

CH-Go: Online Go System Based on Chunk Data
Storage

Hui LU
Computer School

Sichuan University
Chengdu, China

2018141501149@stu.scu.edu.cn

Cheng LI
Computer School

Sichuan University
Chengdu, China

996515149@qq.com

Chuan LI *
Computer School

Sichuan University
Chengdu, China

lcharles@scu.edu.cn

Ashraful Islam
Computer School

Sichuan University
Chengdu, China

 ash_512@outlook.com

Yiming YANG
School of Computing

National University of Singapore
Singapore, Singapore
e0920761@u.nus.edu

Abstract—The training and running of an online Go system
require the support of effective data management systems to
deal with vast data, such as the initial Go game records, the
feature data set obtained by representation learning, the
experience data set of self-play, the randomly sampled Monte
Carlo tree, and so on. Previous work has rarely mentioned this
problem, but the ability and efficiency of data management
systems determine the accuracy and speed of the Go system. To
tackle this issue, we propose an online Go game system based on
the chunk data storage method (CH-Go), which processes the
format of 160k Go game data released by Kiseido Go Server
(KGS) and designs a Go encoder with 11 planes, a parallel
processor and generator for better memory performance.
Specifically, we store the data in chunks, take the chunk size of
1024 as a batch, and save the features and labels of each chunk
as binary files. Then a small set of data is randomly sampled
each time for the neural network training, which is accessed by
batch through yield method. The training part of the prototype
includes three modules: supervised learning module,
reinforcement learning module, and an online module. Firstly,
we apply Zobrist-guided hash coding to speed up the Go board
construction. Then we train a supervised learning policy
network to initialize the self-play for generation of experience
data with 160k Go game data released by KGS. Finally, we
conduct reinforcement learning based on REINFORCE
algorithm. Experiments show that the training accuracy of CH-
Go in the sampled 150 games is 99.14%, and the accuracy in the
test set is as high as 98.82%. Under the condition of limited local
computing power and time, we have achieved a better level of
intelligence. Given the current situation that classical systems
such as GOLAXY are not free and open, CH-Go has realized
and maintained complete Internet openness.

Keywords—Chunk data storage; Human-machine play;
DCNN; REINFORCE; Zobrist hashing

I. INTRODUCTION
Human-machine play is closely related to artificial

intelligence [1], and it is one of the most important ways to
testify computational intelligence. This is especially true for
Go, which has always been regarded as the most challenging
classic game in artificial intelligence due to its vast search
space and difficulty evaluating chess positions and moves [2].
Every advance in the Go intelligent system since the 1990s is
bound to be accompanied by a renowned man-machine battle.

For a long time, Go has been regarded as the embodiment
of the highest difficulty among all human chess games, so
many famous teams worldwide have made active attempts to
solve problems in the domain of Go. Among them, the open
source system, Pachi, based on the traditional heuristic Monte
Carlo tree search is released in 2012. It is characterized by a
modular structure and a small and refined code base [3], but
deep learning is not introduced in their work. ELF OpenGo [4],
released by Facebook AI Research team (FAIR), implements
its early achievements Darkforest [5] as well as the excellent
AlphaGo Zero [6] and AlphaZero [7] algorithms proposed by
the DeepMind team, et al. There are also some non-open
systems such as AlphaGo [8], the first Go intelligence
developed by the Google DeepMind team which defeats the
human Go world champion, integrated deep learning,
reinforcement learning and innovatively applied Monte Carlo
tree search for the first time. However, these open source
systems have the disadvantages of requiring downloading and
configuration, complicated operations, and inability to access
online. Therefore, CH-Go (Chunk data storage-based Go
system) aims to build a simple and easy-to-use online Go
human-machine game system.

However, most of the existing systems require massive
computing power and huge investment, and there is
insufficient consideration for how to implement artificial
intelligence systems with limited resources. In response to that,
we propose a system construction method based on the chunk
data management strategy to solve the problems of large
amount of Go record data, slow reading speed, and large
memory space. Based on the pre-processed game records, our
method analyzes 160k Go data, that is, millions of moves in a
unique binary format of Numpy with a block size of 1024
according to features and labels, and uses the effective
generator yield function when accessing. With the progress of
supervised learning neural network training, data are
generated and returned in batches.

In addition, we apply Zobrist [9]-guided hash coding when
constructing the Go board, and design 11 feature planes as the
input of the neural network. When training the neural network,
considering the different characteristics of Go moves in
different stages, the adaptive gradient descent Adadelta [10]
method is used to optimize the neural network. Then, in the

* Chuan Li is the associate author. And the second affiliation of Hui Lu is
Nanyang Technology University

Fig. 1. System structure diagram

Fig. 2. Deep Convolutional Neural Network Mode

part of reinforcement learning, we adopt the clipping
probability distribution and random sampling to select actions
to improve the stability of the model and use the REINFORCE
algorithm based on the policy gradient in the training. At last,
we build a lightweight Flask application with web front-end
to run the instance agent, which is deployed on the server to
provide a platform for Go enthusiasts to play human-machine
games. To summarize, our contributions are three-fold:

1) We propose a truncated storage module for the Go
system. A large amount of Go score data is stored in blocks,
so the effective yield method can be used to provide data in
batches according to the training process to improve storage
and access efficiency.

2) We introduce a Zobrist-guided hash coding module to
facilitate the building of Go board, which significantly speeds
up the game and improves the training effect with the limited
computing power.

3) We design 11 feature planes as the input of the neural
network, enjoying the merits of high training speed and
significant performance. Our system achieves 98% accuracy
in sampled dataset.

II. THE ARCHITECTURE OF CH-GO
The system first builds the basic Go game and downloads

the game records from the KGS Go server. Then the chess
format decoder and input encoder are generated to transform
the data into the required input format. After that, the system
conducts supervised training and reinforcement learning with
the REINFORCE algorithm. Finally, the Web application is

deployed on the server. As shown in Fig. 1, our proposed
system consists of three modules, namely supervised learning
module, reinforcement learning module, and online module.

A. Supervised learning module
The supervised learning module mainly includes building

Go boards, loading the game records downloaded from KGS
(Kiseido Go Server), and a deep convolutional neural network
training module.

When building Go boards, in addition to realizing the most
important actions in Go, such as moving and raising, it is also
necessary to consider many other vital concepts in Go, such as
ladder, self-Atari and ko. To detect ko, the game's entire
history needs to be checked, which is computationally
expensive. In order to reduce the cost of storage and
computation, we adopt Zobrist-guided hash code to improve
speed.

Then the system needs to conduct a crawler program,
downloading online game records from KGS in batches and
sampling the specified number of games as required. After
that, the system processes the game record data, creates
features and labels, and saves the results locally in the form of
NumPy arrays in blocks. To avoid making a vast NumPy array,
the system also builds a Go data generator to provide a
minibatch of features and labels for each neural network
training. In addition, the python multiprocessing library is
applied to map the loaded data workload to multiple CPUs to
facilitate Go data processing in a highly parallel mode. In this
paper, we map it to 8 CPUs to avoid memory overflow and
other troubles while considerably speeding up data

Fig. 3. Reinforcement learning module structure diagram

processing. In the training module, a deep convolutional
neural network is generated as shown in Fig. 2, which has 9
layers. The network's input is a vector of size 19*19*11, then
transformed into a vector of size25*25 by using zero padding
in the first hidden layer. And the input is convolved with K
filters with kernel size 7 * 7 and stride set to 1. As for the
remaining 2 to 7 hidden layers, the size of the vector becomes
23*23 through zero padding, then convolving with K filters
with a kernel size of 5*5 and a stride of 1. After that, it is
connected with a dense layer of size 1024. The system applies
ReLU for the first 8 layers and the SoftMax function in the
last layer, outputting the probability distribution of the 361
classes of the Go board.

In addition, the categorical cross-entropy loss function
and adaptive gradient descent Adadelta are used to find the
minimum value. This method does not set the global learning
rate and differs from Adagrad whose learning rate is
aggressive and monotonically decreasing. Adadelta restricts
the cumulative window of past gradients:

 G ← γG + (1-γ) ∂W (1)

Where W is the weight vector, G is a diagonal matrix, Gi,i
notes the sum of squares of gradients Wi received so far and
γis the size of window, generally set to 0.9.

Besides, the size of the mini-batch also affects the
performance of the model. Generally, the size of the mini-
batch is the same with or close to the number of categories,
but the moves of Go are not completely random, and the
probability of particular moves is significantly higher than
that of others. For example, there are almost no moves in the
four corners. For the imbalance phenomenon, it is impossible
to expect the mini-batch size to cover all categories.
Therefore, referring to many experimental results, we set the
mini-batch size to 128.

B. Reinforcement learning module
Theoretically speaking, if the Go intelligent system is

trained only through supervised learning, it will never be able
to outperform the game records provided to the neural
network [9]. Therefore, reinforcement learning is necessarily
required to improve the system's level. Fig. 3 shows the
module structure.

First, the system initializes the games guided by the
supervised learning policy network results, performs a large
number of self-plays Go games, and records the states of the

board, which aims to collect experience. Then CH-Go adopts
the REINFORCE algorithm based on the policy gradient and
the idea of Monte Carlo and updates the weights of the
initialized neural network through training. Evaluations can
be performed after each version of training is completed. In
the domain of reinforcement learning, we call each version of
the Go robot an agent, and let the new agent play against the
earlier version of the agent by self-play and use binomial test
to evaluate its progress and determine whether the program
needs further improvement. Generally, these three processes
need to be repeated for many cycles.

1) Task Formulation
Many games with perfect information, such as chess,

checkers, reversi, backgammon, and Go, can be defined as
alternating Markov games [12]. In Go, the game that the
system faces are the state space S; the legal move that the
system can choose is the action space A(S); the reward
function ri(s) describes the rewards obtained by player i and
game s. The result of the game zt=±r(sT) is the final reward
from the view of the current player at time step t when the
game is over. At the end of each game, if winning it will
harvest a score of 1, otherwise it will get a score of -1. The
system's strategy p(a | s) is the probability distribution of legal
actions a∈A(s). When both players' actions are selected
according to the strategy p, the value function is the expected
result, namely vp(s) =E [zt | st = s, at…T ~ p].

2) REINFORCE algorithm
REINFORCE is an acronym for REward Increment =

Non-negative Factor * Offset Reinforcement * Characteristic
Eligibility [13]. It aims to use stochastic gradient ascent to
update the parameters, making the harvest continue to rise
and maximizing the expected profit. It is a policy gradient
algorithm based on the Monte Carlo update method, every
time an episode is completed or a round of Go is over to
update the agent. Specifically, an empirical Go game is
formed by self-play through a supervised learning policy
network, which is input into the initial policy network, and
the probability distribution of actions is outputted. The agent
randomly selects under certain conditions and fills in 1 or -1
into the target vector after completing a game, representing
the result of this episode. The agent gets rewards by
interacting with the environment. The difference between the
probability distribution and the target vector represents the
gradient to be followed, which can then be used to update the
network weights using gradient descent. When a batch update
is completed, the policy network has new weights, and a new

probability distribution will be obtained when the game is
inputted again. The formula for stochastic gradient ascent is
as follows:

 θt+1=̇θt+α∑ q$a (St, a, w)∇π(a|St, θ) (2)

Where different representations of q form different
algorithms. We replace q with future total returns Gt in
REINFORCE, representing the sum of returns after t steps.
So, the algorithm formula is as follows:

 θt+1=̇θt+αGt∇lnp(At|St,θt) (3)

Where α is the learning rate. If Gt > 0, the parameter
update will increase the probability of keeping the current
state, that is, if the reward is favorable, the probability of this
action will be increased, and vice versa. Besides, the greater
the reward, the greater the magnitude of the gradient update
and the greater the probability increase. The reason for
choosing log-probability lnp over probability (which is what
we should maximize) is that, in general, optimizing log-
probability works better than normal probability and the
gradient of log-probability is usually easier to scale. Within
the probability range 0-1, the variable space of probability p
is limited and small, but when using logarithmic probability,
we have the target (-∞,0) with a more extensive "dynamic
range" than the original probability space, which makes the
log probability easier to compute.

Reinforcement learning processes can be particularly
unstable in the early stage of training, where the agent may
assign a pretty high probability to chance wins, even though
the actions are actually not so effective. Therefore, the system
adjusts the probability distribution and adds a particular
random component, which enables the exploration of various
possibilities of Go games [14].

First, all values are cubed, drastically increasing the
distance between more and less likely actions. While the best
possible actions should be chosen as much as possible, at the
same time, the system should prevent the probabilities of
actions from getting too close to 0 and 1. Therefore, the
system defines a small positive value ε = 0.000001 [9], and
sets all values less than ε to ε and all values greater than 1-ε
to 1-ε. Finally, all results are normalized, and we get another
probability distribution. In addition, the system randomly
samples from this probability distribution, rather than directly
selecting the most likely action, because usually the system
cannot find the action that stands out from so many options,
and sampling also avoids the system repeatedly selecting the
same activity, improving the diversity of actions and the
stability of the network.

During the experiment, it was found that generating a
large number of Go games in one batch is not conducive to
the weight update of the REINFORCE algorithm. When the
learning rate is very low, the performance of the model is
even worse. Experiments show that its iterative progress is
faster on a small amount of data. Referring to AlphaGo's use
of 10k mini-batches of 128 games, we finally choose to
generate 128 self-play Go games each time, and use the

REINFRORCE method to train and update the weight of the
neural network. Each time a version of the training is
completed, it is played against the previous version or the last
version before it, and the agent's progress is evaluated. When
its winning rate is similar or dominant in 100 games, in order
to perform a binomial test, we choose to continue playing
1000 games. After 20 iterations, the obtained agent wins 565
games against the initial strategy network in 1000 games. The
binomial test result is 4.14e-05, which is far less than the
general standard of 5%, so it can be considered that he has
made significant progress.

C. Online module
The architecture of the online system module is shown in

Fig. 4. When the user performs an action in the browser, the
web front-end sends the game state through an HTTP POST
request to the Flask application, which is responsible for
decoding the POST request and passing it to the Go agent
instance. In the browser, the client based on the jgoboard
library communicates with the server via HTTP.

Fig. 4. Online Module Architecture Diagram

III. METHODOLOGY

A. Truncated storage module
Numpy binary files have a lot of advantages such as low

memory requirement, high reading speed and suitable for
model reloading and migration. Therefore, after pre-
processing the downloaded data, the features and labels are
saved in the form of Numpy arrays. The storage of massive
small files is an important research direction in today's
massive data storage technology [15]. We choose the block
storage method considering the need to access features
repeatedly in small batches at the late-stage neural network.
The block size of 1024 is regarded as a batch (1024 is an
integral multiple of the mini-batch of neural network training).
After block storage, chunk data can not only be combined
when using, but can also dynamically load batch data, loading
it into memory separately with high flexibility.

When accessing data, we solve the problem of large
memory consumption when using sequences to store large
amounts of data by applying the mechanism of computing
while looping in python generators. Yield is one of the
methods to implement generators, and simultaneously

assumes the responsibility of accessing data. The difference
between yield and return function is that the return function
returns a list, while yield only returns one value, so yield
dramatically reduces the overhead of accessing data. The
pseudo-code of access algorithm to the block data storage of
our system is as follows:

Algorithm 1. Data Block Access

Input: 160k go data with zip format,

Output: the outcome of data storage by chunk

Steps:

1. for zip_file in file:

2. unzip_data

3. feature, label = process_zip (batch_size = 1024)

4. for feature, label:

5. x = load(feature)

6. y = load(label)

7. while x.shape >= batch_size:

8. x_batch, x = x[:batch_size], x[batch_size:]

9. y_batch, y = y[:batch_size], y[batch_size:]

10. yield x_batch, y_batch

A generator also calls this method with the batch size of
128. We only access a small batch of data each time calling
the function by our algorithm, which effectively avoids the
problem of memory leakage due to vast arrays. At the same
time, it efficiently provides features and labels for training of
the neural network.

B. Zobrist-guided hash coding module
Now, most AI for games applies Zobrist hashes to

implement transpose tables [16][17]. For example, in the game
of Go, different moves are likely to result in the same
situation. With Zobrist, a special type of hash table, we can
avoid analyzing the same position repeatedly indexed by the
position of the board. Precisely, Black and White stones are
placed on a 19*19 board. At any time, there are three black,
white and empty states at each intersection on the board,
generating 3*19*19=1083 hash values. Using these values to
represent a single action, we do the XOR operation between
the initial hash value of the board and the action to obtain a
new board hash value when a move occurs. When capture
occurs, we just need to apply that to remove the stone
reversely.

When detecting whether ko occurs, we first limit to 10
moves, that is, 5 situations, assuming they are in different
order with the same final position. If an explicit loop is used,
this same situation will be calculated 5! (=120) times. Then
if we need to detect ko within 20 moves, the calculation time

required by Zobrist algorithm is only 1/3628800 (=1/10!) of
the original ideally.

Therefore, the playing speed will be very fast at any time
by the Zobrist-guided algorithm, especially in self-play
games, and the efficiency of the system is significantly
improved.

C. Input feature design
A total of 48 input features in AlphaGo's supervised

learning policy network are directly derived from raw
representations of game rules [8]. More features mean more
cost of computation and time. Therefore, we design a small
input feature with 11 feature planes by trade-off effectiveness
and efficiency, as shown in Table 1:

TABLE I. INPUT FEATURES FOR NEURAL NETWORKS

Feature # of planes Description

Liberties

4 Number of privileges (empty adjacent
points) for Black Stone

4 Number of liberties (empty adjacent
points) for White Stone

Player color 1 Whether current player is black

Sensibleness 1 Whether a move at this point is a
successful ladder escape

ko 1 Whether the point indicates ko

Because the concept of liberty has important tactical
significance for the game of Go, it needs to be modeled and
encoded explicitly, and the same is true for ko. When the
neural network model can directly see the properties of liberty,
ko and the attribute of stone color, it can place more emphasis
on these concepts in training, thus making it easier for the
model to understand their impact on the game.

Based on the game records generated by this supervised
learning neural network model, we train the model with 12
million weight parameters. The obtained model reaches an
accuracy rate of 98% on the test set.

IV. DEMONSTRATION AND EXPERIMENTS

A. System demonstration
The CH-Go system is mainly developed in python3.7, and

the demo page is developed in HTML and JavaScript. Fig. 5
represents the flow of data through the CH-Go system and the
interface of the system is shown in fig. 6.

Players can use it from any device with a web browser,
whether PC or mobile phone. The system uses the agent that
iterates 20 times through reinforcement learning after
completing the supervised learning. The system uses Chinese
rules with no handicap and 7.5 komi, and players always play
black. The system interface is simple and easy to use and we
respect the privacy of players and will not collect any
information from players, including moves and results of
games.

Fig. 5. Data Flow Diagram

Fig. 6. System demonstration page

After visiting the page through the link, CH-Go can be
tested. When a stone has only one liberty left, it will escape
avoiding being captured. For example, as shown in Fig. 7,
when Black moves to C16, White D16 has only one liberty
left. At this time, CH-Go will choose to move D15
immediately to escape.

Later, when Black chooses to play C15, White will play
C17 to avoid Black forming a ladder connection. CH-Go will
also actively capture when the opponent makes a mistake to
create an advantageous situation for itself, such as the Go
game following Fig. 7; Black D17 has only one liberty left.
If Black makes a mistake, not choosing to play D18 to escape,
White will choose to capture, as shown in Fig. 8.

Fig. 7. The demonstration of escape

Fig. 8. The demonstration of capture

In addition, the clipping probability distribution ensures
the diversity of the CH-Go' s action choices. Even if Black
always chooses the same move, CH-Go will still move in
different places. As shown in Fig. 9, for the exact same Go
move, CH-Go has different choices of moves.

Fig. 9. Demonstration of system action selection diversity

In general, after completing supervised learning and
reinforcement learning, CH-Go basically plays at a 3D
amateur. In the early stage of the game, CH-Go is especially
logical, and it plays fast, giving players a certain sense of
pressure. In the middle game stage, the system will seize
loopholes of opponents to fight to expand its advantages, and
it will also have a sense of the overall situation when there is
a local stalemate so that it deploys stones in other places, as
shown in Fig. 10 for CH-Go and amateur 6D Go player's
game indication:

Fig. 10. CH-Go plays Go with a 6D Go player

B. Experiments
To demonstrate the methodology validity and usability of

the system, we compare CH-Go with the following baseline.
a) Leela-zero is a Go program with no human-provided
knowledge using Monte Carlo tree search (MCTS) and a deep
residual convolutional neural network stack. b) I-Go is a
growing man-machine system that determines the best step
and completes playing decision by calculating Learning-
Time Evaluation (LTE) and Playing-Time Evaluation (PTE)
synthetically [1]. c) DPL-Go [18] is an implementation of
algorithms based on deep reinforcement learning and Upper
Confidence Bound Applied to Trees (UCT). Although there
are some famous Go robots, AlphaGo, Fine Art, GOLAXY
et cl., these are non-open, we cannot compare with them.

In terms of speed and computational complexity, Table 2
illustrates both speed and memory footprint results. Leela-
Zero, a distributed open-source project running off of
computation donated by volunteers has taken more than a
year to reach top levels. It has 18 inputs to the first layer.
Because of reducing feature planes as the input of the neural
network, Zobrist-guided hash coding and truncated storage
module, CH-Go has faster speed and smaller memory
footprint.

TABLE II. COMPARISON BETWEEN CH-GO AND OTHER METHODS
ABOUT METHODOLOGY VALIDITY

Method Training Time The size of memory footprint

Leela-zero

A lot of GPU
training more than
a year

Generally larger

I-Go None None

DPL-Go 60 hours None

CH-Go 50 hours 101.1MB

As illustrated in Table 3, in the aspect of usability, Players
do not need to download and install CH-Go, and do not need
to configure parameters.

TABLE III. COMPARISON BETWEEN CH-GO AND OTHER METHODS
ABOUT USABILITY

Method Access via browser Install Configure
parameters

Leela-zero No Yes Yes

I-Go No Yes No

DPL-Go No None No

CH-Go Yes No No

In conclusion, the technique is useful for novices and
regular amateurs. They have access to the browser whenever
and whenever they want to play games with computers. Users
can have a positive experience thanks to the page's simplicity,
ease of use, and quick system response.

V. CONCLUSION
Based on the 160k Go game records of KGS, we train the

Go agent by mixing supervised learning and reinforcement
learning, deploy it on the browser through the web front-end,
lightweight Flask application and Amazon server, and
establish a system for Go fans to access and play human-
machine games anytime, anywhere. The main feature of this
paper is that a truncated storage module is introduced in data
processing, which stores a large amount of game data in
blocks, accesses it on demand, and loads it in parallel, so as
to solve the memory and speed problems caused by a large
amount of Go data. At the same time, the speed of Go board
games is accelerated by Zobrist-guided hash coding, the
accuracy of supervised learning neural network is improved
with our 11-feature-planes input representation, and the
diversity and network stability of reinforcement learning
action selection are improved by clipping probability
distribution and random sampling.

There is still a lot of room for improvement. For example,
the standard of the current system is not good enough. When
encountering a strong opponent, it is easy to give up.
Therefore, in the future we consider further improving the
system by iterating more rounds of reinforcement learning
and introducing the Monte Carlo tree search. In addition, we
would like to enrich the problem setting, allowing the system
to make the best choice even when the probability of winning

is low. Go is a precise and vague, common and magical [19]
game, and we expect a more robust and convenient Go system
to be built in the future.

REFERENCES
[1] Li Xin. The Study of Growing Man-Machine I-Go System [D].

Shanghai Jiao Tong University, 2009.
[2] Wang Yajie, Qiu Hongkun, Wu Yanyan, et al. Research and

development of computer games[J]. CAAI Transactions on Intelligent
Systems, 2016, 11(6): 788-798.

[3] Baudiš P, Gailly J. Pachi: State of the art open source Go
program[C]//Advances in computer games. Springer, Berlin,
Heidelberg, 2011: 24-38.

[4] Tian Y, Ma J, Gong Q, et al. Elf opengo: An analysis and open
reimplementation of alphazero[C]//International Conference on
Machine Learning. PMLR, 2019: 6244-6253.

[5] Tian Y, Zhu Y. Better computer go player with neural network and
long-term prediction[J]. arXiv preprintarXiv:1511.06410, 2015.

[6] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go
without human knowledge[J]. nature, 2017, 550(7676): 354-359.

[7] Silver D, Hubert T, Schrittwieser J, et al. Mastering chess and shogi by
self-play with a general reinforcement learning algorithm[J]. arXiv
preprint arXiv:1712.01815, 2017.

[8] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go
with deep neural networks and tree search[J]. nature, 2016, 529(7587):
484-489.

[9] Zobrist A L. A new hashing method with application for game
playing[J]. ICGA Journal, 1990, 13(2): 69-73.

[10] Zeiler M D. Adadelta: an adaptive learning rate method[J]. arXiv
preprint arXiv:1212.5701, 2012.

[11] Pumperla M, Ferguson K. Deep learning and the game of Go[M].
Manning Publications Company, 2019..

[12] Littman M L. Markov games as a framework for multi-agent
reinforcement learning[M]//Machine learning proceedings 1994.
Morgan Kaufmann, 1994: 157-163.

[13] Williams R J. Simple statistical gradient-following algorithms for
connectionist reinforcement learning[J]. Machine learning, 1992, 8(3):
229-256.

[14] Clark C, Storkey A. Training deep convolutional neuralnetworks to
play go[C]//International conference on ma- chine learning. PMLR,
2015: 1766-1774.

[15] Zhou Xing. Research and application of massive large, medium and
small file storage system based on MongoDB [D]. China University of
Geosciences (Beijing), 2016.

[16] Huang J, Zhang D, Miao H. The Research and Imple- mentation of
Connect6 Intelligent Chess Game System[J]. Computer Knowledge
and Technology, 2009, 5(25): 7198-7200.

[17] Gao Q, Guo C. Technology of hashing and its application research in
hybrid game tree search engine of chinese chess[J]. Science
Technology and Engineering, 2008, 8(17): 4869-4872.

[18] Deng Hangyu. The design and implementation of algorithms for board
games based on deep reinforcement learning[D]. Nanjing University,
2018.

[19] Yue Peng. The study of algorithms in computer Go[D]. Southwest
University, 2007

