) Travel Distance Optimization
Input: {(x∗(t), y∗(t))|t = 1, 2, · · · , T}
Output: L∗(t); t∗; (x∗(t∗), y∗(t∗))

1: for each t do
2: Retrieve (x(t), y(t)) from Algorithm 2
3: Invoke Algorithm 1 to compute S∗(t) based on

(x∗(t), y∗(t))
4: Compute L∗(t) based on (x(t), y(t))
5: end for
6: Obtain t∗ = arg mint L∗(t)
7: return L∗(t); t∗; x∗(t∗), y ∗ (t∗)

For simplicity without loss of generality, we discretize
the area into 1× 1 grids. We divide the time into mul-
tiple timeslots of equal length. The starting horizontal
and vertical coordinates of the UAV are independently
and randomly generated in [0, S/2]. Values of system
parameters in the experiment are listed in Table II.

TABLE II
SYSTEM PARAMETER SETTINGS

Parameter Value Parameter Value
S 10000 m ε [0.05, 1.00]
h 50 m Cj(t) [0.05, 2.50]
K 50 [pmin,pmax] [40, 80] mW
Nc 40 [pmin

j , pmax
j ] [30, 70] mW

L 0.1 s [ f min, f max] [1.0, 2.0] GHz
vmax 10 m/s [ f min

j , f max
j ] [0.5, 2.0] GHz

ξ 0.01 [Nmin
o , Nmax

o ] [2000, 3000]

Based on the scenarios above and model parameter
settings in Table II, we perform each algorithm to solve
the joint optimization problem 50 times. The following
results presented in this section are based on the average
of the 50 runs for each corresponding method. In each
run, the weighting factor ε is generated randomly within
its domain. The values of relevant parameters involved
in the algorithms are listed in Table III.

TABLE III
ALGORITHM PARAMETER SETTINGS

Parameter Value Parameter Value
ρ 0.25 PH0 3.8

AP1 2.0 IP 0.65
AP2 2.0 HV 2.5

We demonstrate and compare the results in five dif-
ferent scenarios with the following approaches. Firstly,
we consider an obstacle-free area where the UAV always
flies in the direction of the line connecting the origin
and the destination. Next, we focus on the performance
improvement achieved by optimally allocating the task
computing position, allocating wireless channels, and
determining the processing frequency and transmission
power of MDs and UAV. We will present the results from

the following scenarios with corresponding optimization
approaches:
• RAN: The channels are all randomly allocated to K

MDs. All tasks are randomly assigned to the local
MD, the UAV, or the data center. Processing frequen-
cies and power allocations are generated randomly
in the domains.

• GA: The Genetic Algorithm used in [7] is deployed
to obtain task assignments, as well as the processing
frequencies and transmission powers of MDs and
the UAV. The other parameters are still randomly
generated in the domains.

• PSO: We apply Algorithm 1 (Particle Swarm Opti-
mization) to determine task assignments, the pro-
cessing frequencies ,and transmission powers of
MDs and the UAV. The other parameters are still
randomly generated in the respective ranges.

• CA: On top of PSO, The channels are allocated
according to the arrival rates a d sizes of tasks gen-
erated from different MDs, according to the method
described in Section II-B.

• TDO: On top of CA, Algorithm 3 (Travel Distance
Optimization) is deployed to determine the location
for the UAV to transmit with the targeting MD.

B. Numerical results

1) Convergence of Algorithms: We first verify our pro-
posed approach’s convergence and compare its conver-
gence rate to the benchmark GA. The convergence curves
of PSO and GA are shown in Fig. 2, where the horizontal
axis represents the number of iterations, and the vertical
axis denotes the total consumption of respective algo-
rithms at a specific iteration. As shown by the curves,
while the convergent values of the two algorithms are
extremely close, PSO can achieve convergence in about
25 iterations compared to 35 iterations for GA. This rep-
resents an improvement of 28.6% in convergence speed.

2) Task Assignments: We consider a sample of 9 tasks
that are initiated at the same timeslot and illustrate their
respective assignments by Algorithm 1 in Fig. 3. Here,
we denote the ith task from the j MD as the j-i task. For
example, “3-1” denotes the 1st task from the 3rd MD.
Different colors in each column represent the proportion
of a certain task that is executed in the MD, the UAV,
and the cloud data center, respectively.

3) Channel Assignment: Fig. 4 demonstrates our pro-
posed channel assignment results with 36 tasks of dif-
ferent sizes at a time slot. Each point in the Fig. 4
indicates the number of channels (vertical axis) allocated
to a task of a certain size (horizontal axis). The savings
achieved by our proposed channel allocation strategy
in total consumption is also shown by the curve CA
compared to PSO in Fig. 5.
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Fig. 3. Assignments for 9 tasks at one particular timeslot.

4) Total Consumption: The results of total consump-
tion achieved by the five approaches introduced in the
previous subsection at different timeslots are presented
in Fig. 5. We can see that GA and PSO’s performances
are very close to each other and much better than the
baseline case (RAN). An optimized channel allocation
by CA can further reduce the total consumption by up
to 30% compared to GA and PSO. The best of the five
is the case where TDO optimizes the UAV transmission
location on top of CA, reducing the total consumption
by more than 45%.

5) Trajectory planning: We then consider the effect of
obstacles (such as office buildings) and test the perfor-
mance of our trajectory planning algorithm. In the given
area, No ∈ [Nmin

o , Nmax
o ] obstacles are now randomly

distributed, and every obstacle occupies one entire grid.
After 200 iterations, our algorithm obtains the optimal
trajectory of the UAV movement. As shown in Fig. 6, the
dark grids represent obstacles that the UAV cannot fly
over, and the light grids represent free space.

As demonstrated earlier, the trajectory planning algo-
rithm will identify the optimal path between the starting
location of the UAV and the destination where the MD
initiating the task is located while avoiding the obstacles.
Fig. 6 also shows an example of the planned trajectory.
The side length of each square represents one unit of
distance, the black square is the obstacle, and the red line
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Fig. 4. Channel allocation strategy for 36 tasks of different sizes.
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Fig. 6. A demonstration of trajectory planning in an area with obstacles

is the best trajectory of the UAV. Note that according to
our settings, the UAV does not necessarily need to travel
the entire trajectory and reach the exact location of the
MD, it may stop moving halfway and start transmission
immediately.

6) Overall Performance Comparison: Fig. 7 shows the
performance comparison of CA, TDO and ACO with
different values of the weighting factor ε. The vertical
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Fig. 7. Relative reduction in L with different weights ε

axis in Fig. 7 is the relative reduction in L achieved
by a certain policy Φ as compared to the baseline case
RAN ((LRAN-LΦ)/LRAN, Φ ∈ {CA, TDO, ACO}). For
CA, TDO as well as RAN, the amounts of energy con-
sumption are calculated based on the scenario where
no obstacles are present, and the UAV moves along a
straight-line trajectory. The results show that ACO incurs
extra energy consumption over CA as the total travelling
distance is longer for the UAV to avoid obstacles. How-
ever, ACO still achieves significant energy saving, up to
25.56% compared to CA and 57.47% compared to RAN.
Therefore, the TDO is an effective complement to the
obstacle avoidance mechanism in the trajectory planning
phase that can be deployed to offset the extra energy
consumption. The different trends of L with changing
weights are due to the scaling differences between energy
and delay in the total consumption.

V. CONCLUSION

In this paper, we proposed a framework to optimize
the energy efficiency for the process of assigning compu-
tational tasks in a fog computing system, where a single
UAV is available to assist in transmitting data and com-
puting tasks. The proposed solution consists of two novel
algorithms, namely a Particle Swarm Optimization based
algorithm aiming at assigning tasks to different devices
in the network, and an Ant Colony Optimization based
algorithm to determine the optimal trajectory for the
UAV. A greedy approach is then invoked to combine the
outputs of the two algorithms to determine the location
on the trajectory for the UAV to start transmission. We
demonstrated that our proposed framework could con-
siderably reduce the total power consumption compared
to existing state-of-art methods while completing the
same number of tasks under the same set of constraints.
Furthermore, our resource allocation method converges
faster and requires less computing power for the UAV
compared to existing approaches.

In the future, we plan to extend the model to account
for the scenario where multiple UAVs are simultaneously

deployed to assist computational offloading in fog com-
puting.
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