
Evaluating Thread Placement Based on Memory
Access Patterns for Multi-core Processors

Matthias Diener1, Felipe L. Madruga2, Eduardo R. Rodrigues2, Marco A. Z.
Alves2, Jörg Schneider1, Philippe O. A. Navaux2, and Hans-Ulrich Heiß1

1 Fakultät IV - Elektrotechnik und Informatik
Technische Universität Berlin

Berlin, Germany
{mdiener, komm, heiss}@cs.tu-berlin.de

2 Institute of Informatics
Universidade Federal do Rio Grande do Sul

Porto Alegre, Brazil
{flmadruga, errodrigues, mazalves, navaux}@inf.ufrgs.br

Abstract. Process placement is a technique widely used on parallel
machines with heterogeneous interconnections to reduce the overall com-
munication time. For instance, two processes which communicate fre-
quently are mapped close to each other. Finding the optimal mapping
between threads and cores in a shared-memory environment (for exam-
ple, OpenMP and Pthreads) is an even more complex task due to implicit
communication. In this work, we examine data sharing patterns between
threads in different workloads and use those patterns in a similar way
as messages are used to map processes in cluster computers. We eval-
uated our technique on two state-of-the-art multi-core processors and
achieved moderate improvements in the common case and considerable
improvements in some cases, reducing execution time by up to 45%.

Key words: thread placement, memory access patterns, process map-
ping, shared cache, multi-core processor

1 Introduction

Due to limits on instruction-level parallelism, high power consumption and wire-
delay problems of sequential cores, the multi-core architecture is the current
choice for high-performance processors. The prediction is that for the next chip
generations the number of cores will increase drastically, going from multi-core
to many-core [1].

The task of finding the optimal mapping between threads and processors is
a NP-hard problem [8]. Usually, graphs are used to represent both architecture
and application behavior. In environments where message-passing is the main
paradigm to build parallel programs (such as cluster computers), constructing
the task graph where vertices represent communication is straightforward. In
a previous work [10], it was shown that optimizing thread placement in cluster



computers using multi-core machines improves performance. The communication
pattern is obtained by monitoring the messages, which contain information about
sender and receiver, and using them to calculate the amount of data exchanged
between tasks.

However, the thread-placement approach for cluster computers has to be
adapted to be used in shared memory applications. In such applications, the
communication is not explicit. Therefore, monitoring data accesses is the only
way to analyze the interaction between threads and the demands on cache mem-
ory.

There are three objectives in optimizing thread placement in multi-core sys-
tems. First, make better use of interconnections, i. e. reduce off-chip traffic by
using intra-chip interconnections. Second, reduce cache misses when two private
caches hold the same data and are continuously invalidated by the respective
other cache. These kinds of cache misses are called invalidation misses. Third,
reduce competition for cache lines between processors that share a cache, which
causes cache misses called compulsory misses.

Our goals in this work are to investigate whether optimizing thread placement
has an influence on performance and to evaluate techniques to place threads. To
achieve these goals, we used simulation tools and tests on real machines with a
variety of benchmarks. Our focus is to optimize the use of memory hierarchies
and interconnections, but not the optimization of the usage of the execution
units when threads share them.

Existing approaches analyze cache statistics gathered throughout the exe-
cution, therefore making them dependent on the architecture. In our study we
observed the memory accesses of each thread, regardless of cache parameters
(such as line size and associativity), thus separating the program’s behaviour
from the architecture. We implemented a new mechanism to transform memory
accesses from different threads to communication patterns and used them to
place threads that share data on cores that share levels of cache, thereby match-
ing the program’s behaviour with the cache organization of the architecture.

In the experiments, using our thread mapping algorithms, the execution time
was reduced by up to 45% while also reducing the variance. The reduction of
variance is important because it helps to predict the execution time.

The remainder of this document is organized as follows: In Section 2, we
present a motivation for optimizing thread placement on multi-core by using a
producer/consumer benchmark. We explain the way traces are converted to a
sharing metric and the algorithms used to place threads in Section 3. In Section
4, the evaluation methodology, multi-core architectures and tools we used are
presented. Results of our tests on two different architectures are shown and
analyzed in Section 5. In Sections 6, related work is discussed. Finally, Section
7 summarizes conclusions and outlines future work.



2 Motivation

In this section, the significant influence of the thread placement strategy on the
performance of multi-core systems is shown. This is done by running a pro-
ducer/consumer benchmark with different thread placements and observing ex-
ecution time and cache statistics.

Consider a processor with four cores, where each pair of cores shares a L2
cache. If two threads sharing data are placed on cores that do not share the
cache, the overall execution time tends to be higher than when they run on
cores which share the cache, because a slower (in terms of both latency and
bandwidth) interconnection will be used.

A common situation in shared-memory programs is to have one thread writ-
ing to an area of memory and another reading from the same area. In an
invalidation-based coherency protocol, like MESI, this can cause one thread to
successively invalidate the cache lines of the other thread, thereby causing cache
misses due to invalidations.

Another problem is when there are memory hungry threads sharing a cache,
therefore evicting lines from each other. These compulsory cache misses are one
of the reasons for decreased performance in multi-core systems.

To estimate the impact of thread placement on the execution time and cache
misses, we created a synthetic benchmark using the OpenMP API which consists
of two pairs of threads, each pair having a writer and a reader thread. The writer
thread writes N times a vector of K integers and the reader thread reads each
element of that vector. The vector is protected by a lock so that a reader thread
only accesses the vector after it has been written to.

When using a multi-core machine with four cores, each two sharing an L2
cache, it is easy to find the best and worst placement in terms of cache sharing:
a best configuration, where each pair of threads can make use of the shared L2
cache; and a worst configuration, where each pair of threads is running on cores
that do not share the L2 cache.

For the simulations we used Virtutech Simics [9], a full system simulator on
the instruction set level. As explained above, we simulated with a focus on two
types of cache misses: on cache misses due to invalidation and on compulsory
cache misses. The parameters we used for these two configurations are presented
in Table 1.

In order to compare the number of cache misses between the best and the
worst configuration, we modeled the cache layout for the Simics virtual machine
based on the Intel Xeon 5405, a quad-core processor which has 6 MByte L2
cache shared between each pair of cores. The cache and memory latencies were
calculated using the CACTI memory modeling tool [14].

The results in Table 2 show that optimizing the thread placement improves
the execution time and reduces the number of cache misses and MESI invalida-
tions greatly.



Focus on cache misses Focus on compulsory
due to invalidations cache misses

Vector size 256 KByte 4 MByte

Number of integers
65536 1048576

in the vector (K)

Number of
100 10

iterations (N)

Table 1. Parameters of the synthetic benchmark configurations

Focus on cache misses Focus on compulsory
due to invalidations cache misses

best case worst case best case worst case

Execution time 2.576 s 3.086 s 4.156 s 5.127 s

Speedup 19.8% 23.4%

L2 cache misses 1.5% 91.2% 5.7% 98.5%

MESI
3928 417496 14539 589890

invalidations

Table 2. Results of executing the synthetic benchmark in Simics.

3 Data Sharing Metric and Placement Algorithms

To be able to place threads according to the amount of data sharing between
them, a metric which quantifies this sharing is needed. In this section, we in-
troduce a new metric and propose two new thread placement algorithms using
it.

3.1 Data Sharing Metric

We propose to use the number of accesses to the same memory locations by two
threads as a metric for how much two threads access shared data. We constructed
a matrix with the data sharing metric of each pair of threads, referred to in the
rest of the paper as a communication matrix.

The communication matrix can be generated as follows: In the beginning,
collect the number of memory accesses (both reads and writes) to each address
for every thread. Then, calculate the data sharing for each pair of threads by
adding up the number of accesses to the same addresses by the thread pair.

For each workload, we generated a communication matrix with the memory
access traces generated in the simulation. An example of a communication matrix
for the advection workload is shown in Table 3. Each table cell contains the
number of accesses to equal memory addresses by two threads, in millions.



Thread
0 1 2 3 4 5 6 7

ID

0 2.1 2.1 4.4 4.7 2.1 2.1 1.9

1 2.1 2.1 2.1 2.1 3.2 2.1 1.9

2 2.1 2.1 2.1 4.8 3.5 2.1 1.9

3 4.4 2.1 2.1 2.2 2.3 2.2 3.1

4 4.7 2.1 4.8 2.2 4.7 4.1 2.2

5 2.1 3.2 3.5 2.3 4.7 6.9 3.1

6 2.1 2.1 2.1 2.2 4.1 6.9 2.4

7 1.9 1.9 1.9 3.1 2.2 3.1 2.4

Table 3. Example of a communication matrix.

In this example, the number of data accesses to the same memory area by
threads 5 and 6 was 6.9 million, by threads 2 and 7 it was 1.9 million. Therefore,
it would be better in terms of sharing to place threads 5 and 6 on two cores
which share the cache than threads 2 and 7.

3.2 Placement Algorithms

In this section, we describe the two different placement algorithms we devel-
oped to optimize the thread placement on the cores. These algorithms use the
communication matrix described in the last section.

Heuristic Algorithm The heuristic algorithm consists of two steps: First,
order all possible pairs of threads according to the data sharing metric measured
between them. Second, for each pair in the sorted list, put the two threads on
two cores which share the cache and remove the two threads from the list.

The advantage of this algorithm is that it is very fast; typical execution time
is less than one second, even when placing 32 threads. On the other hand, it only
considers pairs of threads, not bigger groups. This leads to suboptimal behavior
when there are groups of three or four threads sharing lots of memory accesses
among themselves. Additionally, this algorithm leads to an uneven distribution
of threads when the number of threads is not dividable by the number of cores;
this leads to an increase in execution time.

Exhaustive Search An approach to find the best thread placement in terms of
data sharing is to try every possible placement, which is done in this algorithm. It
works as follows: First, generate all possible combinations of thread placements,
taking into account the symmetry of the architecture. This has to be done only
once for each CPU architecture and number of threads. Then, calculate the gain
of each placement by adding up the numbers from the communication matrix
for each thread pair. Finally, choose the thread placement with the highest gain.



CPU 0

L3
8 MByte

Core 1
2-SMT

L1-D
32 KB

L1-I
32 KB

L2
256 KByte

Core 0
2-SMT

L1-D
32 KB

L1-I
32 KB

L2
256 KByte

Core 2
2-SMT

L1-D
32 KB

L1-I
32 KB

L2
256 KByte

Core 3
2-SMT

L1-D
32 KB

L1-I
32 KB

L2
256 KByte

L3
8 MByte

Core 5
2-SMT

L1-D
32 KB

L1-I
32 KB

L2
256 KByte

Core 4
2-SMT

L1-D
32 KB

L1-I
32 KB

L2
256 KByte

Core 6
2-SMT

L1-D
32 KB

L1-I
32 KB

L2
256 KByte

Core 7
2-SMT

L1-D
32 KB

L1-I
32 KB

L2
256 KByte

CPU 1

Fig. 1. Intel Nehalem architecture

The big disadvantage of this algorithm is that it is only feasible for a small
number of threads (≤ 16), because the number of combinations is very high. In
our tests, it took about 1 hour to find the thread placement for 16 threads, and
we estimated that it would take years to find the placement for 32 threads.

We compared the results of these two placement algorithms with the results
of running the workloads when the threads were scheduled by the operating
systems. In the result section, the heuristic algorithm, the exhaustive search
and the operating system scheduler are labeled as HEUR, EXH and AUTO
respectively.

4 Methodology

For the evaluation of thread placement, we used two state-of-the-art computer
architectures, Intel Nehalem (Core i7) [2] and Sun Niagara 2 (UltraSPARC T2)
[11]. They are described in this section. In addition, we explain how we generated
the memory access traces needed to find the data sharing patterns and introduce
the workloads used to measure the impact of optimizing the thread placement.

4.1 Architectures

Intel Nehalem We used two physical processors with four cores and eight
megabytes of L3 cache each. Each core has 256 KBytes of L2 cache and is able
to execute two threads in parallel using simultaneous multithreading (SMT).
Figure 1 depicts the Nehalem architecture.

We ran the workloads with two threads to measure the influence of sharing
the cache on the performance. For two threads, there are three possible place-
ments:



Core 0
8-IMT

L1-D
8 KB

L1-I
16 KB

L2
4 MByte

Core 1
8-IMT

L1-D
8 KB

L1-I
16 KB

Core 2
8-IMT

L1-D
8 KB

L1-I
16 KB

Core 3
8-IMT

L1-D
8 KB

L1-I
16 KB

Fig. 2. Sun Niagara 2 architecture

Different processors Placing the threads on different processors makes
the threads unable to share data via the L2 or L3 cache.

Same core Placing the threads on the same core enables them to share
data via the L2 and L3 cache, but makes them compete for resources
on the core.

Same processor, different core Placing the threads on the same proces-
sor, but not on the same core, enables the threads to share data
via the L3 but not the L2 cache.

In the result section, the thread placements for two cores are labeled DIFF
CPU, SAME CORE and SAME CPU respectively. The workloads were compiled
with GCC 4.3.3 and executed on Ubuntu 9.04 with the kernel version 2.6.28-11.

Sun Niagara 2 We used one processor consisting of four cores, each of whom
is able to execute eight threads using interleaved multithreading (IMT). Each
core is divided into two thread groups, which can execute one thread at a time.
All cores share a L2 cache of 4 MByte, which is divided into 4 banks. Figure 2
depicts the Niagara 2 architecture.

As in the case, we measured the influence of sharing the cache on the per-
formance by running the workloads with two threads. Again, there are three
possible placements for two threads:

Different core When placed on different cores, the threads can share data
via the L2 cache.

Same core, different thread group Threads can share data via the L1
and L2 cache, but they start to compete for resources.

Same thread group Threads can share data via the L1 and L2 cache, but
since only one thread can run in a thread group at the same time, the
competition for resources increases.

In the result section, the thread placements for two cores are labeled DIFF
CORE, DIFF TG and SAME TG respectively. The workloads were compiled
with GCC 4.3.3 and executed on Solaris 10.



4.2 Memory Access Traces

To be able to place threads, we have to find the data sharing patterns between
the threads. We obtained these patterns by using Simics, running the workloads
in a simulated UltraSPARC machine. We used special instructions provided by
Simics (called magic instructions) to register the threads created by the workload
with the simulation environment and enable the simulator to track the memory
accesses of each thread and record them to a file, which was processed with the
algorithm described in section 3.1 to generate a communication matrix.

4.3 Workloads

In order to analyze the impact of thread placement, we selected a group of paral-
lel programs with different parallelization schemes and data sharing behaviour.
Two well known scientific benchmarks, two emerging applications and a kernel
from a weather forecasting model were used. All workloads were compiled with
the default compiler flags specified in their respective makefiles.

From the SPLASH2 benchmark suite [15], the LU kernel was used. It com-
prises the factorization of a dense matrix as a lower triangular and an upper
triangular matrix. The matrix is divided in blocks and these are distributed
among the threads. We used the two available versions: contiguous (each block
is allocated contiguously) and non-contiguous.

Also from SPLASH2, the parallel version of the complex 1-D FFT algorithm
was chosen. It shows all-to-all communication throughout the calculation. Since
the inter-thread communication graph is not easily separated in clusters, thread
placement is not intuitively beneficial.

Dedup from the PARSEC benchmark suite [3] is a kernel that implements a
technique called deduplication to compress a datastream. In its parallel phase,
it uses three pipeline stages to divide the work. This means that the number of
threads created is three times greater than the number of indicated when running
the program. Because of that, we did not run Parsec with just two threads (this
mapping is impossible) and with the exhaustive search placement (exhaustive
search unable to complete in realistic run time).

As another emerging problem from the PARSEC benchmark suite, Stream-
cluster solves the online clustering, which is a data mining problem. An impor-
tant characteristic is that it is memory bound for small input sizes.

Advection [6] is a part of the Brazilian Regional Atmospheric Modeling Sys-
tem, a weather forecast program. It uses finite difference methods to compute
scalar and vector fields interaction. Basically, the work is evenly divided by the
number of threads and they access common ghost zones.

In Table 4 the problem size, which describes the input data, and the memory
usage for each benchmark is shown. The memory usage varies between 10 MByte
and 3 GBytes, indicating different cache utilization scenarios; in the case of
Streamcluster, the application data fits into the cache almost completely, in the
other cases, the application data is much bigger than the cache. The memory
usage of all workloads was small enough to fit into the main memory of the test
machines.



Benchmark Problem size Memory usage

LU 3072*3072 matrix 75 MByte

FFT 67108864 complex doubles 3.0 GByte

Dedup File of 1 GByte 1.9 GByte

Streamcluster 16384 points 10 MByte

Advection 400*400 grid 1.1 GByte

Table 4. Problem size and memory usage of the benchmarks.

5 Results and Analysis

In this section we present the results of our experiments and analyze them. For
each architecture, we analyzed first the performance difference of running two
threads on two cores with and without a shared cache. Then, we analyze the
results of our proposed approach for 8, 16 and, in the case of the Sun Niagara 2,
32 threads, comparing them to the operating system scheduler. We show both
the average execution time of 50 runs and the confidence interval for a confidence
level of 90% in a Student’s t-distribution.

5.1 Intel Nehalem

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

LU Cont. LU NonCont. FFT Advection Dedup Streamcluster
1 AUTO 59.70 65.03 48.72 19.49 25.06 28.91

2 AUTO 30.64 34.14 29.41 9.99 13.48 14.34

2 DIFF CPU 30.96 34.30 29.68 9.89 14.32

2 SAME CORE 53.55 55.24 39.02 19.61 26.90

2 SAME CPU 30.92 32.07 27.61 9.79 14.42

Av
er

ag
e 

Ti
m

e 
(s

)

Fig. 3. Results for one and two threads on Intel Nehalem

The results shown in Figure 3 show the results for 1 and 2 threads. As
expected, when the two threads are running on the same core, the performance
decreases drastically because the threads are competing for execution units. The
other thread placements perform roughly twice as fast as running with just one



thread. The results for the automatic scheduling are very close to the results
with optimized thread placement, which suggests that the OS scheduler is aware
of this performance problem and does not schedule two threads on the same core
unless necessary.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

LU Cont. LU NonCont. FFT Advection Dedup Streamcluster
8 AUTO 11.50 10.79 14.28 3.09 14.36 7.91

8 EXH 9.08 9.30 13.81 2.72 4.36

8 HEUR 9.08 9.30 13.82 2.70 10.52 4.33

Av
er

ag
e 

Ti
m

e 
(s

)

Fig. 4. Results for eight threads on Intel Nehalem

Figure 4 shows the result for 8 threads running on Intel Nehalem. In this
configuration, we achieved the biggest performance increases in our tests. All
benchmarks except FFT show a significant reduction in execution time, Stream-
cluster reducing it by 45% while also reducing the variance.

0.00

5.00

10.00

15.00

20.00

25.00

LU Cont. LU NonCont. FFT Advection Dedup Streamcluster
16 AUTO 8.56 8.17 13.09 3.04 18.99 5.56

16 EXH 8.33 7.97 12.79 2.69 4.26

16 HEUR 8.36 7.96 12.81 2.69 23.09 4.23

Av
er

ag
e 

Ti
m

e 
(s

)

Fig. 5. Results for 16 threads on Intel Nehalem



Running with 16 threads, the results as presented in Figure 5 are different.
Optimizing the thread placement actually increases the execution time of dedup,
while the LU and FFT benchmarks show no difference in performance. Advection
and Streamcluster have an improvement of about 10% and 25%, respectively.
Additionally, the performance of all benchmarks is about the same or even worse
than when running with 8 threads. The reason for this behaviour is that the
threads are starting to compete for the execution units on the cores.

To summarize, optimizing thread placement on Intel Nehalem decreased exe-
cution time and variance in almost all our tests. However, increasing the number
of threads from 8 to 16 has no benefits and can actually lead to worse results.
Additionally, our experiments showed that the heuristic algorithm has a similar
performance benefit as the exhaustive search algorithm with a drastically lower
run time.

5.2 Sun Niagara 2

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00

LU Cont. LU NonCont. FFT Advection Dedup Streamcluster
1 AUTO 97.97 107.21 29.52 228.77 211.46 372.33

2 AUTO 50.52 54.36 18.40 114.62 112.65 186.95

2 DIFF CORE 50.61 54.50 18.44 115.07 187.81

2 DIFF TG 52.55 56.69 18.64 117.76 191.91

2 SAME TG 54.83 59.65 19.40 126.84 203.71

Av
er

ag
e 

Ti
m

e 
(s

)

Fig. 6. Results for one and two threads on Sun Niagara 2

For the Sun Niagara 2 architecture, we also compared the performance when
running two threads on cores with and without shared cache. The results in
Figure 6 show that the performance difference is not as high as in the Nehalem
architecture, suggesting that the results for the optimized thread placement with
8 to 32 threads are not going to be as good as with Nehalem.

For eight threads, there was no difference in average execution time for
any benchmark (Figure 7). There was an increase in variance in the LU (non-
contiguous).

For 16 threads (Figure 8), the performance of LU, FFT and Dedup decreased
when using optimized thread placement. In addition, the variance of the execu-



0.00

10.00

20.00

30.00

40.00

50.00

60.00

LU Cont. LU NonCont. FFT Advection Dedup Streamcluster
8 AUTO 15.62 15.46 10.12 30.07 50.99 49.39

8 EXH 15.39 16.75 10.18 30.13 49.51

8 HEUR 15.46 15.98 10.18 30.13 50.73 49.51

Av
er

ag
e 

Ti
m

e 
(s

)

Fig. 7. Results for eight threads on Sun Niagara 2

0.00

10.00

20.00

30.00

40.00

50.00

60.00

LU Cont. LU NonCont. FFT Advection Dedup Streamcluster

16 AUTO 11.36 10.19 8.99 19.48 48.96 30.45

16 EXH 14.18 15.59 9.84 19.39 30.42

16 HEUR 15.00 13.89 10.36 19.36 54.07 30.42

Av
er

ag
e 

Ti
m

e 
(s

)

Fig. 8. Results for 16 threads on Sun Niagara 2

tion time of LU increased as well. Advection and Streamcluster show no differ-
ence in behaviour.

The results of running with 32 threads (Figure 9) are even worse in the case
of LU and FFT. Both average execution time and variance increase drastically
when running with optimized thread placement in these benchmarks. Advection,
Dedup and Streamcluster show the same behaviour with and without optimized
thread placement.

To summarize, optimizing thread placement on Niagara 2 did not decrease
execution time and actually led to worse results for 16 and 32 threads, both in
terms of performance and variance of the execution time. The reasons for this
behaviour is that it is only possible to optimize data sharing through the very
small L1 data cache, as the L2 cache is shared between all the cores.



0.00

10.00

20.00

30.00

40.00

50.00

60.00

LU Cont. LU NonCont. FFT Advection Dedup Streamcluster

32 AUTO 11.17 9.72 8.74 19.98 50.91 41.98

32 HEUR 31.38 24.49 16.87 20.18 51.55 41.90

Av
er

ag
e 

Ti
m

e 
(s

)

Fig. 9. Results for 32 threads on Sun Niagara 2

6 Related Work

In our previous work [10] a process mapping technique for clusters of multi-core
processors was presented using MPI traces in order to identify the communica-
tion pattern. The impact of placing threads on multi-core is analyzed in combi-
nation with placing threads on clusters. Motivated by those results, we extended
this approach to multi-core architectures and shared memory.

The MPI Process Placement toolset from Chen et al. [5] aims to find the
optimized mapping automatically using a profile-guided approach for SMP clus-
ters and multiclusters, where the communication among the processes is much
more easy to obtain because it is made explicit by the MPI primitives. The key
difference between this work and ours is the way we obtain the communication
patterns by monitoring the application in a simulated environment.

The work from Thekkath and Eggers [13] evaluates the impact of thread
placement on multithreaded architectures using placement algorithms fed by
trace-driven simulators, but despite the potential of this technique, no perfor-
mance improvements were achieved due to the memory access patterns of the
applications. We used real machines as a testbed which take into account the
dynamic behaviour of parallel application, such as lock contention. Moreover we
showed improvements in execution time in the Intel Nehalem architecture.

Tam, Azimi and Stumm [12] used performance monitoring units to detect
sharing patterns among threads running on a multiprocessor architecture. Even
with the performance improvements, the authors show that it is possible to
increase the performance even more by using hand optimization. The study of
Klug et al. [7] presents a framework that uses the hardware counters in order to
find the best thread placement on multi-core machines. These two approaches
are tightly coupled to the architecture, while ours is less dependent. In our study
we observed the memory accesses of each thread, regardless of cache parameters



(for example, line size and associativity), thus separating the program’s behavior
from the architecture.

Broquedis et al. [4] introduce the hwloc framework which gathers hardware
information and exposes it. As a demonstration, they use it change hardware
affinities in parallel applications to improve the performance of OpenMP and
MPI applications. When using OpenMP, not the memory accesses, but the struc-
ture of the program is used, leading to good results. However, the application
used creates more than 100,000 threads which is an uncommon situation, while
we evaluated a diverse set of workloads with more common configurations.

7 Conclusions and Future Work

This work presents an approach to improve execution time of workloads by
placing threads according to their communication patterns. In order to find the
communication patterns, we executed each workload in a simulator to generate
memory access traces and used these traces to place the threads with two dif-
ferent algorithms. Our approach was evaluated by comparing execution times
when running with optimized placement and the operating system scheduler.

Our tests show that there are two factors affecting thread placement: the
cache architecture of the processor and the data sharing properties of the work-
loads. The cache architecture of the processor had the biggest influence: on Sun
Niagara 2, execution time remained the same or was increased, while on Intel Ne-
halem it was reduced in almost all cases. On Sun Niagara 2, optimizing thread
placement can only improve data sharing on the small L1 cache, because the
L2 cache is shared by all cores anyway. Optimizing thread placement on Intel
Nehalem can improve data sharing on the L1 and L2 cache, and, since we are
running with two physical processors, on the L3 cache as well. The data sharing
properties of the workloads influenced performance improvements significantly
on Intel Nehalem, where it ranged between 5% in the case of FFT and 45%
in the case of Streamcluster. The reason for that is the communication pattern
of the workloads: FFT has an all-to-all communication, while the threads of
Streamcluster communicate in a pipeline.

To summarize, our results on Intel Nehalem show that execution time can be
reduced greatly in a wide variety of workloads by optimizing thread placement.
Furthermore, our experiments showed that the heuristic algorithm has a similar
performance benefit as the exhaustive search algorithm with a drastically lower
run time.

For the future, we intend to use the temporal characteristics of the memory
accesses to place threads dynamically, i.e., to change the placement during the
runtime of the workload according to temporal changes in the communication
patterns. One step further, we intend to evaluate the possibility of moving op-
timized thread placement into the Linux kernel, thereby making it completely
transparent and removing the need to execute the workloads in a simulator be-
forehand.



Acknowledgements

This work was partially supported by a grant from the National Counsel of
Technological and Scientific Development (CNPq) and was developed under a
GMD-CAPES cooperation program.

References

1. K. Asanovic et al. The landscape of parallel computing research: A view from
berkeley. University of California at Berkeley, Technical Report No. UCB/EECS-
2006-183, 2006.

2. K.J. Barker et al. A Performance Evaluation of the Nehalem Quad-Core Processor
for Scientific Computing. Parallel Processing Letters, 2008.

3. C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC benchmark suite:
Characterization and architectural implications. In International Conference on
Parallel Architectures and Compilation Techniques, 2008.

4. Franois Broquedis et al. hwloc: a Generic Framework for Managing Hardware
Affinities in HPC Applications. In Euromicro International Conference on Parallel,
Distributed and Network-Based Computing.

5. Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn. MPIPP: an
automatic profile-guided parallel process placement toolset for SMP clusters and
multiclusters. In International Conference on Supercomputing, 2006.

6. A.L. Fazenda, E.H. Enari, L.F. Rodrigues, and J. Panetta. Towards Production
Code Effective Portability among Vector Machines and Microprocessor-Based Ar-
chitectures. In International Symposium on Computer Architecture and High Per-
formance Computing, 2006.

7. Tobias Klug, Michael Ott, Josef Weidendorfer, and Trinitis Carsten. autopin -
Automated Optimization of Thread-to-Core Pinning on Multicore Systems. In
Workshop on Programmability Issues for Multi-Core Computers, 2008.

8. R. Koppler. Geometry-Aided Rectilinear Partitioning of Unstructured Meshes.
Lecture Notes in Computer Science, 1999.

9. P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-
berg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full System Simulation
Platform. IEEE Computer Micro, 2002.

10. E.R. Rodrigues, F.L. Madruga, P.O.A. Navaux, and J. Panetta. Multi-core aware
process mapping and its impact on communication overhead of parallel applica-
tions. In IEEE Symposium on Computers and Communications, 2009.

11. M. Shah et al. UltraSPARC T2: A highly-threaded, power-efficient, SPARC SOC.
In IEEE Asian Solid-State Circuits Conference, 2007.

12. David Tam, Reza Azimi, and Michael Stumm. Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors. In EuroSys European Conference
on Computer Systems, 2007.

13. R. Thekkath and S.J. Eggers. Impact of sharing-based thread placement on mul-
tithreaded architectures. In International Symposium on Computer Architecture,
1994.

14. S. Thoziyoor, N. Muralimanohar, J.H. Ahn, and N.P. Jouppi. CACTI 5.1. HP
Laboratories, Palo Alto, Tech. Rep, 2008.

15. S.C. Woo et al. The SPLASH-2 programs: Characterization and methodologi-
cal considerations. In International Symposium on Computer Architecture. ACM,
1995.


