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Abstract—Recent advances in location-acquisition and mobile
sensing technologies have enabled tracking of vehicle movements
(i.e., trajectory data). Massive trajectory datasets are processed
routinely (often in real-time) to provide support for many new
types of IoV (Internet of Vehicles) applications (e.g., traffic
congestion management, and load-coordination across electric ve-
hicle charging stations). High-volume, high-velocity data emitted
by IoV applications introduces issues with efficient spatial and
temporal queries over massively redundant datasets, typically
represented as a collection of longitude-latitude tuples. In this
paper we present SMTP, a new storage method based on the
recognition of trajectory patterns to reduce the storage space for
the trajectory data. An adaptive algorithm for mining trajectory
patterns from the data is developed, and it recognizes frequent
trajectories as patterns according to the geo-space relationships
between trajectories. A combinatorial optimization algorithm is
then introduced to decide which trajectory patterns should be
used for trajectory storage, thereby removing redundant data
and saving space. The recognized and saved patterns also help
to accelerate queries to the trajectory data. Several large IoV
datasets from the real world are used to validate the effectiveness
of the proposed method. Experimental results show that storage
space for trajectory data can be reduced by 38% while a typical
query to the data can be accelerated by approximately 40%.

Index Terms—IoV; Trajectory Patterns; Trajectory Pattern
Mining; Vehicle Trajectories

I. INTRODUCTION

The ubiquitous exploitation of trajectory data has been

driven by recent advances in location-acquisition, mobile

sensing, and IoV technologies [5]. The growing use of data

such as position, sensing data etc. together with rapidly urban

development leads to the large volume and highly redundant

trajectory data. In reality, the real-time location information

of vehicles is leveraged by many taxi corporations to re-

alize a timely scheduling of vehicles [10] [19]. To detect

the number of event and speed of data, it is mandatory to

investigate efficient trajectory data management algorithms

and approaches. The service (e.g., Uber [4]) and infrastructure

providers (e.g., Amazon Web Services [1]) can utilize our

trajectory data management method to provision effective and

reliable IoV application that not only reduces operational

cost (especially storage overheads) but also improve query

processing efficiency [20] [21].

IoV applications are typically spatio-temporal data manage-

ment and query processing applications that require varying

level of accuracy driven by decision making scenarios (e.g.

Fig. 1: Trajectories in road network of Beijing

traffic flow management, scheduling of taxi service etc).

Traditionally, each GPS point within a trajectory is repre-

sented in longitude-latitude tuple PT denoted by <longi-

tude,latitude,timestamp>. This form is intuitive but primarily

suffers from two fundamental problems: imprecision stemming

from record errors and space complexity due to high volume

and velocity of trajectory data samples [6]. In practice, in

a real-time location query, merely the road and distances

are required, rather than a complete series of GPS position

information. Inevitably, utilizing original GPS data would

increase the query time complexity and the storage overhead.

With the increasing scale of vehicles and road networks,

the probability of repetitive trajectories increases. In Figure

1, the thickness of a line represents the trajectory number

in Beijing road network. Apparently, numerous trajectories

manifest in the ring and backbone roads in Beijing. As vehicle

trajectories are directly related to road network layout, spatio-

temporal search queries in IoV application are represented as

<rid,dis,t> (i.e., road and distance). In addition, compression

approaches based on road network are further proposed in

[11] [17]. However, these methods have not fully taken ad-

vantage of road networks and the lossy compression cannot

satisfy different accuracy requirements in the IoV applications,

resulting in ineffective query processing. In fact, frequent

trajectory has been applied in the frequent trajectory mining

and path planning [9] [14]. The most frequent subsegments

that constantly appear in many trajectories can be recognized

as a trajectory pattern [8]. Undoubtedly, defining, detecting

and leveraging frequent trajectory patterns to represent the po-

sitions can mitigate the storage redundancy whilst accelerating

the trajectory queries.

Frequent trajectory mining methods are proposed in exist-



ing literature [8] [13] [15] [17]. However, those approaches

generate a large number of subsets of frequent trajectories,

making it infeasible to apply into current large-scale IoV

applications that typically contain high volume trajectory data.

Therefore this raise two research challenges: 1) how to effi-

ciently recognize frequent trajectory patterns based on large-

scale tracking data; 2) how to effectively overlay the real-

time vehicle trajectories over geo-space patterns for removing

redundant data. Due to the sheer volume and velocity of

trajectory data, these problems continue to be intractable. In

this paper we present SMTP for reducing the storage space

of the trajectory data, based on the recognition of trajectory

patterns. An adaptive algorithm to mine trajectory patterns

from the data is then developed, and it recognizes frequent

trajectories as patterns according to the geo-space relationships

between trajectories. Afterward, we formulate and apply a

combinatorial optimization to decide which trajectory patterns

should be utilized to store original trajectories, thereby remov-

ing redundant data and saving space. Large-scale IoV datasets

from the real world are used to validate and experimental

results demonstrate that the storage space can be reduced by

38% and the query can be accelerated by approximately 40%.

In particular, the contributions of this paper are as follows:

• An adaptive trajectory pattern mining algorithm based

on geo-space relationships between trajectories, fully

covering the road network and avoiding the generation

of a large number of frequent subsets;

• An efficient combinational optimization algorithm that

greedily selects trajectory patterns for roads in each

trajectory;

• An implementation of a holistic data storage method that

mitigates the storage redundancies and accelerates queries

based on trajectory patterns.

The rest of the paper is organized as follows: Section II

presents the formal definitions of concepts and problems.

Section III describes SMTP in detail. The experiments are

shown in Section IV. Section V reviews related work and we

conclude our work in Section VI.

II. PROBLEMS DEFINITION

In this section, we will define a set of key concepts and

problems. Specifically, original trajectory T can be regarded

as a sequence composed of a number of GPS points (PTs).

Many road segments (RSs) constitute a road R. Road network

(RN) is a directed graph that includes a set of road intersections

and pertaining roads. After a map matching (MM) procedure,

a GPS point PT will be transformed into map-matched point

(MMP), and the trajectory T is converted to the map-matched

trajectory (MMT). A trajectory pattern tuple (TPT) contains

the trajectory pattern TP and distance-timestamp tuples. Based

on the trajectory pattern TP, trajectory NT is represented by

a TPT sequence. More details can be found in Table I. Based

on these concepts, we describe the fundamental problems as

follows:
Trajectory Pattern. TP=<pid,(RS1,RS2· · ·RSp),attributes>,

where pid is the identifier and (RS1,RS2· · ·RSp) is a valid

(f) Cross

A B A B

A

B

A B A
B

A B

A B

(a)Disjoint (b)Overlap

(c)Touch

(d)Contain (e)Equal

Fig. 2: The line-line relationships in geo-space

...
....

TPS1 TPS2 TPSj

Path1

Pathk

.

.

.

best combination

MMP2

.

.

.

TP11

TP21

TPm1

TP1j

TP2j

.

.

.

TPnj

Fig. 3: Example of trajectory pattern optimization

path in RN while attributes include distance and direction

etc. p is defined as the RS number and the distance is the

accumulated road distance of the specific path. We define

min sup as the minimized occurrence number of the TP

within the connecting MMTs, and min len as the minimized

RS number that the RS set should contains. These two metrics

are significantly important and will be emphatically discussed

in our paper.

Trajectory Pattern Mining. Given a road network RN, the

historical trajectory set MMTS will be obtained after map-

matching. We can discover the trajectory patterns TPS from

MMTS. Figure 2 demonstrates the line-line relationships in

geo-space, mainly including Disjoint, Overlap, Touch, Con-

tain, Equal and Cross etc. According to the definition of

trajectory pattern, TP consists of road segments. The trajectory

patterns will thus have those relationships correspondingly.

In the frequent pattern mining, all non-empty subsets of a

frequent itemset must be frequent itemsets [18]. Therefore

we can conclude that each sub-trajectory of a trajectory

pattern must be a trajectory pattern. This indicates that we

should avoid the occurrence of substantial generations of

trajectory pattern subsets during the pattern recognition from

numerous historical trajectories. Moreover, different roads

have distinctive traffic flows, resulting in the asymmetrical

distribution of trajectories. It is obviously observable from

Figure 1 that the ring roads and backbone roads in Beijing have

more trajectories. Therefore uniform min sup and min len

are extremely difficult to define. It is very likely to omit

many important roads by assigning large values, or reserve

infrequently-occurred roads as trajectory patterns by small

values. It is significantly vital to excavate trajectory patterns by

fully leveraging road network information and avoiding excess

sub-trajectory patterns.

Trajectory Pattern Combinational Optimization. Given a

trajectory pattern set TPS, a map-matched trajectory MMT, the

problem we have to deal with is to select suitable trajectory



TABLE I: The definitions of key concepts

Abbreviation Name Definition

PT GPS Point Tuple PT=<longitude,latitude,t>. PT represents a GPS position at time t. PT is a longitude-latitude tuple.
T Trajectory T=<PT1,PT2· · ·PTn>, n is the number of PT. A trajectory T is a sequence of GPS points ordered

by time.
RS Road Segment RS=<rid,Nodestart,Nodeend,attributes>, rid is the identifier, and Nodestart is the start point

represented in <longitude,latitude> tuple. Nodeend is the end point, and attributes include distance
and direction etc.

R Road R=<Rid,(RS1,RS2· · ·RSm),attributes>, Rid is road identifier, and RSi is the ith road segment in
road R. m is the number of road segments, and attributes include the road name, distance and direction
etc. A road is defined as a sequence of RSs.

RN Road Network RN=G(V,E). V is the set of road intersections and Nodes represented in <longitude,latitude> tuple.
E is the set of roads. A road network RN is a directed graph.

MM Map Matching A procedure that maps or overlays original trajectory T to the existing road network RN.
MMP Map-Matched Point MMP=<rid,dis,t>. MMP is the reuslt of PT matched to RN, rid is the identifier of matched RS,

and dis is the distance from the matched point to the Nodestart of RS.
MMT Map-Matched Trajectory MMT=<MMP1,MMP2· · ·MMPl>, l is the number of MMP. A MMT is a sequence of MMPs after

T is map-matched to RN.
MMTS Map-Matched Trajectory Set MMTS=<MMT1,MMT2· · ·MMTs>, MMTS is the set of MMT.
TP Trajectory Pattern TP=<pid,(RS1,RS2· · ·RSp),attributes>. pid is the identifier, (RS1,RS2· · ·RSp) is a valid path in RN,

and attributes include size p, distance and direction etc.
TPS Trajectory Pattern Set TPS=<TP1,TP2· · · TPt>, TPS is the set of TP.

TPT Trajectory Pattern Tuple TPT=<pid,(<dis1,t1>,<dis2,t2>· · ·<disq ,tq>)>. disi is the distance from ith point to the
Nodestart of trajectory pattern, and ti is the timestamp of ith point. Including the pid of TP, TPT
is a sequence of distance-timestamp tuple, namely <distance,timestamp>.

NT Trajectory Based On Trajecto-
ry Pattern

NT=<TPT1,TPT2,MMPi· · · TPTr>. r is the number of TPTs and MMPs. NT is a trajectory based
on trajectory pattern.

CR Redundancy Removal Ratio CR=1-ST ′

ST
, ST is the storage space of trajectory T, and ST’ is the storage after removing redundancy.

patterns to generate a new trajectory NT, substituting the

original one. For each RSi, it has a trajectory pattern set TPSi

where TPSi contains the RSi. The problem can be formalized

as follows:

Minimize:

n
∪

i=1

TP
′

i

Subject to:

TP
′

i =











TP
j
i , if TP

j
i ∈ TPSi = ⟨TP 1

i , · · ·TP
m
i ⟩

and 1 ≤ j ≤ m

Ø, if TPSi = Ø

(1)

As one trajectory pattern in TPSi, TP
j
i is used to create NT

instead of MMPi.
More specifically, in road network RN, the road segment

RS might belong to many trajectory patterns. Consequently a

MMP in the MMT can be represented by different trajectory

patterns. TPS1 shown in Figure 3 can be illustrated as an

example. Some road segments may not belong to any trajec-

tory pattern because trajectory patterns cannot cover all roads.

The objective is to achieve the optimal redundancy removal

effects, thus the total number of trajectory patterns should be

minimized as possible (see Equation 1). Instead of MMP, we

want to use trajectory patterns to represent the trajectory as

more as possible. For a MMT=<MMP1,MMP2· · ·MMPj>, we

assume that the road segment in MMPj belongs to trajectory

pattern set TPSj . In order to get the optimal combination,

the algorithm needs to traverse all the paths in the candidate

graphs which contain trajectory pattern sets from TPS1 to

TPSj . The original complexity of this problem is O(mj), where

m is the number of trajectory patterns in candidate trajectory

pattern set, and j is the number of MMP in MMT. The data

is collected frequently in the IoV scenario, indicating a large

number of GPS points within a trajectory. Consequently, the

algorithm needs to figure out the targeted trajectory patterns

timely in order to meet requirements of real-time traffic

processing and analysis.

III. SOLUTIONS

In this section we will present our solutions SMTP in detail.

We will introduce the overview followed by description of

each key component.

A. Overview

As shown in Figure 4, SMTP is composed of four compo-

nents: Map Matcher, Trajectory Pattern Miner, Trajectory

Optimizer and Querier.
Map Matcher. The original trajectory T will be pre-

processed and matched to the road network RN.
Trajectory Pattern Miner. This module excavates trajec-

tory patterns from a large set of matched trajectories MMTS.
Trajectory Optimizer. Trajectory Optimizer selects the

optimal trajectory patterns based on the aforementioned op-

timization problem to create NT.
Querier. Querier will perform the storage operations and

execute queries based on trajectory patterns.
In particular, Map Matcher divides each trajectory into

sub-trajectories according to distance and time of adjacent

GPS points. During the matching procedure, Map Matcher

also obtains candidate road segments RSs by the similarity

of distance, direction and the driving rules of roads. After

map-matching, the original trajectory T is converted to MMT

which is represented in road network. In order to reduce the

subsets of trajectory patterns and mine trajectory patterns fully,

Trajectory Pattern Miner adopts an adaptive algorithm based

on geo-space relationship of trajectories. We implement a



Map

Matcher

Hi
sto
ric
al
GP
S

tra
jec
tor
ies

Historical Map-matched

trajectories
Trajectory

Pattern Miner

Trajectory

pattern sets

Map-matched trajectory
Trajecotry

Optimizer
Trajectory

based
on

trajectory
pattern

Querier

Trajectory

pattern

T
ra
je
ct
or
y
pa
tt
er
n

GPS trajectories

Trajectory Pattern Mining

Trajectories

Q
ue
ry
re
su
lt

Tr
aj
ec
to
ry
qu
er
y

User

Fig. 4: System overview: components and workflow

V1 V2 V3 V4

V5 V6 V7 V8

V9 V10 V11 V12

V13 V14 V15 V16

R1

R2

R3

R4

R5 R6 R7 R8

TP1

TP2

TP3

TP4

a

b

r1

r2

rn

...

road segment

road

trajectory pattern

road direction

common road

common road

road intersection

Fig. 5: Example geo-space relationships between trajectories

greedy algorithm in the Trajectory Optimizer to timely choose

trajectory patterns. At last, user can query the trajectories from

the Querier based on trajectory patterns.

B. Trajectory Pattern Miner

According to the geo-space relationships among trajectories

discussed in Section II and trajectories in Figure 1, the geo-

space relationships of Disjoint, Overlap, Contain and Touch

are ubiquitous. The geo-space relationships among trajectories

are valuable but ignored by many trajectory pattern mining

algorithms. In Figure 5, we can find several observations: the

trajectory pattern TP1 is disjoint with TP3 and TP4. TP1 and

TP2 overlap in road a. TP2 and TP3 touch at road intersection

V6 and TP3 contains TP4(they both have the same road

b). Typically, a vehicle often changes directions at the road

intersection, resulting in the varying trajectories related to road

intersection. In road network RN, the road intersections are

key variations and connections for trajectories, significantly

affecting the mining of trajectory pattern. For example, the

road V13V9 includes road segments r1, r2 · · · rn, making the

road V13V9 be a trajectory pattern and min len=1. According

to our rules, r1, r2,· · · rn, r1r2, r2r3, · · · ,rn−1rn,· · · , r1r2 · · ·
rn are trajectory patterns. Namely, ri· · · rj (1 ≤ i ≤ j ≤ n)

is a trajectory pattern and the number of trajectory pattern

generated by road V13V9 is n2+n
2 , namely C2

n+1. Assuming

min len is m, the number is C2
n−m+2.

In the Contain relationship, a trajectory pattern of size

n can generate n2 sub-trajectory patterns. Meanwhile, The

connection of adjacent trajectory pattern such as Overlap and
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Fig. 6: Distribution of different roads in Beijing
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Fig. 7: Trajectory number of different length

Touch can create new trajectory pattern, which facilitate the

number reduction of trajectory pattern. Due to the enormous

differences of traffic flows among different roads, the min sup

and min len will be significantly impacted. According to

OpenStreetMap [2], the roads of Beijing can be categorized

into different highways. Through the mining from road in-

tersections, we can reduce the generation of subsets and

mine the trajectory patterns of Touch. To deal with different

traffic flows, we adopt an adaptive approach to dynamically

determine the value of min sup according to road types. We

further propose an efficient algorithm that can automatically

excavate trajectory patterns by using geo-space relationships

and road types.

The adaptive trajectory pattern mining algorithm starts to

mine from road intersections and uses different min sup

according to road types. To accurately determine min len,

we analyze the distribution of trajectory length and select the

largest concentration of length range. We count the number of

trajectories in different road types and the number of different



Algorithm 1 Trajectory Pattern Mining Algorithm

Input: (1) MMTS;(2) RN.
Output: (1) TPS.

1: TPS ← Ø
2: //construct the whole Trie Root from MMTS

3: for each MMT in MMTS do

4: append MMT to Trie Root

5: end for

6: //mining TP of each Inter from Root
7: for each Intersection Inter in RN do

8: get the minimum min sup of Inter

9: nodeTrie←ConstructNodeTrie(Inter,min sup, min len)

10: TP ← GetPath(nodeTrie, min sup,min len)

11: TPS ← TP

12: end for
13: return TPS
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Fig. 8: An example of trajectory pattern mining

trajectory length. The road distribution is shown in Figure 6

and we calculate the number of trajectories passing different

roads from the training set. The mining algorithm adjusts the

min sup adaptively according to the statistics. As shown in

Figure 7, the length are tail-distributed and the length of most

trajectories is less than 100 after the map-matching. Thus we

set several parameters of min len below 100.

Algorithm 1 depicts the holistic procedure. It takes the set

of map-matched trajectories MMTS and road network RN as

input, and set of trajectory patterns TPS as output.

At first, we assign to the set of trajectory pattern TPS

an empty set (line 1), and then construct a whole Trie tree

[12] Root and Node’ list List from all map-matched historical

trajectories (lines 3-5). Each node in Root represents a road

segment and the number of trajectories passing the road

segment. Each node in the list includes all the occurring

positions of the road segment in Root. Secondly, we make

sub-Trie nodeTrie start in each intersection Inter according to

the Root and List (line 7). Afterwards the algorithm determines

min sup adaptively according to the sub-Trie information,

such as the road type and trajectory number(line 8). Finally, the

algorithm adds the trajectory which appears to be more than

min sup and the size is larger than min len as a trajectory

pattern to TPS(lines 10-11). At the same time, we can also

obtain the trajectory pattern’s road segment list, distance,

size and direction etc. The most advantage of the mining

algorithm is the complete utilization of intersection and road

type information.

In Figure 8, the Root consists of road segments or inter-

sections A, B · · · I, the Node’ List comprises Node items.

Algorithm 2 Trajectory Pattern Optimizing Algorithm

Input: (1) MMT.
Output: (2) NT.

1: lastCandidate ← Ø, currentCandidate ← Ø, NT ← Ø
2: for each MMP in MMT do

3: currentCandidate ← GetCandidateTP(MMP)

4: if lastCandidate is Null then
5: lastCandidate ← currentCandidate
6: end if
7: tempCandidate ← lastCandidate ∩ currentCandidate
8: if tempCandidate is Null then

9: NT ← one trajectory pattern in lastCandidate
10: lastCandidate ← currentCandidate
11: else

12: lastCandidate ← tempCandidate
13: end if

14: end for

15: NT ← one trajectory pattern in lastCandidate
16: return NT

For example, the intersection C occurs 3 times in Root. After

creating Root and Node’ list, the algorithm can easily construct

NodeTrie of each road intersection. The road intersection C

occurs 4 times in nodeTrie. Let min sup be 2 and min len be

2, and consequently the path CF is a trajectory pattern.

C. Trajectory Optimizer

As discussed in Section II, we can get new trajectory

NT by combining trajectory patterns. In order to find the

optimal solution, we have to traverse all the paths of the

graph consisting of multiple trajectory pattern sets. To utilize

more trajectory patterns in NT and reduce time complexity, we

greedily select the candidate trajectory patterns of adjacent

MMP. To this end, we propose an approximate algorithm

based on trajectory pattern matching.

Algorithm 2 shows the details. At first, the algorithm takes

map-matched trajectory MMT as input and trajectory based on

trajectory pattern NT as output. The algorithm searches and

finds each trajectory pattern set currentCandidate of MMP in

MMT (line 3). It then gets the intersection with lastCandidate

of last MMP in sequence (line 7). This process repeats until the

intersection set tempCandidate is empty. Finally, our approach

will find the longest matching trajectory pattern which contains

all the prior MMPs (lines 8-13), and get the NT (line 16). The

core philosophy of the greedy algorithm is that it refers to the

trajectory pattern which contains more MMPs.

Analysis: As for the time complexity, the algorithm exam-

ines each intersection of adjacent trajectory pattern sets and

the time complexity is O(m2) where m is the trajectory pattern

set’s number of a specific MMP. As a result, the overall time

complexity is O(m2n), where n is the number of MMPs in

MMT. Apparently, compared to the time complexity O(mn)
of original algorithm, the proposed algorithm is more efficient

and feasible to current IoV scenarios.

D. Querier

Based on the above design and implementations, we further

extend the trajectory pattern based representation mechanism

into the underlying storage and data query to realize the
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mitigation of data redundancies and the improvement of query

performance. In reality, trajectory NT by using the trajectory

patterns is able to reduce the number of data items, resulting

in a sound redundancy removal effectiveness. When querying,

the model can calculate the distance according to the trajectory

pattern directly.

Consider a case study of the trajectory T containing 9 GPS

points in Figure 9 to illustrate the storage space reduction.

The number of data items of T is 27. Assume that the data

type of latitude and longitude is double, while timestamp

is int. Double variable and int variable need 8 bytes and 4

bytes respectively. Therefore, the total storage of trajectory

T should be 180 bytes. If the trajectory T is represented in

NT=<pid,(<dis1,t1>,<dis2,t2>· · ·<dis9,t9>)>, the number

of data items of NT is 19 and the format of attributes are

as below: pid and timestamp are int while distance is double,

resulting in a holistic 112 bytes storage.

With regards to the query aspect of the trajectory T path,

due to the road segments V7V4, V4V1, V1V2, V2V3 involved

in the trajectory pattern, we can easily get the path between

dis1 and dis9. The model can get the accurate position directly

when querying the real-time location. In real IoV systems

and applications, queries are primarily based on the road

network. The road list and distance of trajectory pattern will

be extremely beneficial and generally applicable to those

trajectory data storage models.

IV. EXPERIMENTS AND EVALUATION

In this section, we evaluate the effectiveness of the proposed

trajectory pattern mining algorithm on its ability of reducing

redundant data and improving query processing.

A. Experimental Setup

Road Network. We use the map within the 5th Ring

roads of Beijing from OpenStreetMap. The longitude ranges

from 116.199814 to 116.554159, and the latitude ranges

from 39.750665 to 40.027734. The map of this area contains

106,792 road nodes, 28,972 roads, 151,237 road segments and

37,034 road intersections.

Datasets. Different value of min sup and min len will

impact the effectiveness of the proposed trajectory pattern

mining algorithm. Therefore, we vary min sup according to

the statistics of training set. With regards to mining trajectory

patterns, we evaluate the effects by several min lens. In this

experiment, we considered 1,000,000 trajectories generated by

different vehicles.
Algorithms and Implementation. All algorithms of SMTP

are implemented in Java and run on a cluster of server-

s. Each server is equipped with Intel(R) Xeon(R) E5-2650

CPU(2.00GHz) and 256 GB memory. The following metrics

are quantified:
1) Road Coverage Ratio: RC = NRS′

NRS
, where NRS is the

number of distinct RSs in RN, and NRS’ is the number of

different RSs in TPS;
2) Redundancy Removal Ratio: this ratio CR indicates the

reduction degree;
3) Query Time Ratio: QTR = QTP

QLL
, where QTP is the time

of querying trajectory based on trajectory pattern, and QLL is

the trajectory query time based on longitude-latitude tuple.
We discuss the impact of parameter values in different

trajectory pattern mining algorithms in Section IV-B and then

evaluate the optimization algorithm of redundancy mitigation

in Section IV-C. We also compare the query processing effi-

ciency of trajectory based on trajectory pattern with longitude-

latitude tuple method in Section IV-D.

B. Trajectory Pattern Mining

We discuss the impact of different parameter values on

adaptive and general trajectory pattern mining algorithms.

Figure 10(a) depicts that the road coverage ratio varies with

min sup and min len in both adaptive and general algorithm.

The road coverage ratio decreases as min len increases in

both algorithms. The reason is because the trajectory patterns

decrease while min len increases. Due to all intersections in

the road network and dynamic min sup, the road coverage

ratio RC of adaptive algorithm is higher than that of general

algorithm. We can conclude that the adaptive algorithm has a

larger road coverage ratio than the general algorithm.
Figure 10(b) shows that the Touch relationship ratio varies

with min sup and min len in adaptive and general algorithm.

The Touch relationship ratio means that the trajectory patterns

of Touch relationship account for all the trajectory patterns.

Figure 10(c) is the Contain relationship ratio variation. It

is observable that the Touch relationship ratio of adaptive

algorithm surpasses the general algorithm, but the Contain

relationship ratio of adaptive algorithm is lowest. More trajec-

tory patterns of Touch relationship indicates that we are able

to combine them to create more trajectory patterns easily, and

less trajectory patterns of Contain relationship means that the

mining algorithm generates less subsets. This is due to the

fact that the adaptive algorithm makes use of the geo-space

relationship and reduces the generation of subsets.
Holistically, the adaptive algorithm outperforms other ap-

proaches in road coverage aspect with less trajectory patterns

generated.

C. Redundancy Mitigation

As discussed in Section II and III, a GPS point contains 20

bytes if it is represented in PT tuple. However, by using the
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Fig. 10: Trajectory pattern mining: (a) road coverage ratio; (b) touch relation ratio; and (c) contain relation ratio
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Fig. 11: Redundancy removal ratio and parameter impacts

MMP, the total storage requirement of representing a location

point can be reduced to 16 bytes assuming that data type of rid

and t is int and dis is double. In particular, by using MMP and

PT, the lossless redundancy removal ratio will be 1-16η20η = 1
5

(assuming that η is the number of GPS points in T, the total

storage of T in MMP formulation will be 16η, and the storage

of T in PT formulation will be 20η). When representing in

NT and PT, the lossless redundancy removal ratio will be:

CR = 1−
4φ+ 12ϱ+ 16ς

20η
(2)

where η is the number of GPS points in T and φ is the

number of trajectory patterns referred while ϱ is the number

of distance-time tuples and ς is the number of MMP in NT.

The total NT storage can be calculated by 4φ+12ϱ+16ς , and

the resultant T will be 20η. Additionally, due to ϱ + ς = η,

the CR can be induced to CR = 8
20 -

(ϕ+ς)
5η . In fact,

lim
ϕ=0,ς=η

φ+ ς

5η
=

1

5
(3)

lim
ϕ=1,ς=0,η→∞

φ+ ς

5η
= 0 (4)

According to Equation 3 and 4, we can conclude that the ratio

is between 20% and 40%. Obviously, the trajectory pattern sets

will lead to extra storage cost. Assume min len=10, adaptive

algorithm will generate more than 120,000 trajectory patterns

which take around 137 MB space. However, compared with

the huge amount of trajectories in the IoV system, the overhead

of these trajectory patterns and road network is acceptable and

can be neglected.
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Fig. 12: Query time ratio under path Query
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Fig. 13: Query time ratio under where Query

Figure 11 shows the redundancy removal ratio varies with

changes in min sup and min len in context of greedy algorith-

m. We can see that the redundancy removal ratio can reach

about 38%, which is approximate to the theoretical boundary

40%. Based on this, it can be concluded that the greedy

algorithm achieves a perfect performance.

D. Query

To evaluate the query performance, we make a comparison

between the query efficiency of trajectories stored in trajectory

pattern and longitude-latitude tuple methods.

Figure 12 illustrates the effectiveness of path query, the

QTR decreases with the increment of trajectory length, and

the query speed of trajectory based on trajectory pattern is

observably faster than trajectory based on longitude-latitude

tuple. Because the trajectory pattern has the road list and

trajectory NT has deviated distances, the method can get the

road list and distance directly. For most trajectories within



the length of 1,000, comparing to the time of query based

on longitude-latitude tuple, the time of path query based on

trajectory pattern is merely 60% approximately. Namely the

query path based on trajectory pattern can be accelerated by

40%.

Figure 13 demonstrates the comparison of where query.

Given one location, where query is to find all occurring times

at the location in one trajectory. The query time ratio QTP

varies with trajectories as different trajectories have distinct

number of same locations and the query needs different time

to calculate. We can observe that the query based on trajectory

pattern is generally faster than longitude-latitude tuple due to

the road and distance.

In conclusion, the query based on trajectory pattern is faster

than conventional trajectory based on longitude-latitude tuple

which can attribute to the use of trajectory patterns.

V. RELATED WORK

Trajectory data has been a significant research focus for

years and many systems are proposed. Those approaches

mainly stored trajectories in spatio-temporal databases. Geo-

databases such as PostGIS [3] focus on Geo-data processing

and optimizing. Distributed databases such as MD-HBase [16]

based on HBase [7] which achieve high insertion and efficient

geographical query by using multi-dimension index. These

systems basically store the trajectory with longitude-latitude

tuple structure. Without considering the high repeatability of

vehicle trajectories in real world, such systems often suffer

from problems of huge storage redundancy and low query

efficiency.

Recently road network has been used for trajectory data

storage. A nonmaterialized trajectory model, for example, is

proposed in [6]. In this model, the spacial dimension is stored

by road network and time dimension is stored as road offset

and timestamp. Map matching trajectory compression is intro-

duced in [11]. Press [17] processes trajectory by compressing

its spatial and temporal information further. More specially,

assuming that the trajectory is always along the shortest path,

Press uses shortest path and Huffman coding to compress

the trajectory. However, in the complex road environments,

the vehicle trajectory is always changeable and the shortest

path is not always suitable. Meanwhile, the adopted lossy

compression approach could decrease the query accuracy.

Frequent pattern mining is an important research area in

data mining. Frequent patterns can be used to accelerate the

path computation on a road network [9]. Trajectory pattern

is proposed in [8] and has been used widely. A driving

pattern mining algorithm based on traffic flows determining the

frequent support is proposed in [9] which needs extra traffic

information. Methods in [13] [15] [17] treat trajectory as string

and calculate the occurring frequency.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, based on the recognition of trajectory patterns,

we have proposed the SMTP for storing a very large set of

vehicle trajectories. The patterns are recognized according to

the geo-space relationships between trajectories. And patterns

are stored selectively so as to remove any redundancy included

in the original trajectory data. The queries of vehicle trajecto-

ries are now pattern-based and allow potential acceleration.

We have conducted extensive experiments to evaluate the

performance of SMTP using real IoV data sets. Experiment

results show that storage space for trajectory data can be

reduced by 38% while a typical query to the data can be

accelerated by approximately 40%. In the future we will

continue to explore the possibilities of faster pattern mining

methods and more efficient indexing of trajectory patterns.
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