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Abstract—The increasing volume of log data produced by
software-intensive systems makes it impractical to analyze them
manually. Many deep learning-based methods have been pro-
posed for log-based anomaly detection. These methods face
several challenges such as high-dimensional and noisy log data,
class imbalance, generalization, and model interpretability. Re-
cently, ChatGPT has shown promising results in various domains.
However, there is still a lack of study on the application of
ChatGPT for log-based anomaly detection. In this work, we
proposed LogGPT, a log-based anomaly detection framework
based on ChatGPT. By leveraging the ChatGPT’s language inter-
pretation capabilities, LogGPT aims to explore the transferability
of knowledge from large-scale corpora to log-based anomaly
detection. We conduct experiments to evaluate the performance of
LogGPT and compare it with three deep learning-based methods
on BGL and Spirit datasets. LogGPT shows promising results
and has good interpretability. This study provides preliminary
insights into prompt-based models, such as ChatGPT, for the
log-based anomaly detection task.

Index Terms—anomaly detection, deep learning, ChatGPT,
system log

I. INTRODUCTION

Log-based anomaly detection is an important technique to
monitor system activities and identify suspicious behaviors.
Logs contain the records of various operations, events, and
status information, which are critical for troubleshooting and
security analysis. However, manually analyzing large volumes
of logs is impractical. In recent years, many automated log-
based anomaly detection methods have been proposed, in-
cluding rule-based methods [1], machine learning (ML)-based
methods [2], and deep learning (DL)-based methods. Among
these methods, deep learning-based methods [3], [4] have
shown supreme performance. They are capable of learning
complex patterns and representations from the logs, which
allows them to effectively identify anomalies that may not be
detected by traditional rule-based or ML-based methods [5].

Deep learning-based methods leverage the power of neural
networks and advanced techniques such as recurrent neural
networks (RNNs) [3], convolutional neural networks (CNNs)
[6], and Transformer [7] to effectively capture complex pat-
terns and dependencies in system logs. Despite these advan-
tages, challenges still present, such as high-dimensional and
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noisy log data, class imbalance, generalization across datasets,
and the interpretability of models.

Recently, large language models (LLMs), such as ChatGPT
[8], have shown promising results in many domains such as
language understanding [9], dialogue [10] and machine trans-
lation [11]. Liu et al. [12] leverage ChatGPT to recommend
products for users. Cheng et al. [8] used GPT-4 to perform
end-to-end data analysis with databases from a wide range of
domains. Le et al. [13] leverage ChatGPT as a log parser to
extract the log event and parameters. Nonetheless, log-based
anomaly detection with ChatGPT has not been thoroughly
investigated. To the best of our knowledge, this is the first
study on how to use ChatGPT in log-based anomaly detection.

In this work, we propose LogGPT, a log-based anomaly
detection framework based on ChatGPT, which consists of
three components: log preprocessing, prompt construction,
and response parser. The objective of LogGPT is to utilize
ChatGPT’s ability on language understanding from large-scale
corpora in the domain of system log analysis. The log prepro-
cessing component involves filtering, parsing, and grouping
to transform raw log messages into a structured format for
further analysis. Prompt construction focuses on designing
specific prompts tailored to log anomaly detection, aiming
to instruct ChatGPT’s generation process toward accurate
anomaly identification. The response parser is responsible
for extracting the output returned by ChatGPT, allowing for
further analysis and evaluation of the detected anomalies.

LogGPT utilizes its language generation capabilities for log
anomaly detection. We investigate the possibility to transfer
the knowledge and patterns learned by ChatGPT from diverse
textual sources to the specialized domain of system log anal-
ysis, enabling the effective detection of abnormal events. By
conducting comprehensive experiments and analyses, we aim
to gain a deeper understanding of the potential and limitations
of ChatGPT for log-based anomaly detection. Particularly, we
focus on answering the following research questions: 1) What
is the current capability of ChatGPT for log-based anomaly
detection? and 2) How explainable are the anomalies detected
by the model?

To answer the above questions, we conduct a systematic
evaluation of LogGPT and compare it to three deep learning-
based methods (including DeepLog [3], LogAnomaly [4],
LogRobust [14]) on two datasets (BGL and Spirit [15]),
under controlled experimental settings. We first investigate the
impact of different variables (including prompt construction
and window size) on LogGPT performance. Then, we compare
the performance of LogGPT to three baseline methods. Finally,
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Fig. 1. Log-based anomaly detection workflow.

we explore the interpretability of LogGPT. Through extensive
experiments, we obtained the following major findings about
the LogGPT for log-based anomaly detection:

• The prompt construction (both task description and hu-
man knowledge injection) has a significant impact on
LogGPT. A more specific task description and injecting
normal log information are often beneficial.

• The window size affects the performance of LogGPT.
Increasing the window size usually results in better per-
formance.

• Compared to three deep learning-based methods, Log-
GPT shows promising performance (zero-shot and few-
shot) on both the BGL and Spirit datasets.

• LogGPT demonstrates excellent interpretability in detect-
ing anomalies, providing users with specific information
to aid in understanding the causes of anomalies and
offering potential preventive suggestions.

In summary, the major contributions of this work are as
follows:

• This study represents the first attempt to employ ChatGPT
for log-based anomaly detection and provides a quantita-
tive evaluation of its effectiveness.

• We designed LogGPT, a common framework specifically
designed for log-based anomaly detection. The LogGPT
framework combines three components to identify and
analyze anomalies within log data.

• We conducted extensive experiments on both BGL
and Spirit datasets and demonstrated that LogGPT has
promising performance and good interpretability.

II. PRELIMINARY

The common workflow of log-based anomaly detection
is shown in Figure 1, which includes three steps: 1) log
preprocessing, 2) log representation, 3) anomaly detection
through DL models.

1) Log preprocessing: Log messages are semi-structured
texts, which consist of a constant part (log event) and a variable
part (parameters). Generally, we require to filter, parse, and
group raw logs to train an anomaly detection model. First,
some noise is removed by log filtering. Then, log events
and parameters are automatically extracted using log parsing
methods. For example, many log parsing methods have been
proposed, such as Drain [16], Spell [17], and Paddy [18].
Finally, logs will be separated into various groups, where each
group contains several log records. These groups are called log
sequences, which will extract various patterns as the input of
anomaly detection models.

2) Log representation: Log sequences necessitate transfor-
mation into feature vectors for utilization as input of DL
models. There are three primary types of log patterns: Se-
quential pattern, which represents the contextual information
of log sequences. Quantitative pattern, which statistic each
log event occurs distribution within log sequences. Semantic
pattern, which represents the semantic meaning of each log
event using a language model, aims to extract the associated
semantic information of log sequences. In order to represent
the aforementioned log patterns in the form of a feature
vector, commonly employed encoding methods include one-
hot encoding, word2vec, and BERT [15].

3) Anomaly detection: The main purpose of this step is to
train a deep anomaly detection model with input as feature
vectors of log sequences. A variety of DL techniques have
been applied to log-based anomaly detection, such as CNN,
RNN, and Transformer [15]. These models can be grouped
into three types based on training strategy: supervised, semi-
supervised, and unsupervised. Supervised models consider
log-based anomaly detection as a binary classification task,
which utilizes both normal and abnormal logs in the training
stage. Semi-supervised models capture normal patterns from
the normal log sequences to detect anomalies. Unsupervised
models do not require any labeled logs and typically combine
with cluster and generative methods.

III. LOG-BASED ANOMALY DETECTION WITH CHATGPT

We design a framework, namely LogGPT, for log-based
anomaly detection using ChatGPT. As shown in Figure 2,
the framework consists of three main components: Log pre-
processing, where the raw log messages are parsed into
a structured format; Prompt construction, where different
anomaly detection prompts are constructed for log sequences;
and Response parser, where prompts and sequences will form
a request to be sent to ChatGPT. The response information will
be parsed into parts for evaluation, and the final result will be
presented to the users.

A. Log Preprocessing

This step is to extract the structured information from raw
logs. We employed the state-of-the-art log parsing method
(Drain) to extract structured data, including ID, Timestamp,
Content, and EventTemplate. After that, the raw logs and
parsed logs are grouped into different chunks using a fixed-size
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Event dhcpd: DHCPDISCOVER from <*> via <*> 
network <*> no free leases

dhcpd: DHCPDISCOVER from 00:11:85:c1:ef:0f 
via eth0: network 172.30.0/16: no free leases
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sadmin1/sadmin1 dhcpd: DHCPDISCOVER from 
00:11:85:c1:ef:0f via eth0: network 172.30.0/16: no free leases

Log parsing

Fig. 3. An example of log parsing.

time window, which generates three types of sequences: raw
sequence, content sequence, and event sequence. An example
of this step is shown in Figure 3.

The raw sequence consists of the raw log messages, captur-
ing the unaltered information directly from the log messages.
The content sequence focuses on the log text. It excludes
certain content that is irrelevant to the analysis, such as ID and
Timestamp. The event sequence is the high-level abstraction
of the content sequence where dropped the variable part
in the log text. Compared to the three types of sequence,
the raw sequence provides fine-grained information, enabling
detailed investigation and troubleshooting. The content se-
quence emphasizes the textual content, facilitating text-based
analysis and anomaly detection. The event sequence provides
coarse-grained information, highlighting sequential patterns to
support pattern-based anomaly detection.

B. Prompt Construction

In this step, we describe the prompt construction strategy for
the log-based anomaly detection task. As shown in Figure 4,
we designed a prompt template, which includes the following
parts: task description, format statement, human knowledge

injection, input sequence. Then, we fill in the content of each
part by domain experience and improve the prompt using
ChatGPT. In addition, we follow the general tips that include
more specific, starting simple and iterating on improvements,
for designing task-specific prompts. Finally, we selected two
prompts with the best test performance to conduct our exper-
iments.

1) Task description. Log-based anomaly detection is a
crucial task for maintaining system operations. While DL-
based methods have made some progress in this field, their
interpretability remains a challenging issue [5]. Therefore,
the task description should not only instruct ChatGPT to
determine whether an anomaly has occurred but also prompt
it to provide explanations for the occurrence of anomalies.
Furthermore, it should guide ChatGPT to suggest possible
preventive measures. To achieve these objectives, we introduce
two types of instruction in this part, namely indirect instruction
and direct instruction. For indirect instruction, we use a phrase,
such as ”Output your thought process”, to prompt ChatGPT
to explain the anomalous events. For direct instruction, we
explicitly instruct ChatGPT to generate anomaly reports and
preventive measures. This way, we aim to provide users with
more fine-grained system reports and help users achieve a
deeper understanding of the operation status of the system.

2) Format statement. To ensure response diversity, ChatGPT
incorporates some randomness during the generation process.
Additionally, when users sent requests to ChatGPT, they can
specify a temperature parameter to control the diversity of the
response. Higher temperature values make ChatGPT prefer to
select words and phrases more randomly, resulting in more
diverse and creative text generation [12]. However, higher
temperature values may also cause the model to choose less
common or less reasonable vocabulary, leading to unexpected
responses. While such responses can be more creative, they
also lead to inaccurate or unreasonable outcomes, making it
challenging to evaluate the performance of anomaly detection.
To address this concern, we introduce two methods to handle
this challenge. First, we explicitly indicate the expected re-
sponse format in the prompt. For example, we indicate the
response must be in json format and specify the keys that
should be included, which ensures that most of the responses
meet the expected format (Output format: Please note that
return back in following json format, include keys: is anomaly,
reports, preventive measures). However, there may still be
some responses that do not meet the expectations. We intro-
duce the Response Parser component (see Section III-C) to
address this issue.

3) Human Knowledge Injection. DL-based methods have
demonstrated that the performance is often unsatisfactory
without any domain prior knowledge (unsupervised methods)
[5]. Therefore, it should be beneficial to introduce some
prior knowledge in the prompt. We have introduced this part
(optional, gray) to the prompt template to allow users to inject
specific domain prior knowledge into the prompt, which aims
to improve the performance of ChatGPT on log anomaly
detection tasks. Generally, we refer to this kind of prompt



Your task is to determine whether a given set of logs contains an anomaly or not and provide a binary classification: 0
for normal and 1 for the anomaly. If an anomaly, you should generate reports and suggest relevant preventive measures.
Note that do not a lot of text.\n Output format: Return back in json format, including keys: is_anomaly, reports,
preventive_measures.\n Here are some normal (abnormal) logs:\n {placeholder} \n Input log data (a python list):
{placeholder}\n Output: \n

<Task description> \n <Format statement> \n <Human knowledge injection>\n <Log sequence> \n Output: \nPrompt 
template 

Prompt-1

Prompt-2

Your task is to determine if a given set of log messages contains an anomaly or not (Sorted by timestamp).\n Here are
some examples of one log: {placeholder} \n Based on above examples, please determine the following logs contains an
anomaly or not. Be careful to consider the contextual information of the log sequence.\n Use the following format:\n
Logs: Given a set of log meassages here. (a python list)\n Answer:\n yes or no (Output your thought process) \n Log:
{placeholder}\n Answer: \n

Fig. 4. Example prompts of log-based anomaly detection. For the zero-shot setting, the human-knowledge injection part is dropped.

as a few-shot setting, otherwise, it is a zero-shot setting. For
example, we can use some labeled logs to fill this part, so that
ChatGPT can preview some domain knowledge.

4) Input sequence. There are three types of input sequences
mentioned above. To this end, we provide a variable part
(blue) that supports different input sequences. When sending a
request to ChatGPT, we form the log sequence into a Python
list and concatenate other parts as a final prompt.

C. Response Parser

The responses of ChatGPT have diversity. In addition, it
should be noted that the output token of ChatGPT has a
maximum length limit for each request. Once the limit is
exceeded, the response will be terminated and the current
output will be returned. To ensure the parsability of the
response, we designed this component to parse the text of
the response into several pre-defined parts. For example, three
parts are defined in this study including is anomaly, reports,
and preventive measures. For each response, we format and
check the response text. If the pre-defined format is satisfied,
the text is parsed directly. Otherwise, we use ChatGPT to
reformat the text so that it satisfies the requirements.

IV. EVALUATION

In this section, we evaluate LogGPT by answering the
following research questions:

• RQ1: How does LogGPT perform with different
prompts?

• RQ2: How does LogGPT perform on different window
sizes?

• RQ3: How does human knowledge injection affect the
performance of LogGPT?

• RQ4: How does LogGPT perform compared to deep
learning-based methods?

• RQ5: How explainable are the anomalies detected by
LogGPT?

A. Datasets

Our performance evaluation process is based on two com-
monly used log datasets [15], and the details of each dataset
are as follows:

• Blue Gene/L (BGL) dataset contains 4,747,963 log
messages from a Blue Gene/L supercomputer system
at Lawrence Livermore National Laboratory, California.
It has 131,072 processors and 32,768GB of memory.
The dataset includes alert and non-alert messages, with
348,460 (7.34%) labeled as anomalous.

• Spirit dataset is collected from a Linux production cluster
at Sandia National Labs, comprising 512 nodes over a 23-
day period. It contains 272,298,969 log messages, with
172,816,564 (63.47%) labeled as system anomalies.

We split the training and testing set with 8:2. Due to the
imposed limitations on ChatGPT’s API request frequency, we
adopted a random sampling strategy to select a subset consist
2000 consecutive logs from the testing set. Moreover, we
have checked manually to ensure a proportion of abnormal
logs within the subset. This approach aimed to sample a
representative subset of logs for evaluation.

B. Baseline methods and Metrics

• Deeplog [3] is a semi-supervised method that uses se-
quential vectors as input patterns to learn normal system
executions by predicting the next log event based on
preceding events.

• LogAnomaly [4] is a semi-supervised method that uses
sequential vector and quantitative vector as input, as well
as applies an LSTM-based model to detect sequential and
quantitative anomalies in log sequence.

• LogRobust [14] is a supervised log-based anomaly
detection method that extracts semantic information of
log events and represents them as semantic vectors. It
then uses an attention-based Bi-LSTM model to detect
anomalies, which can capture contextual information in
log sequences and have better robust for log unstable.



Evaluation Metrics. Like previous works [15], [19], we
use common evaluation metrics for anomaly detection tasks,
including F1 score, Precision, and Recall. In addition, Speci-
ficity is also used in order to evaluate more comprehensively.

C. Implemention details

To extract the contents and events from the log data, we use
the log parser Drain with the default parameter settings [5].
Note that the special character (⟨∗⟩) in log events is dropped
when grouped into event sequences. For the ChatGPT, we
apply gpt-3.5-turbo1 to conduct zero-shot and few-shot experi-
ments with two prompts (Figure 4). We set the temperature is 0
and only the top-1 choice is returned. Moreover, the maximum
number of output tokens is limited to 100 for a faster response.
In the few-shot setting, we put the 5 historical logs and
labels to enable ChatGPT to learn some prior knowledge.
For the response parser, we designed a prompt to reformat
the response in json format if the pre-defined format is not
satisfied: ”Please format the following text in json format,
which include the keys: ... ”. The implementation of three
baseline methods is referred to the public code on GitHub2.

D. Results and Analysis

1) RQ1: Performance with different prompts:
Experiment Settings. We investigated the performance of

LogGPT with different prompts. Specifically, we used both
prompt-1 (P1) and prompt-2 (P2) as shown in Figure 4,
and evaluated the performance of the three types of input
sequences in both zero-shot (ZS) and few-shot (FS) settings,
with a fixed window size of 50. The experimental results are
presented in Figure 5.

We can see that for the raw sequence, P1 has a higher
F1 score than P2. In particular, it can be seen that human
knowledge injection is not always beneficial, since the ZS-P1
with the raw sequence is the highest in terms of F1 score on
both datasets. P2 has more advantages than P1 for content
sequence and event sequence. For example, FS-P2 has an F1
score of 0.694 on Spirit, which is much higher than other types
of inputs. Comparing the three different sequence types, the
content sequence performs better than the other two sequence
types. We believe this is because the content removes irrelevant
information (such as timestamps), which allows ChatGPT to
understand its semantic information more precisely.

Summary. The prompts have a significant impact on the
log-based anomaly detection task. In contrast to expectations,
the incorporation of human knowledge does not always result
in improved detection performance. It is essential to explore
various prompts that align with the specific context in order
to attain satisfactory detection performance.

2) RQ2: Performance on different window sizes:
Experiment Settings. We evaluated the performance of

LogGPT with the window size increasing from 10 to 50. P2
is the default prompt. The experimental results are presented
in Figure 6 and more results are presented in Appendix VIII

1https://platform.openai.com/docs/models/overview
2https://github.com/LogIntelligence/LogADEmpirical

TABLE I
PERFORMANCE WITH DIFFERENT INJECTION TYPES ON THE SPIRIT

DATASET

Window
Size

Injection
Type F1 P R S

10

Abnormal

0.026 0.100 0.015 0.932
20 0.000 0.000 0.000 0.000
30 0.490 0.545 0.444 0.750
40 0.000 0.000 0.000 0.000
50 0.485 0.500 0.471 0.652
10

Normal

0.601 0.432 0.985 0.333
20 0.629 0.459 1.000 0.246
30 0.740 0.587 1.000 0.525
40 0.714 0.556 1.000 0.467
50 0.694 0.531 1.000 0.348

We can observe a positive correlation between the F1 score
and window size in the majority of cases, indicating that
larger window sizes generally result in higher F1 scores. This
suggests that incorporating more contextual information is
often beneficial. Furthermore, the three types of sequences
can be ranked in terms of performance from best to worst as
follows: content sequence, event sequence, and raw sequence.
This ranking aligns with our expectations, as the raw sequence
contains a significant amount of irrelevant information, while
the event sequence lacks parameter information. Finally, the
results also demonstrate the advantages of the few-shot setting
in most cases.

Summary. The window size affects the performance of
LogGPT where increasing the window size usually results
in higher accuracy in anomaly detection. In general, better
performance could be achieved through the content sequence
and human knowledge injection.

3) RQ3: The impact of human knowledge injection:
Experiment Settings. We studied the effects of different hu-

man knowledge injections. Two types of knowledge injection
(abnormal and normal) are employed, we randomly sample 5
normal logs and 5 abnormal logs from the Spirit dataset. The
experimental results are presented in Table I.

We can observe that the performance of LogGPT varies a
lot with different types of knowledge injection. For example,
abnormal knowledge injection results in an F1 score range of
[0.000, 0.490] with the window size increasing from 10 to 50.
When experimenting with the normal knowledge injection, it
achieves a promising performance with the F1 scores ranging
from 0.601 to 0.740. Because the abnormal type is diverse, a
few abnormal samples cannot cover most types. The results
also show that the recall remains high across all window
sizes, while precision and specificity are low. This suggests
that LogGPT frequently misses identical normal sequences as
abnormal, resulting in a high false positive rate.

Summary. Different human knowledge injections have a
significant impact on the performance of log-based anomaly
detection. LogGPT adopts a conservative approach by identi-
fying only highly certain logs as normal and identifying the
remaining logs as abnormal. This bias can be attributed to the
presence of many low-level alert events in the logs, which are
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Fig. 6. Performance of LogGPT w.r.t different window size.

TABLE II
PERFORMANCE COMPARISON ON BGL AND SPIRIT (PROMPT-2 WITH CONTENT SEQUENCE)

Window
Size Metrics BGL Spirit

DeepLog LogAnomaly LogRobust LogGPT
(zero-shot)

LogGPT
(few-shot) DeepLog LogAnomaly LogRobust LogGPT

(zero-shot)
LogGPT

(few-shot)

10

F 0.168 0.201 0.944 0.437 0.444 0.521 0.679 0.667 0.507 0.601
P 0.920 0.112 0.975 0.280 0.286 0.352 0.602 1.000 0.340 0.432
R 0.992 0.985 0.914 1.000 1.000 1.000 0.779 0.500 1.000 0.985
S 0.370 0.501 0.999 0.356 0.375 0.053 0.735 1.000 0.000 0.333

20

F 0.219 0.228 0.601 0.523 0.523 0.627 0.614 0.700 0.561 0.629
P 0.123 0.129 0.442 0.354 0.354 0.591 0.500 1.000 0.390 0.459
R 0.977 0.975 0.938 1.000 1.000 0.667 0.795 0.538 1.000 1.000
S 0.513 0.552 0.919 0.292 0.292 0.705 0.492 1.000 0.000 0.246

30

F 0.129 0.146 0.891 0.557 0.571 0.581 0.632 0.744 0.574 0.740
P 0.688 0.788 0.893 0.386 0.400 0.409 0.600 1.000 0.403 0.587
R 1.000 0.972 0.888 1.000 1.000 1.000 0.667 0.593 1.000 1.000
S 0.082 0.180 0.992 0.222 0.267 0.025 0.700 1.000 0.000 0.525

40

F 0.147 0.239 0.374 0.615 0.625 0.597 0.711 0.667 0.571 0.714
P 0.793 0.137 0.236 0.444 0.455 0.426 0.640 1.000 0.400 0.556
R 0.972 0.960 0.900 1.000 1.000 1.000 0.800 0.500 1.000 1.000
S 0.137 0.541 0.780 0.167 0.200 0.100 0.700 1.000 0.000 0.467

50

F 0.224 0.243 0.304 0.618 0.618 0.607 0.571 0.455 0.596 0.694
P 0.126 0.139 0.183 0.447 0.447 0.436 0.410 1.000 0.425 0.531
R 0.994 0.942 0.911 1.000 1.000 1.000 0.941 0.294 1.000 1.000
S 0.418 0.537 0.676 0.087 0.087 0.043 0.000 1.000 0.000 0.348

often disregarded by administrators despite being semantically
categorized as abnormal.

4) RQ4: Performance comparison to three baseline meth-
ods:

Experiment Settings. We evaluated the performance of
LogGPT with both zero-shot setting and few-shot setting and
used prompt-2 as the default prompt. The experimental results
are shown in Table II.

Compared to the three deep learning-based methods, Log-
GPT with few-shot setting achieved superior performance on
both datasets in terms of the F1 score, precision, and recall.
And LogGPT with the zero-shot setting achieved a competitive

F1 score on both datasets. An interesting observation is that
LogGPT achieved the same F1 score between zero-shot and
few-shot settings on BGL when the window size is 20 and
50, suggesting that adding some prior knowledge is not
always beneficial. Furthermore, LogGPT achieves the highest
recall, but the specificity is underperforming, especially on
Spirit where the zero-shot setting is 0. This demonstrated that
LogGPT is more reserved, resulting in the identification of
many normal logs as anomalies.

Summary. LogGPT shows promising performance on both
the BGL and Spirit datasets. Its ability to identify log se-
quences as normal or anomalous suggests its potential as an



TABLE III
INTERPRETABILITY OF DETECTED ANOMALIES ON BGL AND SPIRIT

Dataset Key Response

BGL

Anomaly
log sequence

. . .
RAS KERNEL FATAL data TLB error interrupt

. . .
Reports data TLB error interrupt

Preventive
measures

Check the memory and CPU usage
Check the system logs

Anomaly
log sequence

. . .
RAS KERNEL INFO MACHINE CHECK DCR read timeout

. . .
Reports RAS KERNEL FATAL Lustre mount FAILED : bglio78 : block id : location

Preventive
measures

Check the Lustre mount FAILED

Spirit

Anomaly
log sequence

. . .
pbs mom: Connection refused (111) in open demux,

open demux: connect 172.30.71.32:44020
. . .

Reports Anomaly detected: Multiple sshd sessions opened for user root
Preventive
measures

Limit the number of sshd sessions opened for user root

Anomaly
log sequence

. . .
pbs mom: Connection refused (111) in open demux,

open demux: connect 172.30.71.32:43908
. . .

Reports Inappropriate ioctl for device (25) in search env and open, failed connect to mpiexec process on MS
Preventive
measures

Check the mpiexec process on MS

effective tool for log anomaly detection in various domains.
5) RQ5: Interpretability of anomalies by LogGPT:
Providing more explanations for the anomalies detected by

the models has been difficult since DL-based methods are con-
sidered a black box whose decision-making process is not ex-
plainable, which poses challenges for administrators in timely
identifying and preventing anomalies. In this experiment, we
investigate the potential of LogGPT for interpretability with
respect to anomaly localization and prevention.

Experiment Settings. As LogGPT(few-shot) achieved the
highest recall on BGL and Spirit datasets, we randomly
selected two anomalous raw sequences on both datasets,
respectively, to verify the effectiveness of anomaly localization
and anomaly prevention.

The results are presented in Tabel III. We can see that
the response of LogGPT can not only report the cause of
the anomaly but also give suggestions for prevention. For
example, an anomaly occurred which is connection refused
during the running of a Linux cluster. LogGPT reports the
reason to be the root user opening too many sshd sessions.
Furthermore, LogGPT suggests to enforce the limitations on
the number of sshd sessions the root user can open. However,
LogGPT’s suggestions may not always be effective and they
occasionally lead to confusion. For example, in the case
of the first example on the BGL dataset, LogGPT suggests
that users should first check the CPU and memory usage.

If the anomaly persists, LogGPT suggests the administrators
to manually analyze historical logs. We can see from these
results that while LogGPT is a powerful log-based anomaly
detector, its suggestions are generated based on patterns and
information extracted from the input sequences. Therefore,
there are instances where its suggestions may not be useful
or may require additional manual analysis by administrators.

Summary. LogGPT can help administrators find abnormal
locations and provide preventive suggestions which improve
the efficiency of troubleshooting. However, there are some
ineffective outputs in our experiments due to the hallucination
problem of ChatGPT. Since this work is not concerned with
solving this problem, we only report the existence of ineffec-
tive output. We think more specific prompts may be able to
reduce such output.

V. RELATED WORKS

In this section, we briefly review the related work of log-
based anomaly detection and large language models (LLMs).

Log-based anomaly detection is an important technique
for monitoring system activities and identifying suspicious
behaviors. Many works have been proposed in recent years
[3], [4], [14], these works can be grouped into three types
according to the training strategy.

1) Supervised methods assume that have a large number of
labeled data to train binary classification models [14], which
commonly achieved the optimal performance. Zhou et.al [20]



proposed LogSyaer, which is a log pattern-driven anomaly
detection model that addresses these challenges. LogSayer
utilizes statistical features, LSTM neural networks, and a BP
neural network for adaptive anomaly decisions. Du et al. [21]
proposed LogAttention which embeds log patterns into seman-
tic vectors and uses a self-attention-based neural network to
detect anomalies. The input to these methods typically is a log
event sequence. However, the parameters within the logs also
contain valuable information for identifying anomalies. Huang
et al. [7] proposed HitAnomaly, which utilizes a hierarchical
transformer model to capture both log event sequences and
parameters, to improve the detection accuracy.

2) Semi-supervised methods assume that training takes
place only on normal data that is free of anomalies. Its primary
idea is to make the models capture the normal sequence
patterns, while the abnormal sequence patterns are quite
distinct. Some works focus on reconstruction-based methods
that utilize generative models, such as AutoEncoders (AEs)
[22] and Generative Adversarial Networks (GANs) [23], to
encode the input log sequences and then attempt to reconstruct
the input using a decoder. Any input data that is fed into
an already trained model and yields a high reconstruction
error is then considered anomalous. Another technical route is
using sequential models, such as Recursive Neural Networks
(RNNs) [3] and Transformer [24], to learn normal sequential
patterns and predict the next possible log event. If a new log
sequence does not match the predicted then it is identified as
anomalous. Moreover, we note that many works [22] claim
that it is unsupervised, but it is actually trained using only
normal logs.

3) Unsupervised methods [25], [26] assume that no labels
are available for training models. Han et al. [27] proposed a
domain adaptation framework called LogTAD, which makes
log data from different systems have similar distributions,
enabling the detection model to identify anomalies across
multiple systems. Nedelkoski et al. [28] focus on learning
log representations that capture semantic differences between
normal and anomaly logs, improving generalization on unseen
logs. It leverages auxiliary log datasets available on the internet
to enhance the representation of normal data while providing
diversity to prevent overfitting. However, due to the lack
of prior knowledge, the detection accuracy is lower than
supervised and semi-supervised methods in most scenarios.

Large language models (LLMs) have revolutionized the
field of natural language processing (NLP) and have gained
significant attention in recent years. OpenAI introduced GPT-
1 [29], which demonstrated promising results by pre-training
on a large corpus of internet text data and fine-tuning it for
specific tasks. After that, most LLMs have been proposed, such
as BERT [24], T5 [30], and GPT-3 [31], etc. A key milestone
in LLM development is InstructGPT [32], which introduces a
framework for instruction fine-tuning of pre-trained language
models using Reinforcement Learning from Human Feedback
(RLHF). This framework enables LLMs to adapt to a wide
range of NLP tasks, enhancing their versatility and flexibility
by incorporating human feedback. Unlike LLMs trained alone

on text corpora through unsupervised pre-training, RLHF
allows models to align with human preferences and values, sig-
nificantly improving their performance. OpenAI has leveraged
similar techniques to develop ChatGPT, a conversation-based
language model that brings AI to the forefront, transitioning it
from being behind the scenes. Subsequently, OpenAI released
a version based on GPT-4 [33]. Concurrently, other peers have
also released similar language models. For example, Meta AI’s
LLaMA [34] and Google’s PaLM [35], etc.

In terms of applications, LLMs have shown impressive per-
formance in various domains. For example, Microsoft released
the Copilot plugin [36], a dedicated model for code gener-
ation, which greatly improves the efficiency of developers.
Additionally, such models as Stable Diffusion, Midjourney,
and DALL-E [37] have also demonstrated excellent results
in artificial intelligence generative content (AIGC). We can
envision that LLMs will play a crucial role in numerous
decision-making scenarios, paving the way for advancements
in various domains.

VI. LIMITATIONS

Based on our observations, we highlight several limitations
of LogGPT:

• Sensitivity to prompt variation: Designing the opti-
mal prompt is not always straightforward, even though
prompts play a critical role in LogGPT’s performance.

• Limited window size: Balancing the need for a larger
window size with computational constraints remains a
challenge.

• High false positive rate: LogGPT suffers from a high
false positive rate, leading to a significant number of
incorrect anomaly identifications.

• Trustworthiness: The presence of ineffective outputs due
to the hallucination problem of ChatGPT.

Addressing these limitations will improve the applicability
and effectiveness of LogGPT, and benefit the application of
LogGPT in real-world scenarios.

VII. CONCLUSION AND FUTURE WORK

In this study, we proposed LogGPT, a framework for log-
based anomaly detection based on ChatGPT. Experiments
demonstrated that LogGPT has a promising ability for this
important task and better anomalous interpretability, except
that many normal sequences are identified anomalies and it
causes many false alarms. Moreover, we investigated different
prompts construction, window sizes, and the types of input
sequence impact on performance. We believe that the results
and findings of our study can provide valuable insights into
the strengths and limitations of ChatGPT in log-based anomaly
detection. As our future work, we will investigate the follow-
ing:

• Experiment with more public log datasets and test more
prompts to improve performance.

• Try using more large language models such as GPT-4 or
LLaMA.



• Further exploration of ChatGPT’s potential for anomalous
interpretability.
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VIII. APPENDIX

More experimental results on both BGL and Spirit datasets
are shown in Figure 7 and Figure 8. The window size is in-
creased from 10 to 50 and all three types of input sequences are
evaluated. The gpt-3.5-turbo model is used in our experiments.
Our source code and detailed experimental data will be made
available with the publication of this work.
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Fig. 7. BGL. First row: Prompt-1 (zero-shot); Second row: Prompt-2 (zero-shot); Third row: Prompt-1 (few-shot); Last row: Prompt-2 (few-shot).
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Fig. 8. Spirit. First row: Prompt-1 (zero-shot); Second row: Prompt-2 (zero-shot); Third row: Prompt-1 (few-shot); Last row: Prompt-2 (few-shot).
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