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Abstract—Time series anomaly detection strives to uncover
potential abnormal behaviors and patterns from temporal data,
and has fundamental significance in diverse application scenar-
ios. Constructing an effective detection model usually requires
adequate training data stored in a centralized manner, however,
this requirement sometimes could not be satisfied in realistic
scenarios. As a prevailing approach to address the above prob-
lem, federated learning has demonstrated its power to cooperate
with the distributed data available while protecting the privacy of
data providers. However, it is still unclear that how existing time
series anomaly detection algorithms perform with decentralized
data storage and privacy protection through federated learning.
To study this, we conduct a federated time series anomaly
detection benchmark, named FedTADBench, which involves five
representative time series anomaly detection algorithms and four
popular federated learning methods. We would like to answer
the following questions: (1)How is the performance of time series
anomaly detection algorithms when meeting federated learning?
(2) Which federated learning method is the most appropriate
one for time series anomaly detection? (3) How do federated
time series anomaly detection approaches perform on different
partitions of data in clients? Numbers of results as well as corre-
sponding analysis are provided from extensive experiments with
various settings. The source code of our benchmark is publicly
available at https://github.com/fanxingliu2020/FedTADBench.

Index Terms—time series anomaly detection, federated learn-
ing, performance evaluation, data partition

I. INTRODUCTION

Time series anomaly detection is a vital and fundamental
task in data mining, and has been broadly employed in a
variety of application scenarios, such as intelligent manufac-
turing [1], critical infrastructure monitoring [2], [3], seismic
analysis [4], [5], financial fraud detection [6] and health care
[7]. During the last decades, numerous anomaly detection
models have been proposed for handling temporal data. Most
of these models need to train with temporal data stored in a
centralized manner. However, this condition sometimes may
not be satisfied in practice due to the huge communication
cost of uploading distributed data to a central server and
private protection of sensitive information among individual
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data resource. Thus, conducting time series anomaly detection
with decentralized data storage and private protection is a
significant and imperative problem.

Federated learning [8] is a learning paradigm that can
conduct model training without direct access to raw data,
but sharing model parameters/gradient by training clients’
data locally while protecting the privacy of clients. As a
prevailing approach to address the aforementioned problem,
federated learning has been widely used in various fields, such
as IoT [9] and medical information [10], to aggregate siloed
data. Some recent works have explored time series anomaly
detection under the framework of federated learning(as shown
in Fig. 1), such as [11], [12] and [13], where the feasibility
of using the federated learning framework for time series
anomaly detection is preliminary demonstrated. However, ex-
isting efforts mainly consider solving the specific challenges
of their concerned tasks. There still lack of unbiased and in-
depth evaluations of time series anomaly detection with fed-
erated learning, which could provide guideline information to
construct effective models for both researchers and engineers.

To fill this blank, we construct a federated time series
anomaly detection benchmark, named FedTADBench, which
designs numerous evaluations for the performance of time
series anomaly detection with federated learning. Specifically,
we conduct experiments with three major aspects in the
benchmark: (1) the feasibility of federated learning for typical
time series anomaly detection algorithms, i.e., performance
comparisons of time series anomaly detection algorithms
with/without federated learning, and time series anomaly
detection performance under isolated and federated settings;
(2) the compatibility between popular federated learning
methods and typical time series anomaly detection algorithms,
i.e., performance comparisons of different federated learning
methods for time series anomaly detection, and training
time consumption of typical time series anomaly detection
algorithms with different federated learning strategies; (3) the
influence of the heterogeneity between clients to federated
time series anomaly detection, i.e., performance comparisons
of federated time series anomaly detection approaches with
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Fig. 1. Overview of time series anomaly detection under the framework of federated learning. Each client maintains its local model and trains it with its
private dataset for several local epochs. Then, the local models will be sent to a centralized(global) server for calculating the updates of the global(aggregated)
model. This process will be repeated for several “global epochs” until convergence.

different partitions of data in clients. Detailed analysis is made
based on the extensive experiment results.

The contributions of this paper are as follows:
1) We construct FedTADBench, the first federated time

series anomaly detection benchmark as far as we know,
which evaluates time series anomaly detection algo-
rithms with various federated learning settings.

2) Based on evaluations from three major angles, we show
valuable insights for time series anomaly detection
under the framework of federated learning, which could
offer guiding information for building effective models
of interest.

3) We provide reproducible evaluations whose codes
are fully open-source. The website is https://
github.com/fanxingliu2020/FedTADBench.

The rest of the paper is organized as follows. Section II
introduces the related works on time series anomaly detection
and federated learning, as well as the existing benchmarks.
The problem statement and details of our benchmark are
presented in Section III. Various experiment results and
corresponding analysis are conducted in Section IV. Section
V summaries the paper.

II. RELATED WORKS

A. Time Series Anomaly Detection

The essential challenge to time series anomaly detection
is formulating the pattern of temporal data characteristically,
especially under certain limitations such as dearth of high-
quality labeled data, heterogeneous structure of data, etc.
As a result, most of existing anomaly detection models are
unsupervised ones. SISVAE [14] constructs a recurrent neural
network based variational auto-encoder to model normal data,
which outperforms in capturing latent temporal structures of

time series. For lessening the impact of fitting rare anomalous
samples, T. Kiew et al. [15] construct an ensemble of a series
of recurrent auto-encoders with various skip connections.
OmniAnomaly proposed by Y. Su et al. [16] performs time
series modeling by combining a stochastic recurrent neural
network and a planar normalizing flow, and uses the re-
construction probabilities to determine anomalies. This work
transcends most of prior methods at the cost of high training
time. More recently, aiming to address the large expense of
energy consumption, J. Audibert et al. [17] propose USAD,
which is capable of distinguishing anomalies from normal
data rapidly with an unsupervised method by combining
adversarial thought with auto-encoder.

Recently, with the increasing popularity of transformers and
graph neural networks, some scholars have explored the use
of them for time series anomaly detection [18], [19]. Graph
neural networks are used to extract correlations between
dimensions in multivariate time series, while Transformers
are exploited for modeling latent representations in sequences.
GDN introduced by A. Deng et al. [20] combines graph neural
networks by attention mechanism, and provides rationales
that the detected points are determined as abnormal. TranAD
proposed by S. Tuli et al. [21] is an unsupervised time series
anomaly detection model, which is able to compute in parallel
by utilizing Transformers, and gain stable results benefiting
from adversarial training. Anomaly Transformer proposed by
J. Xu et al. [22] learns global relationships of time series with
attention mechanism, and utilizes the difference between local
relationships and global relationships to conduct anomaly
detection.

Most of the proposed approaches are under the assumption
that all data is accessible to the central server for training.
However, it is not always feasible in real-world scenarios
where the availability of data is restricted by security and



privacy concerns and there are also communication resource
constraints.

B. Federated Learning
Federated learning can be categorized into vertical feder-

ated learning and horizontal federated learning [23]. Here, we
mainly discuss horizontal federated learning as our data share
the feature space but is held by different institutions. Currently
there are four classic horizontal federated learning methods:
FedAvg [8], FedProx [24], SCAFFOLD [25], and MOON
[26]. FedAvg is the first federated learning algorithm, and the
others add regularization to FedAvg from different perspec-
tives. Since federated learning has advantages in privacy pro-
tection and data communication cost, some researchers have
conducted time series anomaly detection under the framework
of federated learning. Mothukuri et al. [27] adopt federated
learning to construct an anomaly detection system for IoT
security attacks, which trains local models on edge devices
and aggregates the information on every edge device by
federated learning. Liu et al. [28] proposed an attention based
convolutional neural network with long short-term memory
to detect edge device failure. To protect users’ privacy, they
adopted a federated learning framework to carry out the learn-
ing process. Besides, for improving communication efficiency,
they employed a top-k selection algorithm to compress the
gradient. For industrial cyber–physical systems (CPSs), it is
difficult to collect sufficient high-quality attack examples. To
aggregate data from different users in a privacy-preserving
way, Li et al [29] designed a federated learning system based
on paillier cryptosystem to train the deep learning based
intrusion detection model for industrial CPSs.

However, the previously mentioned approaches mainly
focus on improving the detection performance for specific
tasks. The feasibility and limitations of federated learning for
time series anomaly detection tasks is still unclear.

C. Existing Benchmarks
Researchers have made sustained efforts to provide unbi-

ased evaluations for existing anomaly detection algorithms,
such as [30], [31], [32], [33] and [34]. There have also been
some reports to conduct performance comparisons of time
series anomaly detection algorithms [35], [36], since temporal
data is commonly seen in various application scenarios.
However, any benchmark for federated time series anomaly
detection has not been investigated yet. This paper tries to
evaluate that how do existing time series anomaly detection
algorithms perform on various federated learning settings. To
the best of our knowledge, this is the first benchmark for
federated time series anomaly detection.

III. FEDTADBENCH: AN EMPIRICAL EVALUATION ON
FEDERATED TIME-SERIES ANOMALY DETECTION

We present the problem statement and elements of Fed-
TADBench in this section. For better understanding, we
provide an overview of our benchmark, as shown in Fig. 2,
which sheds light upon time series anomaly detection in
federated settings from 3 angles.

Fig. 2. An overview of FedTADBench that evaluates combinations of 5
time series anomaly detection and 4 federated learning methods. It sheds
light upon time series anomaly detection in federated settings from 3 angles.

A. Problem Statement

In this study, we focus on detecting anomalies at entity-
level [37] using multivariate time series. More specifically, we
consider multi-dimensional time series data which consists of
multiple observations continuously collected at equal-space
timestamp. The multivariate time series can be defined as
X = [X1,X2, · · · ,Xn], where n is the number of collected
data, and Xi =

[
xi1, x

i
2, · · · , xit

]
is an observation vector of

the ith metric within a dimensionality of t. For entity-level
multivariate time series anomaly detection, our target is to
determine whether the observation Xt =

[
x1t , x

2
t , · · · , xnt

]
at

time t is anomalous or normal.

Conventional approaches learn such a function in a Cen-
tralized manner. In this way, they usually assume the learning
algorithms have access to all the training samples. Con-
trastively, in many privacy-preserving scenarios, the data are
usually stored in an isolated manner (namely the data can
only be accessed by its owner) by different clients. And
those clients are assumed to train a learning algorithm in a
collaborative manner without data exchange. More specifi-
cally, in this case we assume that the data are owned by C
clients, i.e., X = {X(1),X(2), ...,X(C)}, and the task is to
collaboratively train a model in a condition that each client
only can access its own data. In a typical federated learning
framework, each client of federated learning trains its local
model with its own private dataset for several local epochs,
then, the clients send their local models to the server. Finally,
the server aggregates the local models into a global model,
and this ”training-aggregating” regime will be repeated for
several “global epochs” until convergence.



B. Elements of FedTADBench

We evaluate 4 commonly-used federated learning methods
and 5 time series anomaly detection algorithms on 3 popular
time series anomaly detection datasets. In addition, we also
investigate the effect of different partitions of data in clients.
Below we elaborate the details.

1) Time Series Anomaly Detection Methods:
• DeepSVDD [38]: It jointly trains a deep neural network

and learns a data-enclosing hypersphere in the latent
space for anomaly detection tasks.

• LSTM-AE [39]. It is a combination of LSTM and Auto-
encoders that modeling time series by reconstructing the
original data.

• USAD [17]. It is an adversarially-trained autoencoders.
USAD is fast to train and robust to the choice of
parameters.

• GDN [20]. It trains a graph neural network in a structural
learning manner. Attention weights are used as well to
provide certain level of explainability for the detected
anomalies.

• TranAD [21]. It is a deep transformer network and
uses attention-based sequence encoders to enable robust
multi-modal feature extraction.

2) Federated Learning Methods:
• FedAvg [8]. It averages the models learned by clients to

obtain the global model.
• FedProx [24]. It adds a proximal term to regularize

the parameters of the local model. In this case, the
parameters of the current local model are not far from
those of the previous global model.

• SCAFFOLD [25]. It uses variance reduction techniques
to remedy the “client-drift” in its local updates. SCAF-
FOLD is shown to be more communicational efficient
than FedAvg.

• MOON [26]. It regularizes the federated learning
progress in a contrastive manner. More specifically, it
pushes the models away from its previous status and
pulls the models towards the global model.

3) Datasets:
• SMD [16]. SMD (Server Machine Dataset) is a 5-week-

long dataset and is splitted into training and testing set
with equal size.

• SMAP [40]. SMAP (Soil Moisture Active Passive satel-
lite) is a public dataset from NASA.

• PSM [41]. It is a dataset proposed by eBay and consists
of 26 dimensional time series data from application
servers.

The details of datasets that we perform experiments on are
shown in Table I. NS, ND and NC refer to the quantity of time
series in each dataset, dimensions in the time series of each
dataset, and clients in federated learning settings, respectively.

4) Benchmark Angles: Our benchmark is motivated by the
following aspects. First, the compatibility between popular
federated learning and time series anomaly detection methods
is not extensively studied. Due to permutation invariance

of neural network parameters [42], client drift in federated
learning [25] and so on, federated learning may not be com-
patible with certain time series anomaly detection algorithms.
So our benchmark could provide such a testbed. Second,
the No-Free-Lunch [43] Theorem states that within certain
constraints, over the space of all possible problems, every
optimization technique will perform as well as every other one
on average. However, for federated learning based time series
anomaly detection, this has not been explored empirically.
Our benchmark can help us to verify this hypothesis as well.
Third, in practice, the amount of data held by clients may vary
significantly. This essentially brings in heterogeneity between
the clients and usually degrades the performance. To study
how the heterogeneity between clients affects the performance
of time series anomaly detection, we test the effect of different
levels of client heterogeneity on performance.

TABLE I
DATASET DETAILS AND CORRESPONDING FEDERATED LEARNING

SETTINGS. NS, ND AND NC REFER TO THE QUANTITY OF TIME SERIES
IN EACH DATASET, DIMENSIONS OF THE TIME SERIES IN EACH DATASET,

AND CLIENTS IN FEDERATED LEARNING SETTINGS, RESPECTIVELY.

Dataset NS ND NC
SMD 28 38 28

SMAP 54 25 54
PSM 1 25 24

IV. EXPERIMENTS

A. Experiment Settings

For all the datasets, we normalize the data by scaling the
value range between 0 and 1 for each dimension respectively.
It should be noticed that, for SMD and SMAP, we normalize
all the time series uniformly. Inspired by parameter settings
in [26], we set the proximal weight of FedProx to be 0.01,
and set the hyper-parameter ”temperature” and the weight of
contrastive loss in MOON [26] to be 0.5 and 1, respectively.
For the hyper-parameter settings in time series anomaly de-
tection algorithms, we use the default values as recommended
in the original papers if appropriate.

B. Evaluation Metrics

We choose AUC-ROC (Area under the ROC Curve) and
AUC-PR (Area under the Precision-Recall Curve) [44] as
evaluation metrics. AUC-ROC is a commonly-used metric
for anomaly detection. AUC-PR is the area under the curve
representing the correlation between Precision and Recall.

We also use Precision, Recall and F1-score as evaluation
metrics. They are calculated as

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)



TABLE II
DETAILED RESULTS OF FEDTADBENCH IN TERMS OF AUC-ROC AND AUC-PR. WE HIGHLIGHT THE BEST RESULT AND THE SECOND BEST RESULT IN

BLUE AND LIGHT BLUE, RESPECTIVELY.

Method DeepSVDD LSTM-AE USAD GDN TranAD
AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

SM
D

Original 0.6311 0.0818 0.6231 0.0871 0.6874 0.1182 0.6664 0.0946 0.6028 0.1120
FedAvg 0.6368 0.1291 0.5915 0.0764 0.6518 0.1197 0.6509 0.0785 0.6335 0.1311
FedProx 0.6401 0.0858 0.5921 0.0767 0.5451 0.0542 0.6383 0.0747 0.5720 0.0582
Scaffold 0.5773 0.0909 0.6185 0.0756 0.6625 0.1096 0.6302 0.0692 0.6211 0.1087
Moon 0.6679 0.1612 0.5981 0.0748 0.6433 0.0951 0.6273 0.0777 0.6337 0.1310

SM
A

P

Original 0.6032 0.1549 0.4442 0.1155 0.5520 0.1312 0.5369 0.1352 0.5754 0.1423
FedAvg 0.6333 0.1841 0.4328 0.1141 0.5786 0.1418 0.5159 0.1228 0.5392 0.1274
FedProx 0.4299 0.1094 0.4523 0.1168 0.4579 0.1088 0.5218 0.1247 0.5361 0.1272
Scaffold 0.5992 0.1529 0.4328 0.1141 0.5908 0.1451 0.5761 0.1361 0.5395 0.1275
Moon 0.6154 0.1940 0.4675 0.1192 0.5756 0.1401 0.5047 0.1203 0.5392 0.1274

PS
M

Original 0.7830 0.5423 0.6063 0.4306 0.6313 0.4715 0.7389 0.5286 0.5792 0.3566
FedAvg 0.5826 0.3674 0.6068 0.4308 0.6693 0.4794 0.7486 0.4332 0.5804 0.3601
FedProx 0.5895 0.3728 0.6073 0.4318 0.5682 0.3880 0.7138 0.4672 0.4336 0.2408
Scaffold 0.7606 0.5044 0.7036 0.4737 0.6792 0.4524 0.7494 0.4357 0.5006 0.2787
Moon 0.5590 0.3697 0.6111 0.4360 0.6567 0.4237 0.7465 0.4583 0.5833 0.3636

F1 =
2× (Precision×Recall)
Precision+Recall

(3)

where TP is the number of correctly detected anomalous time
points, FP is the number of normal time points judged to be
anomalous, and FN is the number of time points that are
wrongly judged to be normal. Following the literature [17],
we search the best threshold that has the highest F1-score for
each experiment.

In the experiments, we also present the adjusted perfor-
mance metrics, following [17], [21]. That is, if one or more
anomalous points in an anomalous sub-sequence are judged
as abnormal, each anomalous time point in this sub-sequence
is considered to be successfully detected.

C. Time series anomaly detection performance with/without
federated learning

To analyze the feasibility of federated learning for typical
time series anomaly detection algorithms, we evaluate the 5
centralized time series anomaly detection methods and their
combinations with 4 different federated learning methods on
3 datasets.

As shown in Table II, III and IV, for SMD and SMAP
dataset, federated learning clients and time series are in a
one-to-one correspondence. Note that, for Table III and IV,
the performance metrics are the adjusted ones as described
in Section IV. B. For PSM, time points are assigned con-
secutively to 24 clients following a Dirichlet distribution
with β set to 0.5. We surprisingly observe that, in some
conditions, federated learning performs better than centralized
learning. We hypothesis that federated learning can bring
some regularization effect for the training of time series
anomaly detection.

Fig. 3. AUC-ROC and AUC-PR of USAD on PSM with different partitions
of data in clients.

Fig. 4. F1 and F1 (adjusted) of USAD on PSM with different partitions of
data in clients.

D. Time series anomaly detection performance with federated
learning when data being differently partitioned in clients

To explore the influence of the heterogeneity between
clients to federated time series anomaly detection, we eval-
uate federated time series anomaly detection with different
partitions of data in clients.

Specifically, we employ 4 different partitions in the client-
generating procedure. First of all, we employ an average dis-



TABLE III
DETAILED RESULTS OF FEDTADBENCH IN TERMS OF PRECISION AND RECALL. WE HIGHLIGHT THE BEST RESULT AND THE SECOND BEST RESULT IN

BLUE AND LIGHT BLUE, RESPECTIVELY. NOTE THAT THE PRECISION AND RECALL ARE ADJUSTED METRICS AS DESCRIBED IN SECTION IV. B.

Method DeepSVDD LSTM-AE USAD GDN TranAD
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

SM
D

Original 0.6921 0.2754 0.4102 0.4269 0.4495 0.4177 0.6024 0.7665 0.5915 0.3637
FedAvg 0.6221 0.4820 0.5659 0.2478 0.5911 0.4149 0.3966 0.7414 0.6869 0.4920
FedProx 0.6038 0.8152 0.5661 0.2478 0.3441 0.3134 0.3755 0.6013 0.3845 0.3950
Scaffold 0.5245 0.1746 0.3268 0.5708 0.4820 0.4113 0.2966 0.6166 0.7423 0.3620
Moon 0.8567 0.8060 0.5485 0.2674 0.5431 0.3128 0.4563 0.5745 0.6624 0.4926

SM
A

P

Original 0.7118 0.8625 0.6900 0.4311 0.9549 0.5631 0.9538 0.5613 0.8457 0.8096
FedAvg 0.7947 0.7989 0.6902 0.4311 0.9574 0.5631 0.9796 0.5508 0.9018 0.5644
FedProx 0.9254 0.5572 0.6907 0.4311 0.3078 0.9159 0.9784 0.5529 0.7813 0.5717
Scaffold 0.7774 0.8848 0.6902 0.4311 0.9578 0.5616 0.9521 0.5539 0.9029 0.5694
Moon 0.8998 0.8811 0.8160 0.3905 0.9555 0.5640 0.9531 0.5635 0.9018 0.5644

PS
M

Original 0.8264 0.8819 0.6997 0.6922 0.5644 0.9269 0.8240 0.9107 0.7605 0.8543
FedAvg 0.8749 0.8198 0.6795 0.6922 0.6720 0.8989 0.6781 0.9590 0.8214 0.8381
FedProx 0.8476 0.8730 0.6796 0.6922 0.4758 0.9192 0.9332 0.9000 0.6360 0.6215
Scaffold 0.9717 0.7128 0.7676 0.7562 0.6727 0.9003 0.6684 0.8852 0.2776 1.0000
Moon 0.5789 0.9347 0.6583 0.6923 0.6335 0.9023 0.7890 0.8920 0.8005 0.8378

tribution. The numbers of timestamps in different clients are
equal or extremely close. In addition, Dirichlet distributions
with 3 different β values (0.1, 0.5 and 5) are employed, which
is the same as the settings in [26]. We perform experiments
on federated learning method FedAvg as an example. The
AUC-ROC and AUC-PR results are shown in Fig. 3, and the
F1 and F1 (adjusted) scores are shown in Fig. 4.

It could be observed that the performance of federated
learning frameworks is robust to the change of β, i.e., the
unbalanced data distribution does not affect the performance
of time series anomaly detection much. In federated learning,
the number of data essentially affects the updates of the model
in one global epoch, and this result implies that, for time
series anomaly detection, the number of updates does not
cause much heterogeneity between local models.

E. Compatibility between different federated learning frame-
works and time series

We are also interested in the compatibility between popular
federated learning methods and typical time series anomaly
detection algorithms.

As shown in Table II, III and IV, we can see that the
performance of FedProx varies significantly under different
conditions. FedProx builds a strong regularization on the
change of local model parameters. We argue this may not
be optimal because that, in some conditions, we may require
certain parts of the model parameters to adapt to the data
change efficiently. For example, USAD is a two-stage algo-
rithm, we may need the parameters of stage one to change
properly. However, FedProx limits the change of parameters
in both stages, which may make FedProx to be the worst
federated learning framework for USAD. On the other hand,
MOON constrains the change of model in a more relaxed
manner by constraining the change of features. Moreover, the

performance of FedAvg and SCAFFOLD is mostly in the
middle level because they introduce fewer fixed assumptions.

Fig. 5. AUC-ROC and AUC-PR of isolated and federated training for USAD
on PSM.

Fig. 6. F1 and F1 (adjusted) of isolated and federated training for USAD
on PSM.



TABLE IV
DETAILED RESULTS OF FEDTADBENCH IN TERMS OF F1 AND F1 (ADJUSTED). WE HIGHLIGHT THE BEST RESULT AND THE SECOND BEST RESULT IN

BLUE AND LIGHT BLUE, RESPECTIVELY.

Method DeepSVDD LSTM-AE USAD GDN TranAD
F1 F1(adjusted) F1 F1(adjusted) F1 F1(adjusted) F1 F1(adjusted) F1 F1(adjusted)

SM
D

Original 0.1290 0.3941 0.1373 0.4184 0.1872 0.4330 0.1777 0.6747 0.1435 0.4504
FedAvg 0.1792 0.5431 0.1413 0.3446 0.1813 0.4876 0.1490 0.5168 0.1829 0.5734
FedProx 0.1628 0.6937 0.1424 0.3447 0.1095 0.3280 0.1430 0.4623 0.1100 0.3896
Scaffold 0.1725 0.2620 0.1518 0.4156 0.1717 0.4439 0.1346 0.4005 0.1490 0.4867
Moon 0.2188 0.8306 0.1408 0.3595 0.1793 0.3970 0.1316 0.5086 0.1833 0.5650

SM
A

P

Original 0.2804 0.7799 0.2342 0.5307 0.2805 0.7084 0.2584 0.7067 0.2917 0.8272
FedAvg 0.3303 0.7968 0.2272 0.5307 0.2851 0.7091 0.2665 0.7050 0.2782 0.6943
FedProx 0.2323 0.6956 0.2445 0.5309 0.2332 0.4608 0.2696 0.7065 0.2744 0.6602
Scaffold 0.2922 0.8276 0.2272 0.4311 0.2825 0.7081 0.2892 0.7003 0.2784 0.6984
Moon 0.2840 0.8904 0.2550 0.5282 0.2795 0.7093 0.2671 0.7082 0.2782 0.6943

PS
M

Original 0.6260 0.8532 0.4414 0.6959 0.4957 0.7015 0.5924 0.8652 0.4451 0.8047
FedAvg 0.4356 0.8464 0.4415 0.6858 0.4988 0.7691 0.5711 0.7945 0.4472 0.8296
FedProx 0.4617 0.8601 0.4420 0.6858 0.4496 0.6270 0.5336 0.9163 0.4345 0.6287
Scaffold 0.6178 0.8224 0.5500 0.7619 0.5061 0.7701 0.5851 0.7616 0.4345 0.4345
Moon 0.4345 0.7150 0.4501 0.6749 0.5115 0.7444 0.5564 0.8374 0.4483 0.8187

F. Time series anomaly detection performance under isolated
and federated settings

To demonstrate whether federated learning is meaningful,
we compare the time series anomaly detection performance
under federated learning and isolated training, respectively.

As shown in Fig. 5 and Fig. 6, we evaluate the performance
of USAD on PSM under isolated and federated settings. It is
obvious that in most instances, the performance with federated
learning is better than that when training in isolation, which
demonstrates the effectiveness of federated learning.

G. Training time without/with federated learning

To better guide the choice of federated learning methods for
time series anomaly detection, we also evaluate the training
time of typical time series anomaly detection algorithm with
different federated learning strategies.

Training time of one global epoch of USAD on PSM in
different federated learning strategies is shown in Table V. For
this evaluation, the number of local epochs in each client for
all federated learning methods is 10. All the experiments are
conducted on NVIDIA Geforce RTX 3090 (24GB) GPU. Note
that clients in federated and isolated settings are trained in
parallel. It could be observed that the training time of FedAvg,
whose performance is stable according to the aforementioned
analysis, is shorter than that of the other three federated learn-
ing methods. MOON takes the longest time for training, due
to the complex calculations involved by contrastive learning.

V. CONCLUSION

In this paper, we present the first benchmark for time series
anomaly detection under federated learning frameworks. Our
benchmark covers 5 time series anomaly detection algorithms,
4 federated learning frameworks, and 3 time series anomaly
detection datasets. Based on our experiments, we analyze
the effects federated learning brings in, the influence of
unbalanced data distribution and the compatibility between
different federated learning frameworks and time series. These

TABLE V
TRAINING TIME OF USAD ON PSM.

Learing Federated Training Time/s
Manner Learning (one global epoch)

Centralized N 20.99
Isolated N 2.64
FedAvg Y 27.51
FedProx Y 37.29
Scaffold Y 38.60
Moon Y 64.88

analyses can provide some guiding information so that re-
searchers can better choose time series anomaly detection
algorithms and federated learning frameworks when perform-
ing time series anomaly detection under federated learning
frameworks. Our work may help develop a federated learning
framework that takes the characteristic of time series anomaly
detection into account.
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