
Analyzing the Performance of Smart Industry 4.0
Applications on Cloud Computing Systems

Razin Farhan Hussain1, Alireza Pakravan2, Mohsen Amini Salehi1
1High Performance Cloud Computing (HPCC) Laboratory, University of Louisiana at Lafayette, LA, USA

2California State University, San Marcos, CA, USA
Email:1{razinfarhan.hussain1,amini}@louisiana.edu, 2apakravan@csusm.edu

Abstract—Cloud-based Deep Neural Network (DNN) appli-
cations that make latency-sensitive inference are becoming an
indispensable part of Industry 4.0. Due to the multi-tenancy
and resource heterogeneity, both inherent to the cloud computing
environments, the inference time of DNN-based applications are
stochastic. Such stochasticity, if not captured, can potentially
lead to low Quality of Service (QoS) or even a disaster in
critical sectors, such as Oil and Gas industry. To make In-
dustry 4.0 robust, solution architects and researchers need to
understand the behavior of DNN-based applications and capture
the stochasticity exists in their inference times. Accordingly, in
this study, we provide a descriptive analysis of the inference
time from two perspectives. First, we perform an application-
centric analysis and statistically model the execution time of four
categorically different DNN applications on both Amazon and
Chameleon clouds. Second, we take a resource-centric approach
and analyze a rate-based metric in form of Million Instruction
Per Second (MIPS) for heterogeneous machines in the cloud. This
non-parametric modeling, achieved via Jackknife and Bootstrap
re-sampling methods, provides the confidence interval of MIPS
for heterogeneous cloud machines. The findings of this research
can be helpful for researchers and cloud solution architects to
develop solutions that are robust against the stochastic nature of
the inference time of DNN applications in the cloud and can offer
a higher QoS to their users and avoid unintended outcomes.

Index Terms—Deep Neural Network Applications, Industry
4.0, Cloud Platform, Heterogeneous Machines, Inference Time

I. INTRODUCTION

Software solutions operating based on machine learning
and, particularly, Deep Neural Network (DNN) models are
becoming fundamental pillars of Industry 4.0 revolution
[1]. In the industrial automation process, numerous smart
sensors frequently produce and fed data to the DNN-
based applications that can make smart latency-sensitive
decisions to improve energy efficiency, production, and
safety measures. Building robust Industry 4.0 solutions entail
having an accurate estimation of the inference (execution)
time of DNN-based applications hosted on the cloud or edge
computing systems. Lack of such assessments often leads to
missing the applications’ latency constraints and lowers their
quality of service (QoS) [2] or increase the incurred cost
of cloud resources. In critical industrial sectors, such as oil
and gas, the penalty of such inaccurate estimations can be
disastrous and cause unintended consequences, such as an
unsafe workplace, environmental footprints, energy wastage,
and damaging devices [3], [4]. Accordingly, our goal in this
study is to measure and model the stochasticity that exists in

the execution time of industrial DNN-based applications that
are commonly deployed in the cloud.

Our motivation in this study is the critical industry of
Oil and Gas (O&G) that is aimed at becoming clean and
ultimately unmanned, thereby safe, in Industry 4.0. O&G is
one of the main environmental pollutants and even minor
improvements in this industry can have major impacts in the
global scale. In this context, there are several time-sensitive
operations (e.g., fire detection [5] and toxic gas monitoring
[6]) that failing to timely process them can potentially lead to
a disasters, scuh as oil spill, explosion, and even death. Under-
standing the uncertainties exist in execution time of different
application types and properly modeling them is crucial in
architecting software solutions that are robust against these
uncertainties. Note that DNN-based applications encompass
both the training and inference stages [7]. While the training
stage is generally carried out offline, our focus in this study
is on modeling the inference execution time that has to be
accurately estimated for latency-sensitive and mission critical
applications [8]. For instance, accurate estimation of inference
time is instrumental in calculating the completion time of
arriving tasks that can, in turn, help to make more precise
resource allocation decisions [9].

Public or private Cloud datacenters, such as Amazon [10],
are widely used as the back-end platform to execute DNN-
based industrial applications [11]. The cloud providers often
offer heterogeneous machine types, such as CPU-Optimized,
Memory-Optimized, and GPU, that provide different execu-
tion time for various application types. For instance, a big
data application type has its lowest execution time on the
Memory-Optimized machine type whereas an image rendering
application is best fitted to the GPU-based machine type. This
form of heterogeneity is known as inconsistent heterogeneity
[12], [13]. For each machine type, cloud providers offer a
consistent heterogeneity in form of various virtual machine
(VM) instance types with different number of allocated re-
sources. For example, in Amazon cloud, for CPU-Optimized
machine type, there is c5d.18xlarge VM type with 36 number
of cores that is faster than c5.xlarge VM type with only 2
cores. As each application type can potentially have different
inference time on distinct machine types, it is critical to con-
sider the resource heterogeneity in estimating the execution
time of different DNN-based applications.

For that purpose, in this study, we evaluate and analyze

ar
X

iv
:2

01
2.

06
05

4v
1 

 [
cs

.D
C

] 
 1

1 
D

ec
 2

02
0



the execution time of DNN-based applications on hetero-
geneous cloud machine types. Our study encompasses both
the application-centric perspective, by the way of modeling
inference time, and the resource-centric perspective, by the
way of measuring the Million Instruction Per Seconds (MIPS)
metric. MIPS is considered as a rate-based metric that reflects
the performance of cloud machine instance in terms of execu-
tion speed. As we consider latency-constrained applications,
the underlying systems is considered as a dynamic (online)
platform that processes each task upon arrival.

Prior studies on evaluating and modeling DNN-based appli-
cations [14] mostly focus on the core DNN model and ignore
the end-to-end latency of the application that includes at least
two other factors: (a) the latency of non-DNN parts of the
application (e.g., those for pre- and post-processing); and (b)
the latency imposed due to uncertainties inherent to the cloud
platform. Nonetheless, for critical industrial applications, such
as those in O&G, a holistic analysis that considers the end-to-
end latency of DNN-based applications is needed. The lack of
such study hinders the path to develop a robust smart O&G
solutions [15]. Accordingly, the main contributions of this
work are as follows:
• Providing an application-centric analysis by developing

a statistical model of the inference time of various DNN-
based applications on heterogeneous cloud resources.

• Providing a resource-centric analysis of various DNN-
based applications on heterogeneous cloud resources by
developing a statistical model of MIPS, as a rate-based
metric.

• Providing a publicly available1 collection of pre-trained
DNN-based industrial applications in addition to their
training and testing datasets. Moreover, a trace of infer-
ence execution times of the considered applications on
heterogeneous machines of two public cloud platforms
(namely AWS and Chameleon Cloud [16]) is presented.

The rest of the paper is organized as follows: Section II
discusses four different DNN applications and their underlying
architectures. Section III states various cloud execution plat-
forms with brief discussion. Section IV demonstrates the ex-
perimental setup to execute the DNN-based applications. The
section V provides the application-centric analysis, whereas
section VI presents the resource-centric analysis. Section VII
presents related works. Finally, section VIII concludes the
paper with discussion and future avenues for exploration.

II. DNN-BASED APPLICATIONS IN O&G INDUSTRY 4.0
Table I summarizes different types of DNN-based applica-

tions used in the smart O&G industry. The table shows the
abbreviated name for each application, its DNN (network)
model, type of its input data, the scope of deployment in
O&G Industry 4.0 [17], and the code base to build the model.
All the applications, the input data, and analysis results are
publicly available for reproducibility purposes in the Github
repository mentioned earlier. In the rest of this section, we
elaborate on the characteristics of each application type.

1https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0

Application Type DNN Model Input Type Scope Code Base

Fire Detection (Fire) Customized Alexnet Video Segment
Control &
Monitoring

Tensorflow
(tflearn)

Human Activity
Recognition (HAR)

Customized Sequential
Neural Network Motion sensors

Workers
Safety keras

Oil Spill Detec. (Oil) FCN-8 SAR Images
Disaster
Management keras

Acoustic Impedance
Estimation (AIE)

Temporal Convolutional
Network Seismic Data

Seismic
Exploration PyTorch

TABLE I
DNN-BASED APPLICATIONS USED IN O&G INDUSTRY 4.0

ALONG WITH THEIR NETWORK MODEL, INPUT DATA TYPE, USAGE
SCOPE, AND CODE BASE.

A. Fire Detection (abbreviated as Fire)

Smart fire detection, a critical part of monitoring systems,
aims at providing safety and robustness in Industry 4.0. We
analyzed a fire detection application developed by Dunnings
and Breckon [5] using convolutional neural network (CNN).
It automatically detects fire regions (pixels) in the frames
of a surveilled video in a real-time manner. Among other
implementations, we deploy the FireNet model that accurately
identifies and locate fire in each frame of a given video
segment. FireNet is a lightweight variation of AlexNet model
[18] with three convolutional layers of sizes 64, 128, and
256. In this model, each convolutional layer is augmented
by a max-pooling layer and a local response normalization
to achieve high frequency features with a large response
from previous layer. To analyze the inference time of the fire
detection system, we constructed a benchmarking dataset of
240 videos with different backgrounds. For fair and realistic
analysis, the length of all videos is considered two seconds.

B. Human Activity Recognition (abbreviated as HAR)

Human Activity Recognition (HAR) systems are widely
used in Industry 4.0 to ensure workers safety in hazardous
zones. For this purpose, motion sensors, such as accelerometer
and gyroscope, that are widely available on handheld PDA
devices are utilized. The HAR system we use operates based
on the sequential neural network model with four layers to
identify the worker’s activities (namely, walking, walking
upstairs, walking downstairs, sitting). For analysis, we use a
dataset of UCI machine learning repository, known as Human
Activity Recognition Using Smartphones [19].

C. Oil Spill Detection (abbreviated as Oil)

Detecting the oil spill is of paramount importance to have
a safe and clean O&G Industry 4.0. The accuracy of DNN-
based oil spill detection systems has been promising [20]. We
utilize a detection system that operates based on the FCN-8
model [21], which is depicted in Figure 1. As we can see,
the model contains five Fully Convolutional Network (FCN)
blocks and two up-sampling blocks that collectively perform
semantic segmentation (i.e., classifying every pixel) of an
input image and output a labeled image. The FCN-8 model
functions based on the satellite (a.k.a. SAR) [22] images. We
configure the analysis to obtain the inference time of 110 SAR
images collected by MKLab [20].

https://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0


FCN-Block 1

FCN-Block 2

FCN-Block 3

FCN-Block 4

FCN-Block 5

MP-1

MP-2

MP-3

MP-4

MP-5

Convolution Convolution

Upsample

Upsample

U*U*U

Input SAR Image
captured from

Satellite

Output Labeled 
Image

Look-alike
Oil Spill

Sea surface

Fig. 1. The FCN-8 model is presented in block diagram that consist
of 5 fully convolutional network blocks, and 2 up-sampling blocks.
The model receives input as a SAR image and perform pixel-wise
classification to output a labeled image.

D. Acoustic Impedance Estimation (abbreviated as AIE)

Estimating acoustic impedance (AI) from seismic data is
an important step in O&G exploration. To estimate AI from
seismic data, we utilize a solution functions based on the
temporal convolutional network [23], shown in Figure 2. The
solution outperforms others in terms of gradient vanishing and
overfitting. Marmousi 2 dataset [24] is used to estimate AI.

Input Seismic Traces from
Marmousi Model

Temporal
Block
(1,3)

Temporal
Block
(3,5)

Temporal
Block
(5,5)

Temporal
Block
(5,5)

Temporal
Block
(5,5)

Temporal
Block
(5,6)

ConcatenationLinear Layer

Temporal Convolutional Network

Output Predicted Acoustic Impedance (AI)

Fig. 2. Schematic view of Temporal Convolutional Network (TCN)
model that consists of six temporal blocks, the input data, and the
output in form of the predicted AI.

III. CLOUD COMPUTING PLATFORMS FOR INDUSTRY 4.0

a) Amazon Cloud: AWS is a pioneer in the Cloud com-
puting industry and provides more than 175 services, includ-
ing Amazon EC2 [25], across a large set of distributed data
centers. Amazon EC2 provides inconsistently heterogeneous
machines (e.g., CPU, GPU, and Inferentia) in form of various
VM instance types (e.g., general purpose, compute-optimized,
and machine learning (ML)). Within each VM type, a range
of VM configurations (e.g., large, xlarge, 2xlarge) are
offered that reflect the consistent heterogeneity within that
VM type. To realize the impact of machine heterogeneity
on the inference time of various applications, we choose one
representative VM type of each offered machine type. Table II
represents the type of machines and their specification in terms
of number of cores and memory. We note that all the machine
types use SSD storage units. Although General Purpose ma-
chines are not considered suitable for latency-sensitive DNN-

based applications, the reason we study them is their similarity
to the specifications of machine types often used in the edge
computing platforms. As such, considering these types of
machines (and similarly m1.small in the Chameleon cloud)
makes the results of this study applicable to cases where edge
computing is employed for latency-sensitive applications [26].

Machine Type VM Config. vCPU GPU Mem. (GB)
Mem. Optimized r5d.xlarge 4 0 32
ML Optimized inf1.xlarge 4 0 8
GPU g4dn.xlarge 4 1 16
General Purpose m5ad.xlarge 4 0 16
Comp. Optimized c5d.xlarge 4 0 8

TABLE II
HETEROGENEOUS MACHINE TYPES AND VM CONFIGURATIONS IN

AMAZON EC2 THAT ARE CONSIDERED FOR PERFORMANCE MODELING
OF DNN-BASED APPLICATIONS. IN THIS TABLE, ML OPTIMIZED

REPRESENTS INFERENTIA MACHINE TYPE OFFERED BY AWS.

VM Config. vCPUS Mem. (GB)
m1.xlarge 8 16
m1.large 4 8
m1.medium 2 4
m1.small 1 2

TABLE III
VARIOUS VM FLAVORS IN CHAMELEON CLOUD ARE CONFIGURED TO

REPRESENT A CONSISTENTLY HETEROGENEOUS SYSTEM.

b) Chameleon Cloud: Chameleon cloud [16] is a large-
scale public cloud maintained by National Science Foundation
(NSF). Chameleon cloud supports VM-based heterogeneous
computing. It offers the flexibility to manage the compute,
memory, and storage capacity of the VM instances. In this
study, we use the Chameleon cloud to configure a set
of consistently heterogeneous machines. We configure four
VM flavors, namely m1.xlarge, m1.large, m1.medium,
and m1.small, as detailed in Table III. We note that VMs
offered by Chameleon cloud uses HDD unit as storage.

IV. ENVIRONMENTAL SETUP FOR PERFORMANCE
MODELING

The focus of this study is on latency-sensitive DNN-based
applications that are widely used in Industry 4.0. Accordingly,
we consider a dynamic (online) system that is already loaded
with pre-trained DNN-based applications, explained in the
previous section, and executes arriving requests on the per-
tinent application. This means that we measure the hot start
inference time [27] in the considered applications. The DNN-
based applications mostly use TensorFlow, and the VMs both
in AWS and Chameleon are configured to use the framework
on top of Ubuntu 18.04.

Our initial evaluations in AWS (shown in Figure 3)
demonstrate that, in different attempts, the inference
execution time of an application (Oil Spill) on the same
machine type can be highly stochastic. Similar stochasticity is



1 10 20 30
16.5

16.6

In
fe

re
nc

e 
Ti

m
e(

s) Compute Optimized

1 10 20 30

132.5
135.0
137.5

General Purpose

1 10 20 30
Number of Attempts

8.0

8.2
GPU Instance

1 10 20 30
15.8

16.0
ML Optimized

1 10 20 30
16

17
Memory Optimized

Fig. 3. The stochastic nature of inference execution time of oil spill application while running on heterogeneous VMs in the AWS. For
every VM instance, the oil spill detection application is executed 30 times and those executions are plotted as number of attempts along
x-axis. The y-axis represents the inference time for every attempts.

found for chameleon cloud while we run the oil spill detection
application 30 times within same VM instance. Hence to
capture this randomness (aka consistent heterogeneity) that
is caused by several factors, such as transient failures or
multi-tenancy [28], [29], we base our analysis on 30 times
execution of the same request within same VM.

Execution Time Distribution with Shapiro-Wilk Test in AWS Cloud
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire
Not Gaussian
(P=2.73e−16)

Not Gaussian
(P=5.42e−16)

Not Gaussian
(P=6.59e−16)

Not Gaussian
(P=2.06e−13)

Not Gaussian
(P=3.9e−16)

HAR
Not Gaussian
(P=7.12e−8)

Not Gaussian
(P=1.04e−8)

Gaussian
(P=0.19)

Not Gaussian
(P=1.76e−8)

Not Gaussian
(P=0.4.62e−5)

Oil
Not Gaussian

(P=8e−4)
Not Gaussian
(P=2.9e−16)

Not Gaussian
(P=0.012)

Not Gaussian
(P=1.27e−16)

Not Gaussian
(P=5.86e−14)

AIE
Gaussian
(P=0.46)

Gaussian
(P=0.23)

Gaussian
(P=0.08)

Not Gaussian
(P=1.99e−10)

Gaussian
(P=0.96)

TABLE IV
THE EXECUTION TIME DISTRIBUTIONS OF DNN-BASED

APPLICATIONS IN AWS CLOUDS MACHINES USING
SHAPIRO-WILK TEST.

Execution Time Distribution with Shapiro-Wilk Test in Chemeleon
App. Type m1.xlarge m1.large m1.medium m1.small

Fire
Not Gaussian
(P=4.05e−5)

Not Gaussian
(P=1.e−4)

Not Gaussian
(P=7.58e−6)

Not Gaussian
(P=1.32e−7)

HAR
Gaussian
(P=0.74)

Not Gaussian
(P=0.02)

Gaussian
(P=0.18)

Gaussian
(P=0.84)

Oil
Not Gaussian

(P=0.01)
Not Gaussian

(P=5.5e−7)
Not Gaussian

(P=0.01) N/A

AIE
Not Gaussian
(P=2.77e−10)

Not Gaussian
(P= 3.46e−6)

Not Gaussian
(P= 1.4e−4)

Not Gaussian
(P=2.46e−6)

TABLE V
THE EXECUTION TIME DISTRIBUTIONS OF DNN APPLICATIONS

IN CHAMELEON CLOUD USING SHAPIRO-WILK TEST.

V. APPLICATION-CENTRIC ANALYSIS OF INFERENCE
TIME

A. Overview

In this part, we capture the inference time of the four DNN
applications and try to identify their underlying statistical dis-
tributions using various statistical methods. Then, to describe
the behavior of inference execution time using a single metric,
we explore the central tendency of the distributions.

B. Statistical Distribution of Inference Execution Time

Among various statistical methods, the normality tests
are widely employed to understand the distribution of the
collected samples. Hence, we first use Shapiro-Wilk test [30]
to verify the normality of the inference time distribution on
each machine type. Next, we employ Kolmogorov-Smirnov
test [31] to find the best fit distribution based on the sampled
inference execution times.

1) Shapiro-Wilk Test to Verify Normality of the Sampled
Data: The null hypothesis is that the inference execution
times are normally distributed. To understand whether a
random sample comes from a normal distribution, we perform
the Shapiro-Wilk test. The result of this test is considered as
W , whose low value (lower than wα threshold) indicates that
the sampled data are not normally distributed and vice versa.
The value of W is used to perform the significant testing (i.e.,
calculating P-value). The higher P-value, especially greater
than a threshold value (typically 0.05), supports the null
hypothesis that the sampled data are normally distributed.

The results of Shapiro-Wilk test on the collected inference
times for AWS are presented in Table IV, where columns
present the various machine types and rows define the ap-
plication types. The table reflects that our initial assumption
is not totally valid. The Shapiro-Wilk test result for the
Chameleon cloud, depicted in Table V, shows that for only
three of the total cases, the normality assumption holds.
Considering the lack of normality in several cases, in the
next section, we utilize Kolmogorov-Smirnov test to more
granularly explore the best fitting distribution for the inference
time of each application and also cross validate the prior
results we obtained using another statistical method.

Execution Time Distribution with Kolmogorov-Smirnov Test in AWS Cloud
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire No Distr. No Distr. No Distr. No Distr. No Distr.

HAR
Student’s t
(P=0.08)

Student’s t
(P=0.77)

Student’s t
(P=0.99)

Student’s t
(P=0.57)

Student’s t
(P=0.95)

Oil
Student’s t
(P=0.44)

Student’s t
(P=0.96)

Student’s t
(P=0.5)

Student’s t
(P=0.20)

Exponential
(P=0.21)

AIE
Normal
(P=0.99)

Normal
(P=0.54)

Normal
(P=0.47)

Exponential
(P=0.16)

Normal
(P=0.99)

TABLE VI
INFERENCE TIME DISTRIBUTIONS OF DNN-BASED APPLICATIONS

IN AWS CLOUD MACHINES USING KOLMOGOROV-SMIRNOV
TEST.



2) Kolmogorov-Smirnov Goodness of Fit Test: The null hy-
pothesis for the Kolmogorov-Smirnov test is that the inference
times of a certain application type on a given machine type
follows a statistical distribution. The Kolmogorov-Smirnov
Goodness of Fit test (a.k.a. K-S test) identifies whether a
set of samples derived from a population fits to a specific
distribution. Precisely, the test measures the largest vertical
distance (called test statistic D) between a known hypothetical
probability distribution and the distribution generated by the
observed inference times (a.k.a. empirical distribution func-
tion (EDF)). Then, if D is greater than the critical value
obtained from the K-S test P-Value table, then the null
hypothesis is rejected.

The results of the K-S test on the observed inference times
in AWS and Chameleon clouds are depicted in Table VI
and VII, respectively. From Table VI, we find that, in AWS,
majority of the entries either represent Normal distribution
or Student’s t-distribution that exposes similar properties.
However, we observe that the inference time of Fire Detection
application does not follow any particular distribution with an
acceptable P-Value. We also observe that the inference times
of both Oil Spill application on Compute Optimized machine
and AIE application on General Purpose machine follow
Exponential distribution. However, low P-Value in both of
these cases indicate a weak acceptance of the null hypothesis.

Execution Time Distribution with Kolmogorov-Smirnov test in Chameleon
App. Type m1.xlarge m1.large m1.medium m1.small
Fire No Distr No Distr No Distr Log-normal

HAR
Normal
(P=0.98)

Student’s t
(P=0.88)

Normal
(P=0.66)

Normal
(P=0.96)

Oil
Log-normal

(P=0.36)
Log-normal

(P=0.99)
Log-normal

(P=0.81) N/A

AIE
Student’s t
(P= 0.47)

Student’s t
(P=0.12)

Student’s t
(P=0.25)

Student’s t
(P=0.83)

TABLE VII
INFERENCE TIME DISTRIBUTIONS OF DNN-BASED APPLICATIONS

IN CHAMELEON’S MACHINES USING THE K-S TEST.

On the contrary, Table VII reflects the dominance of
Log-normal (i.e., the logarithm of the random variable is
normally distributed) and Student’s t-distribution over other
distributions in the Chameleon cloud. Analysing the execution
traces shows us that the inference times in Chameleon are
predominantly larger than the ones in AWS that causes right-
skewed property, hence, the distribution tends to Log-normal.
Consistent to AWS observations, we see that Fire Detection
application, in most of the cases, does not follow any distribu-
tion. Our further analysis showed that the lack of distribution
is because of variety (e.g., frame rate and resolution) in
the input videos. In fact, when we reduced the degree of
freedom in the input videos limited them to those with the
same configuration (frame-rate), we noticed the inference time
follows a Log-normal distribution. The observation shows that
the characteristics and variation of input data can be decisive
on the statistical behavior of inference times (mentioned in
highlighted insight). We note that Oil Spill application cannot
be run on m1.small machine owing to its limited memory.

Mean and Standarad Deviation of Inference Execution Times (ms) in AWS
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire
µ=1461.8
σ=457.3

µ=1281.7
σ=387.93

µ=1349.5
σ=418.9

µ =1534.8
σ=494.7

µ=1421.4
σ=441.8

HAR
µ=1.27

σ=0.082
µ=0.66

σ=0.006
µ=0.51

σ=0.006
µ =1.17
σ=0.042

µ=0.66
σ=0.003

Oil
µ=269.9
σ=1.01

µ=218.8
σ=0.66

µ=65.98
σ=0.47

µ=667.1
σ=2.26

µ=242.9
σ=0.68

AIE
µ=7.02
σ=0.02

µ=6.41
σ=0.03

µ=7.55
σ=0.04

µ=9.35
σ=0.06

µ=7.95
σ=0.02

TABLE VIII
THE MEASUREMENT OF CENTRAL TENDENCY METRIC (µ), AND
DATA DISPERSION METRIC (σ) ON THE OBSERVED INFERENCE

TIMES IN AWS.

Insights: The key insights of the analysis we conducted on
identifying the distribution of inference time are as follows:

• Shapiro-Wilk test for AWS and Chameleon rejects
the null hypothesis that the inference times of DNN-
based applications follow the Normal distribution.

• The K-S test reflects the dominance of Student’s t-
distribution of inference time in both AWS (Table
VI), and Chameleon (Table VII).

• Various configurations of input data is decisive on
the statistical distribution of the inference time.

C. Analysis of Central Tendency and Dispersion Measures

Leveraging the statistical distributions of inference times,
in this part, we explore their central tendency metric that
summarizes the behavior of collected observations in a single
value. In addition, to analyze the statistical dispersion of
the observations, we measure the standard deviation of the
inference times. In particular, we estimate the arithmetic mean
and standard deviation of the inference times. The central
tendency metric of inference times for AWS and Chameleon
clouds are shown in Tables VIII and IX, respectively. The key
insights are as follows:

• Machine Learning Optimized and GPU instances
often outperform other AWS machine types.

• In both clouds, the inference times of Fire and Oil
experience a higher standard deviation in compare
with other applications. The high uncertainty is
attributed to the characteristics of their input data;
Oil Spill input images suffer from class imbalance
[20], whereas, Fire input videos are highly variant.

• In Chameleon VMs with a consistent heterogene-
ity, DNN applications with dense network models
(e.g., Oil and Fire) can take advantage of powerful
machines (e.g., m1.xlarge) to significantly reduce
their inference times.

• Overall, AWS offers a lower inference time than
Chameleon. The reason is utilizing SSD units in
AWS rather than HDD in Chameleon. In addition,
we noticed that Chameleon experiences more tran-
sient failures that can slow down the applications.



Mean and Std. of Inference Execution Times (ms) in Chameleon
App. Type m1.xlarge m1.large m1.medium m1.small

Fire
µ=2155.20
σ=725.48

µ=2213.30
σ=731.50

µ=2330.80
σ=742.20

µ=3184.80
σ=1033.30

HAR
µ=22.14
σ=0.76

µ=47.69
σ=1.26

µ=49.24
σ=0.57

µ=52.69
σ=0.78

Oil
µ=147.16
σ=5.23

µ=222.22
σ=2.89

µ=412.78
σ=4.99 N/A

AIE
µ=6.23
σ=0.25

µ=6.23
σ=0.15

µ=6.40
σ=0.13

µ=7.72
σ=0.24

TABLE IX
CENTRAL TENDENCY METRIC (µ), AND DATA DISPERSION

METRIC (σ) OF THE INFERENCE TIMES IN THE CHAMELEON
CLOUD.

The MIPS for DNN Applications in AWS Cloud
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire 1938.63 2196.35 2092.72 1862.04 1989.56
HAR 838640.65 1595874.34 2040057.33 891754.48 1581709.12
Oil 164.54 168.58 331.98 20.46 162.01
AIE 145.58 180.28 150.25 131.25 160.32

TABLE X
MIPS VALUES OF HETEROGENEOUS MACHINES IN AWS FOR

EACH DNN-BASED APPLICATION.

The MIPS for DNN Applications in Chameleon
App. Types m1.xlarge m1.large m1.medium m1.small
Fire 1327.81 1282.33 1249.63 871.36
HAR 91.78 102.51 124.76 136.62
Oil 18267.35 11233.41 6243.94 N/A
AIE 246366.52 249551.29 236300.93 201807.49

TABLE XI
MIPS VALES FOR HETEROGENEOUS MACHINES ON CHAMELEON

CLOUD FOR EACH DNN-BASED APPLICATION.

VI. RESOURCE-CENTRIC ANALYSIS OF INFERENCE TIME

In performance analysis of computing systems, a rate-
based metric [32] is defined as the normalization of number
of computer instructions executed to a standard time unit.
MIPS is a popular rate-based metric that allows comparison
of computing speed across two or more computing systems.
Given that computing systems (e.g., AWS ML Optimized
and GPU) increasingly use instruction-level facilities for ML
applications, our objective in this part is to analyze the perfor-
mance of different machine types in processing DNN-based
applications. The results of this analysis can be of particular
interest to researchers and cloud solution architects whose
endeavor is to develop tailored resource allocation solutions
for Industry 4.0 use cases. As for rate-based metrics we do
not assume any distribution [33], we conduct a non-parametric
approach. In addition to MIPS, we provide the range of MIPS
in form of Confidence Intervals (CI) for each case.

Let application i with ni instructions have tim inference
time on machine m. Then, MIPS of machine m to execute
the application is defined as MIPSmi = ni/(tim×106). Hence,
before calculating MIPS for any machine, we need to
estimate the number of instructions (n) of each DNN-based

application. For that purpose, we execute each task ti on a
machine whose MIPS is known and estimated ni. Then, for
each machine m, we measure tim and subsequently calculate
MIPSmi. Tables X and XI show the MIPS values for AWS
and Chameleon, respectively.

To measure the confidence intervals (CI) of MIPS for
each application type in each machine type, we use the non-
parametric statistical methods [33] that perform prediction
based on the sample data without making any assumption
about their underlying distributions. As we deal with a rate-
based metric, we use harmonic mean that offers a precise
analysis for this type of metric rather than the arithmetic mean.
We utilize Jackknife [33] re-sampling method and validate
it using Bootstrap [33], which is another well-known re-
sampling method. Both of these methods employ harmonic
mean to measure the confidence intervals of MIPS.

CI of MIPS using Jackknife Method in AWS cloud
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire
[1549.42,
1975.65]

[1770.81,
2243.04]

[1671.78,
2131.66]

[1465.31,
1889.77]

[1594.78,
2028.36]

HAR
[812040.26,
856355.96]

[1592214.75,
1599426.64]

[2033084.47,
2046727.57]

[880417.69,
901345.49]

[1580275.10,
1585598.85]

Oil
[163.55,
165.47]

[168.36,
168.81]

[330.68,
333.22]

[20.35,
20.57]

[161.86,
162.17]

AIE
[139.02,
141.04]

[155.56,
156.01]

[141.57,
142.03]

[118.06,
119.82]

[148.35,
149.00]

TABLE XII
THE CONFIDENCE INTERVALS OF MIPS VALUES FOR

DNN-BASED APPLICATIONS IN AWS MACHINES, RESULTED
FROM JACKKNIFE RE-SAMPLING METHOD.

CI of MIPS using Jackknife Method in Chameleon Cloud
App. Type m1.xlarge m1.large m1.medium m1.small

Fire
[1032.11,
1341.75]

[1010.62,
1303.02]

[964.76,
1259.68]

[670.82,
872.85]

HAR
[88.27,
94.20]

[99.84,
104.49]

[122.33,
126.67]

[135.13,
137.92]

Oil
[18083.59,
18628.64]

[11159.71,
11662.41]

[6139.59,
6262.15] N/A

AIE
[237710.12,
252686.82]

[247166.73,
251673.68]

[168804.58,
268273.11]

[199676.71,
203681.17]

TABLE XIII
CONFIDENCE INTERVALS OF MIPS VALUES FOR DIFFERENT

DNN-BASED APPLICATIONS IN CHAMELEON MACHINES,
RESULTED FROM JACKKNIFE RE-SAMPLING METHOD.

1) Estimating Confidence Interval using Jackknife Method:
Let p be the number of observed inference times. The Jack-
knife method calculates the harmonic mean in p iterations,
each time by eliminating one sample. That is, each time it
creates a new sample (re-sample) with size p− 1. Let x j be
the jth observed inference time. Then, the harmonic mean of
re-sample i is called the pseudo-harmonic value (denoted as
yi) and is calculated based on Equation 1.

yi =
p−1
p
∑

j=1, j 6=i

1
x j

(1)



Next, the arithmetic mean (denoted ȳ) of the p pseudo-
harmonic values is computed, and is used to estimate the
standard deviation. Finally, the t-distribution table is used to
calculate the CI boundaries with a 95% confidence level. The
result of the Jackknife method for AWS machines is shown in
Table XII that conforms with the MIPS calculation in Table X.
Similarly, the results of analysis for Chameleon cloud using
Jackknife method, shown in Table XIII, validate the prior
MIPS calculations in Table XI. However, in the next part,
we cross-validate these results using Bootstrap method.

2) Estimating Confidence Interval using Bootstrap Method:
Bootstrap repeatedly performs random sampling with a re-
placement technique [33] on the observed inference times. The
random sampling refers to the selection of a sample with the
chance of non-zero probability and the number (represented as
k) of re-sample data depends on the user’s consideration. After
re-sampling, the harmonic means of k number of samples are
calculated and sorted in ascending order to estimate the con-
fidence intervals. Finally, for a specific confidence level, the
(α/2×k)th and ((1−α/2)×k)th values are selected from the
sorted samples as the lower and upper bounds of the CI. We
set the k value to 100 and α to 0.05 for 95% confidence level.

For both AWS and Chameleon, the results of CI analysis
using the Bootstrap method are similar to, thus validate, the
ranges estimated by the Jackknife method. Therefore, due to
the shortage of space, we do not report the table of MIPS
values for the Bootstrap method. However, we note that the
CI ranges provided by the Bootstrap method are shorter (i.e.,
have less uncertainty), regardless of the application type and
the cloud platform. The reason for the shorter range is that
Bootstrap performs re-sampling with a user-defined number
of samples that can be larger than the original sample size.

Fire HAR Oil AIE
DNN-based Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d 
M

IP
S

AWS Comp. Optimized
Chameleon m1.large

Fig. 4. Comparative analysis of the MIPS values of AWS and
Chameleon machines for various DNN-based applications. For the
sake of presentation, the MIPS values are normalized between [0,1].

To perform a cross-platform analysis of the MIPS values,
in Figure 4, we compare the range of MIPS values for AWS
Compute Optimized against m1.large that is a compatible
machine type in Chameleon (see Tables II and III). The

horizontal axis of this figure shows different application types
and the vertical axis shows the MIPS values, normalized based
on MinMax Scaling in the range of [0,1], for the sake of better
presentation. Due to high variation in the input videos, we
observe a broad CI range for Fire detection across both cloud
platforms. However, for HAR, Oil Spill, and AIE applications,
we observe that the first and third quartiles of the CI range
in Chameleon (whose machines are prone to more transient
failures [34]) is larger than those in AWS. This wide range
indicates that, apart from variations in the input data, the
reliability of underlying resources is also decisive on the
stochasticity of the inference times.

VII. RELATED WORK

The advent of Industry 4.0 brought revolution in the O&G
industry, and Oil and Gas 4.0 [1] era arises. To deploy
and improve the existing industrial DNN-based solutions
for Oil and Gas 4.0, performance modeling of DNN-based
applications is of great importance for cloud solution archi-
tects and researchers. Although, it is hard to find in-depth
performance study of real-world DNN-based applications in
cloud platforms, especially in the context of the O&G industry
considering the inference time of DNN-based applications.
As such, we explore research areas related to benchmarking
of DNN-based applications in various contexts (i.e., artificial
intelligence, video streaming, image recognition) utilizing
local machines, virtual machines, or even mobile devices.
However, these works focus mainly on training times, whereas
our work focuses on the inference time.

As an execution platform for video transcoding operation,
heterogeneous cloud virtual machines are analyzed for per-
formance evaluation of different video content by Li et al. in
[35]. In this work, the authors elaborately discuss the corre-
lation of video content type with the transcoding operation’s
execution time on heterogeneous VMs. In a similar context,
Ghatrehsamani et al. in [36] performed a detailed study of
performance overhead of various cloud execution platforms
utilizing four categories of real-world applications. One of the
interesting findings of this work is that the containers are not
always suitable computing platforms in the cloud. The above
mentioned works mainly focus on virtual computing platforms
regardless of application domain whereas we explore specific
DNN-based applications inference execution pattern.

To perform the layer-wise behavior of various DNN models
in heterogeneous deployment platforms, Xia et al. in [14]
proposed a DNN tuning framework. This work provides a
detailed discussion of the performance and energy consump-
tion of DNN models (i.e., CNN, LSTM, MLP) concerning
different deployment strategies (i.e., cloud, mobile device,
mobile-cloud hybrid). Similarly, Turner et al. in [37] proposed
various mainstream DNN compression methods with the
evaluation of the model accuracy, training time, and memory
on two types of execution hardware (i.e., CPU, GPU). In [38],
Bianco et al. performed an extensive system-level analysis of
a wide range of DNN models on two different computing
architectures, namely NVIDIA Titan X Pascal and NVIDIA
Jetson TX1. From an intuitively different perspective, the



authors of [39] represent a detailed analysis of DNN-based
application execution in optimized hardware and their over-
head considering various prior and post operations during
implementation on a special-purpose accelerator. This work
proposes to utilize a specialized edge data center designed
for DNN-based application that overcomes the data processing
overhead. On the contrary, our work focuses on inference time
behavior of DNN-based applications on heterogeneous cloud
machine types, especially in the smart O&G industry.

VIII. SUMMARY AND DISCUSSION

Accurately estimating the inference time of latency-
sensitive DNN-based applications plays a critical role in
robustness and safety of Industry 4.0. Such accurate esti-
mations enable cloud providers and solution architects to
devise resource allocation and load balancing solutions that
are robust against uncertainty exists in the execution time of
DNN-based applications. In this work, we provide application-
and resource-centric analyses on the uncertainty exists in the
inference times of several DNN-based applications deployed
on heterogeneous machines of two cloud platforms, namely
AWS and Chameleon. In the first part, we utilized the Shapiro-
Wilk test to verify if the assumption of Normal distribution
for the inference time holds. We observed that the inference
times often do not follow a Normal distribution. Therefore, in
the second part, we broaden our distribution testing investiga-
tion and utilized the Kolmogorov-Smirnov test to verify the
underlying distributions in each case. The analysis showed
that inference times across the two cloud platforms often
follow Student’s t-distribution. However, in several cases in
Chameleon cloud we observed the Log-normal distribution
that we attribute it to the uncertain performance of VMs in
this platform. Next, to conduct a resource-centric analysis,
we modeled MIPS (as a rate-based performance metric) of
the heterogeneous machines for each application type. In
the analysis, we took a non-parametric approach, which is
suitable for rate-based metrics, and utilized the Jackknife
and Bootstrap re-sampling methods with harmonic mean to
determine the range of confidence intervals of the MIPS values
in each case. The calculated MIPS values and their CI ranges
reflect the behavior of different DNN-based applications under
various machine types and cloud platforms. A comparative
analysis of the CI ranges across AWS and Chameleon cloud
demonstrate that the uncertainty in the inference time is
because of variations in the input data and unreliability of the
underlying platforms. In the future, we plan to incorporate the
findings of this research to devise accurate resource allocation
methods in IoT and edge computing systems. In addition,
we plan to develop a predictive analysis to determine the
execution of each inference task upon arrival.

ACKNOWLEDGMENTS

The research was supported by Chameleon cloud and
Amazon Cloud (AWS) research credit.

REFERENCES

[1] H. Lu, L. Guo, M. Azimi, and K. Huang, “Oil and gas 4.0 era: A
systematic review and outlook,” Journal of Computers in Industry,
vol. 111, pp. 68–90, 2019.

[2] X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya, “Cost-
efficient and robust on-demand video transcoding using heterogeneous
cloud services,” IEEE Trans. on Parallel and Distributed Systems,
vol. 29, no. 3, pp. 556–571, 2017.

[3] R. Hussain, M. Amini, A. Kovalenko, Y. Feng, and O. Semiari,
“Federated edge computing for disaster management in remote smart
oil fields,” in 21st International Conference on High Performance
Computing and Communications (HPCC), 2019.

[4] I. Dincer and C. Acar, “A review on clean energy solutions for better
sustainability,” International Journal of Energy Research, vol. 39, no. 5,
pp. 585–606, 2015.

[5] A. J. Dunnings and T. P. Breckon, “Experimentally defined convolu-
tional neural network architecture variants for non-temporal real-time
fire detection,” in Proceedings of 25th IEEE International Conference
on Image Processing (ICIP), pp. 1558–1562, IEEE, 2018.

[6] F. Aliyu and T. Sheltami, “Development of an energy-harvesting toxic
and combustible gas sensor for oil and gas industries,” Journal of
Sensors and Actuators B: Chemical, vol. 231, pp. 265–275, 2016.

[7] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: an
efficient training and inference engine for intelligent mobile cloud
computing services,” Journal of IEEE Trans. on Mobile Computing,
2019.

[8] Q. Zhang, M. Zhang, M. Wang, W. Sui, C. Meng, J. Yang, W. Kong,
X. Cui, and W. Lin, “Efficient deep learning inference based on model
compression,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 1695–1702, 2018.

[9] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. Lau,
“Ondisc: Online latency-sensitive job dispatching and scheduling in
heterogeneous edge-clouds,” IEEE/ACM Trans. on Networking, vol. 27,
no. 6, pp. 2472–2485, 2019.

[10] I. Bermudez, S. Traverso, M. Mellia, and M. Munafo, “Exploring
the cloud from passive measurements: The amazon aws case,” in
Proceedings of IEEE INFOCOM, pp. 230–234, 2013.

[11] A. Luckow, M. Cook, N. Ashcraft, E. Weill, E. Djerekarov, and
B. Vorster, “Deep learning in the automotive industry: Applications
and tools,” in Proceedings of International Conference on Big Data
(Big Data), pp. 3759–3768, 2016.

[12] A. Mokhtari, C. Denninnart, and M. A. Salehi, “Autonomous task
dropping mechanism to achieve robustness in heterogeneous computing
systems,” Proceedings of the 29th Heterogeneity in Computing Work-
shop (HCW 2019), May 2020.

[13] J. Gentry, C. Denninnart, and M. Amini Salehi, “Robust dynamic
resource allocation via probabilistic task pruning in heterogeneous
computing systems,” in Proceedings of the 33rd IEEE International
Parallel & Distributed Processing Symposium, IPDPS ’19, May 2019.

[14] C. Xia, J. Zhao, H. Cui, X. Feng, and J. Xue, “Dnntune: Automatic
benchmarking dnn models for mobile-cloud computing,” ACM Trans.
on Architecture and Code Optimization (TACO), vol. 16, no. 4, 2019.

[15] R. F. Hussain, M. A. Salehi, A. Kovalenko, S. Salehi, and O. Semiari,
“Robust resource allocation using edge computing for smart oil fields,”
in Proceedings of the 24th International Conference on Parallel and
Distributed Processing Techniques & Applications, 2018.

[16] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad,
and P. Ruth, “Chameleon: a scalable production testbed for computer
science research,” in Contemporary High Performance Computing:
From Petascale toward Exascale, vol. 3, ch. 5, pp. 123–148, May 2019.

[17] T. Nguyen, R. G. Gosine, and P. Warrian, “A systematic review of
big data analytics for oil and gas industry 4.0,” IEEE Access, vol. 8,
pp. 61183–61201, 2020.

[18] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The
history began from alexnet: A comprehensive survey on deep learning
approaches,” arXiv preprint arXiv:1803.01164, 2018.

[19] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A pub-
lic domain dataset for human activity recognition using smartphones.,”
in Esann, 2013.

[20] M. Krestenitis, G. Orfanidis, K. Ioannidis, K. Avgerinakis, S. Vrochidis,
and I. Kompatsiaris, “Oil spill identification from satellite images using
deep neural networks,” Journal of Remote Sensing, vol. 11, no. 15,
p. 1762, 2019.

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3431–3440, 2015.

[22] Z. Huang, C. O. Dumitru, Z. Pan, B. Lei, and M. Datcu, “Classification
of large-scale high-resolution sar images with deep transfer learning,”
Journal of Geoscience and Remote Sensing Letters, 2020.



[23] A. Mustafa, M. Alfarraj, and G. AlRegib, “Estimation of acoustic
impedance from seismic data using temporal convolutional network,”
arXiv preprint arXiv:1906.02684, 2019.

[24] R. Versteeg, “The Marmousi experience; velocity model determination
on a synthetic complex data set,” Journal of the Leading Edge, vol. 13,
pp. 927–936, 09 1994.

[25] J. Varia, S. Mathew, et al., “Overview of amazon web services,” Amazon
Web Services, pp. 1–22, 2014.

[26] V. Veillon, C. Denninnart, and M. A. Salehi, “F-FDN: Federation of Fog
Computing Systems for Low Latency Video Streaming,” in Proceedings
of the 3rd IEEE International Conference on Fog and Edge Computing,
pp. 1–9, 2019.

[27] S. S. Ogden and T. Guo, “Characterizing the deep neural net-
works inference performance of mobile applications,” arXiv preprint
arXiv:1909.04783, 2019.

[28] H. Moradi, W. Wang, and D. Zhu, “Adaptive performance modeling
and prediction of applications in multi-tenant clouds,” in 21st Interna-
tional Conference on High Performance Computing and Communica-
tions(HPCC), pp. 638–645, 2019.

[29] X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau, and
M. Bayoumi, “Performance analysis and modeling of video transcoding
using heterogeneous cloud services,” IEEE Trans. on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 910–922, 2019.

[30] Z. Hanusz, J. Tarasinska, and W. Zielinski, “Shapiro-wilk test with
known mean,” REVSTAT-Statistical Journal, vol. 14, no. 1, 2016.

[31] I. M. Chakravarty, J. Roy, and R. G. Laha, “Handbook of methods of
applied statistics,” 1967.

[32] D. J. Lilja, Measuring computer performance: a practitioner’s guide.
2005.

[33] S. Patil and D. J. Lilja, “Using resampling techniques to compute
confidence intervals for the harmonic mean of rate-based performance
metrics,” IEEE Computer Architecture Letters, vol. 9, no. 1, 2010.

[34] B. Charyyev, A. Alhussen, H. Sapkota, E. Pouyoul, M. H. Gunes,
and E. Arslan, “Towards securing data transfers against silent data
corruption.,” in CCGRID, pp. 262–271, 2019.

[35] X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau, and
M. Bayoumi, “Performance analysis and modeling of video transcoding
using heterogeneous cloud services,” Journal of Trans. on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 910–922, 2018.

[36] D. Ghatrehsamani, C. Denninnart, J. Bacik, and M. Amini Salehi,
“The art of cpu-pinning: Evaluating and improving the performance
of virtualization and containerization platforms,” in Proceedings of the
49th International Conference on Parallel Processing, Aug 2020.

[37] J. Turner, J. Cano, V. Radu, E. J. Crowley, M. O’Boyle, and A. Storkey,
“Characterising across-stack optimisations for deep convolutional neural
networks,” in Proceedings of IEEE International Symposium on Work-
load Characterization (IISWC), pp. 101–110, 2018.

[38] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE
Access, vol. 6, pp. 64270–64277, 2018.

[39] D. Richins, D. Doshi, M. Blackmore, A. T. Nair, N. Pathapati, A. Patel,
B. Daguman, D. Dobrijalowski, R. Illikkal, K. Long, et al., “Ai
tax: The hidden cost of ai data center applications,” arXiv preprint
arXiv:2007.10571, 2020.


	I Introduction
	II DNN-Based Applications in O&G Industry 4.0
	II-A Fire Detection (abbreviated as Fire)
	II-B Human Activity Recognition (abbreviated as HAR)
	II-C Oil Spill Detection (abbreviated as Oil)
	II-D Acoustic Impedance Estimation (abbreviated as AIE)

	III Cloud Computing Platforms for Industry 4.0
	IV Environmental Setup for Performance Modeling
	V Application-Centric Analysis of Inference Time
	V-A Overview
	V-B Statistical Distribution of Inference Execution Time
	V-B1 Shapiro-Wilk Test to Verify Normality of the Sampled Data
	V-B2 Kolmogorov-Smirnov Goodness of Fit Test

	V-C Analysis of Central Tendency and Dispersion Measures

	VI Resource-Centric Analysis of Inference Time
	VI-1 Estimating Confidence Interval using Jackknife Method
	VI-2 Estimating Confidence Interval using Bootstrap Method


	VII Related Work
	VIII Summary and Discussion
	References

