
Aggregation of Real-Time System Monitoring Data for Analyzing Large-Scale
Parallel and Distributed Computing Environments∗

S. Böhm1,2, C. Engelmann1, and S. L. Scott1
1Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Department of Computer Science

The University of Reading, Reading, RG6 6AH, UK
swen.boehm@bnc.info,{engelmannc,scottsl}@ornl.gov

Abstract

We present a monitoring system for large-scale
parallel and distributed computing environments that
allows to trade-off accuracy in a tunable fashion to gain
scalability without compromising fidelity. The approach
relies on classifying each gathered monitoring metric
based on individual needs and on aggregating messages
containing classes of individual monitoring metrics us-
ing a tree-based overlay network. The MRNet-based
prototype is able to significantly reduce the amount of
gathered and stored monitoring data, e.g., by a factor
of ≈56 in comparison to the Ganglia distributed moni-
toring system. A simple scaling study reveals, however,
that further efforts are needed in reducing the amount
of data to monitor future-generation extreme-scale sys-
tems with up to 1,000,000 nodes. The implemented so-
lution did not had a measurable performance impact as
the 32-node test system did not produce enough moni-
toring data to interfere with running applications.

1. Introduction

Today‘s supercomputers are typically parallel ar-
chitectures that have some distributed features. The top
tier currently scales to 50,000 multi-core compute nodes
or 300,000 processor cores. For example, the Jaguar
Cray XT5 system at Oak Ridge National Laboratory

∗This research is sponsored by the Office of Advanced Scientific
Computing Research; U.S. Department of Energy. The work was per-
formed at the Oak Ridge National Laboratory, which is managed by
UT-Battelle, LLC under Contract No. De-AC05-00OR22725. The
United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Govern-
ment retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or al-
low others to do so, for United States Government purposes.

(see http://www.nccs.gov/jaguar) has 224,256 cores in
the form of 37,376 six-core AMD Opteron processors
organized in 18,688 dual-processor compute nodes with
four 4 GB memory modules (300 TB in 74,752 mod-
ules) that are connected via a 3-D twisted torus inter-
connect. It is the world’s fastest supercomputer with
a LINPACK benchmark performance of 1.759 PFlop/s
and a theoretical peak of 2.331 PFlop/s (see the Top 500
List of Supercomputers at http://www.top500.org).

As processor frequency scaling came to a hold in
recent years due to associated power consumption and
dissipation issues, component count increases took over
in high-performance computing (HPC) for building
ever-faster supercomputers. Ongoing planning activi-
ties by national research councils in the U.S., Europe,
and Asia toward multi-petascale and exascale HPC rec-
ognize that these increases will continue (see the G8
Research Councils Initiative on Multilateral Research
Funding at http://www.dfg.de/g8-initiative and [7, 8]).
It is expected that an exascale HPC system will have
up to 1,000,000 nodes with 1,000 cores/node by 2018
(see the International Exascale Software Project at http:
//www.exascale.org and [5]).

As component counts increase, HPC systems need
to employ more distributed features to allow hardware,
system software, middleware, and applications to ex-
ploit parallelism without being hindered by the man-
agement of their massive amount of resources. Find-
ing the right balance between the general parallel na-
ture of HPC and the emergence of distributed features
at extreme-scale is creating a new set of research chal-
lenges for the parallel and distributed computing com-
munity. While existing parallel computing solutions
reach certain scaling limits, existing distributed com-
puting alternatives do not meet certain HPC perfor-
mance requirements, such as low-latency/high band-
width communication.

http://www.nccs.gov/jaguar
http://www.top500.org
http://www.dfg.de/g8-initiative
http://www.exascale.org
http://www.exascale.org

The system software research and development
presented in this paper focuses on the monitoring sub-
system that identifies compute-node health and utiliza-
tion status in supercomputers as part of their reliability,
availability and serviceability (RAS) systems. Moni-
toring solutions for HPC systems gather data (metrics)
from hardware sensors on compute-node boards, such
as temperatures, voltages, and fan speeds, as well as
from software monitors, such as processor and mem-
ory utilization, and disk and network I/O rates. These
metrics are used to determine component health issues,
such as overheating situations, voltage spikes, and fan
faults, as well as component utilization problems, such
as scheduling inefficiencies and resource contention.
The central job and resource management system is in-
formed about compute-node status changes and takes
appropriate action, such as reallocation, to assure opti-
mal utilization as well as efficient job throughput.

There are two distinct operating modes for HPC
monitoring systems. The first variant processes all met-
rics locally and sends out alarms to the central job and
resource manager, the second sends all (or select) met-
rics to the job and resource manager for processing.
While the first option is more scalable, it is unable to
identify correlation between components, such as a sys-
tematic heat increase in a set of compute nodes associ-
ated to a specific job. The second option does provide
this feature, but is more limited in scale as more data is
sent to and processed by a central manager.

This paper presents the architecture and results of
an implementation of a HPC monitoring system that
allows a tunable trade-off between these two variants,
such that scalability is enhanced through the reduction
of metrics sent to the central job and resource manager,
while the capability to perform system-wide correla-
tion analysis is maintained. The approach focuses on
classifying metrics during collection and on aggregat-
ing classified metrics across the entire system. The pre-
sented solution also opens new opportunities in scalable
in-flight processing of monitoring data.

2. Related Work

2.1. System Monitoring

Ganglia [10] (see http://ganglia.sourceforge.net) is
a scalable distributed monitoring system, where each
node monitors itself and disseminates data via multi-
cast to (1) all other nodes in a flat design targeted at
small clusters or (2) a subset in a hierarchical design
targeted at larger cluster federations. It uses Extensible
Markup Language (XML) for human readable data rep-
resentation, eXternal Data Representation (XDR) for

Figure 1. Feedback-loop control for proac-
tive fault tolerance with health monitoring, data
analysis, and application reallocation [6]

portable and efficient data transport, and the Round
Robin Database tool (RRDtool) for data storage and vi-
sualization. In Ganglia, a node-local monitoring dae-
mon process, gmond, collects various metrics from
hardware sensors and software monitors, and sends In-
ternet Protocol (IP) multicast packets to disseminate
these metrics to other gmond processes. Additional
metrics can be added to gmond with the gmetric
tool. For a hierarchical structure, a second daemon pro-
cess, gmetad, collects the data from gmond multi-
cast groups or directly from every gmond in a group.
The gmetad daemons themselves can again be queried
by another gmetad daemon to monitor federated sys-
tems. Each gmetad saves its gathered data locally
using RRDtool. Saved data is reduced (averaged) and
aged out (deleted after a certain amount of time) to
maintain fixed-size databases. Ganglia has been used
in systems with up to 2,000 compute nodes. Its de-
pendence on IP and reliance on either IP multicast or
serial query has hindered adoption to larger-scale sys-
tems, especially with custom interconnects. The com-
munication of all monitoring data of the entire system is
a clear scalability limit. Data reduction and aging in the
database makes long-term logs and data analysis with-
out a separate external database impossible.

A recent investigation by the authors [9] in stor-
ing monitoring and system log data for statistical anal-
ysis to aid proactive fault tolerance schemes revealed
certain scalability issues. Proactive fault tolerance [6]
avoids experiencing failures through preventative mea-
sures, such as by migrating application parts away from
compute nodes that are “about to fail”. It relies on a
feedback-loop control (Figure 1) with continuous health
monitoring, data analysis, and application reallocation.
This new HPC resilience approach requires a system-
wide analysis using detailed monitoring and system log

http://ganglia.sourceforge.net

data to identify anomalies and early failure indications.
The prototype system [9] uses Ganglia and Syslog-NG
to accumulate data into a MySQL database. On a 64-
node cluster, all syslog messages and over 20 metrics
were gathered in a 30 second interval for offline statisti-
cal analysis. The amount of data exceeded 20 GB in 27
days of operation with a 30 second sampling interval,
corresponding to an accumulation rate of ≈33 MB/h or
≈275 kB/interval. This experiment showed that storing
raw data is a serious scalability challenge that needs to
be addressed. This work was the motivating factor for
the research and development presented in this paper.

Nagios [1] (see http://www.nagios.org) is a infor-
mation technology (IT) infrastructure monitoring solu-
tion that allows storing metrics in a Structured Query
Language (SQL) database and offers visualization via
a Web-based front-end. For metric data collection, it
supports active (linear) querying of monitored resources
similar to Ganglia’s gmetad, as well as passive notifi-
cations or data streams from monitored resources simi-
lar to Ganglia’s gmond. The primary target for Nagios
is monitoring IT server farms.

OVIS 2 [3] (see http://ovis.ca.sandia.gov) is a hi-
erarchical system monitoring and analysis tool that col-
lects metrics directly from compute nodes or from other
monitoring solutions, such as Ganglia, for process-
ing using statistical methods for graphical presentation.
OVIS 2 supports SQL databases, as well as flat and hi-
erarchical approaches similar to Ganglia. In addition,
it offers a comprehensive visualization tool, including
a 3D real-time representation of the monitored system
and its current state. OVIS 2 is geared toward opera-
tions support for large-scale HPC systems.

Most HPC vendors, such as Cray and IBM, supply
their own proprietary RAS systems that offer features
similar to Ganglia (see http://docs.cray.com and http://
www.ibm.com/deepcomputing). For extreme-scale sys-
tems, such as Cray’s XT series or IBM’s Blue Gene se-
ries, separate RAS nodes and a separate RAS network is
deployed to allow non-intrusive system monitoring and
management. These RAS sub-systems are deployed in
a hierarchical fashion, such that z compute nodes are
monitored by a level-0 RAS node, y level-0 RAS nodes
are monitored by a level-1 RAS node, and so on. To
avoid massive amounts of monitoring data, metrics are
only sent to the root RAS node when a certain threshold
(alarm or significant change) is triggered.

Recent advances in purely distributed monitoring
solutions disseminate metrics using a Gossip protocol
in peer-to-peer networks [15, 14]. While Gossip proto-
cols significantly enhance scalability, they trade off the
coordinated real-time response that is needed for HPC
job and resource management.

2.2. Tree-based Overlay Networks

Recent advances in collecting performance metrics
of HPC applications at runtime focused on tree-based
overlay networks (TBONs).

Multicast Reduction Network (MRNet) [13] (see
http://www.paradyn.org/mrnet) is a software overlay
network for multicast and reduction communication in
parallel and distributed environments. It uses a tree of
processes between a front-end (tree root) and back-ends
(tree leaves) for scalable communication performance.
In addition to communication, MRNet allows compu-
tation on the data that is transported trough the TBON
at each tree node in a scalable fan-in/-out tree fashion
using up-stream and down-stream filter plugins. This
programming model offers simplicity and scalability, as
well as fault tolerance if no state is kept at tree nodes.

MRNet has been recently used in conjunction with
the TAU Performance SystemTM as TAUoverMRNet
(ToM) [11] for scalable profiling and tracing of HPC
applications. ToM uses statistical filtering at tree nodes
to generate performance profile histograms.

MRNet has also been recently used in with Ganglia
for aggregating RRDs from compute nodes via group
file operations, which allow to access local file systems
in a distributed system as it would be one networked
file system [4]. The RRD files on the compute nodes
are read by the root node in a fan-in tree fashion.

3. Technical Approach

The targeted monitoring solution for large-scale
HPC systems needs to be scalable, but it also needs to
supply real-time data to support allocation decisions by
the central job and resource manager. The taken tech-
nical approach aims at aggregating real-time monitor-
ing data in a scalable fashion using a TBON, such that
only necessary information is transmitted via the fan-in
tree and the monitoring system is managed with control
messages via the fan-out tree.

Figure 2 depicts the overall architecture of the tar-
geted monitoring system. The back-end processes of
the TBON are located on all compute nodes and per-
form monitoring activities, as well as, classify collected
metrics to reduce the amount of data that is transmit-
ted. The intermediate processes reside on a subset of the
compute nodes and aggregate collected metrics in a fan-
in tree fashion. Optional computation, such as statistical
analysis similar to ToM (see Section 2.2 and [11]), may
be performed by the intermediate processes while the
data is transported toward the front-end process. The in-
termediate processes are connected in a way that closely
matches the real network architecture to get maximum

http://www.nagios.org
http://ovis.ca.sandia.gov
http://docs.cray.com
http://www.ibm.com/deepcomputing
http://www.ibm.com/deepcomputing
http://www.paradyn.org/mrnet

Analysis

Monitor

Database

Aggregation
and

Analysis

Classification

Front-end Process

Intermediate
Processes

Back-end
Processes

Figure 2. Utilizing a tree-based overlay net-
work, such as MRNet, for scalable aggregation
and analysis of real-time monitoring data

performance. The front-end process optionally per-
forms further computation on the data and stores it in
a database for processing by external tools.

The classification of monitoring data essentially
reduces the granularity of metrics. Since each met-
ric has a different meaning and may require a differ-
ent classification scheme, individual configuration on a
metric-by-metric basis is employed. A simple classifi-
cation scheme, like under=0|normal=1|over=2,
does not give much details. To allow adaptation to spe-
cific metrics and use cases, a completely configurable
classification scheme is supported that even allows to
have one class per metric value, i.e., to transmit the ac-
tual metric value instead of its class. The classification
scheme can be changed at runtime by reconfiguring the
monitoring system to allow for adaptation, such as for a
more fine-grain observation when needed.

Data aggregation along the fan-in tree can be syn-
chronous or asynchronous. In the synchronous variant,
all back-ends send a message containing their current
classes in a certain interval to their respective interme-
diates. All intermediates wait for the sub-tree data be-
fore passing it on as aggregated message. Unchanged
classes are generally omitted. In the asynchronous ver-
sion, intermediates route all messages individually. As
this variant generally creates more messages and re-
quires intermediates to maintain state if computation is
involved, the synchronous variant is preferred.

Data analysis may be optionally performed at the
intermediates, such as to further reduce the amount of
data or to pre-process the data for evaluation at the root.
Computation may also optionally be performed at the
root, such as for a system-wide reliability or load analy-
sis. The aggregated data is stored in a database without
a predefined reduction or aging policy to allow for off-
line analysis and to enable experimental on-line analy-
sis based on prior off-line analysis results.

With the data already stored in the database and
continuous updates, the monitoring system produces an

aggregated representation (view) of the health and uti-
lization status of the monitored computing system in
real-time in the form of classified metric data. The real-
time window is defined by the collection interval on the
back-ends and the time to communicate metric data to
the front-end via the TBON. If the collection interval on
the back-ends is much larger than the time to commu-
nicate the data to the front-end, which is expected to be
the case even for extreme-scale systems due to the em-
ployed tree-based communication subsystem, the col-
lection interval becomes the determining factor for the
real-time properties of this monitoring system.

4. Implementation

MRNet has already proven to be very powerful
TBON solution. The presented work is a newly imple-
mented system monitoring framework based on MRNet
as a communication substrate. Figure 3 details its ar-
chitecture, including the physical location and commu-
nication setup of the TBON’s front-end, back-end and
intermediate processes. Figure 4 shows the interaction
between front-end and back-ends, for which the com-
munication is routed via the fan-in/-out tree formed by
the intermediates. More details about each component
are provided in the following.

Filter
Plug-in

Figure 3. Mapping TBON front-end, intermedi-
ates, and back-ends of the implemented moni-
toring framework to nodes in a HPC system

Front-End Process Back-End Processes

Load Configuration

Initialize TBON Create Back-Ends Connect to TBON

Load Modules

Validate Configuration Register Reader

Create Monitoring Thread

Capture Metrics

Wait for next Interval

Start Monitoring

Acknowledge Configuration

Transmit Configuration

Create Listener Thread

Store Metrics Transmit Metrics

Wait for new Metrics

Figure 4. Interaction between front-end and
back-ends (communication via intermediates)

The monitoring system follows an object-oriented
design and is implemented in C++. It utilizes the Boost
C++ libraries (see http://www.boost.org) for efficiency
and for object serialization support. It also relies on the
GNU libtool dynamic library loader (LTDL, see http:
//www.gnu.org/software/libtool) for portable support of
loading monitoring modules at the back-ends (for each
metric or metric group) and processing modules at the
intermediates (metric aggregation and statistical filters).
The C++ interface to MySQL is used for storing met-
ric update message objects directly into the database.
The distribution relies on the GNU autotools (see http:
//www.gnu.org/software/autoconf) for portability.

4.1. Front-End Process

The front-end (FE) is located on the RAS manage-
ment node of the HPC system, which is also often the
head node running the system’s job and resource man-
agement service. It is responsible for setting up the
TBON, including the intermediates and back-ends, and
for storing the received data in a MySQL database.

For instantiation, MRNet is booted up and config-
ured with one fan-out stream for control messages and
one fan-in stream for monitoring messages. Once all
intermediates and back-ends are up and running, a con-
figuration message is sent out to set up the in-flight (fan-
in) processing at the intermediates, and the data collec-
tion and classification at the back-ends The intermedi-
ates and back-ends load needed modules using the GNU
libtool dynamic library loader and configure them ac-
cordingly. The front-end is able to change the configu-
ration, especially the classification scheme for any met-
ric, at this point only by reconfiguring the entire system.
Support for individual reconfiguration of intermediates
and back-ends for each metric at runtime is planned.

As the back-ends only transmit updates for each
metric, i.e., class changes, the front end is also stor-
ing only these changes with the respective time stamp
in the database. Both, the classification scheme and the
updates-only behavior, provide a significant reduction
in data traffic and database size. Database SQL queries
are able to reconstruct a snapshot at a specific point in
time by considering prior metric updates. Data process-
ing at the front-end, such as for statistical analysis, is
currently performed off-line and not integrated as an on-
line tool as this is an ongoing research project.

4.2. Back-End Processes

The back-ends (BEs) are located on the nodes to
be monitored, i.e., on the compute and service nodes
of the HPC system. Optionally, a back-end may also

reside on the front-end node. The current monitoring
support in the back-ends offers gathering metrics using
the /proc file system for data available via the operat-
ing system and libsensors for hardware sensor data
available via the Intelligent Platform Management In-
terface (IPMI) (see http://openipmi.sourceforge.net).

The configuration message from the front-end con-
tains the list of metrics to be gathered, and a classifi-
cation scheme and collection interval for each metric.
The back-end is designed in a modular fashion (using
dynamic libraries) to allow extending collection to dif-
ferent metrics and mechanisms, and to reduce the back-
end’s footprint to the necessary minimum.

Collection, classification, and transmission is per-
formed in regular intervals for each metric. Overlap-
ping metric intervals and respective outgoing messages
are aggregated to allow for efficient operation, i.e., only
one message goes out for each interval containing the
respective metric IDs and classes (see Figure 5). As
mentioned earlier, these messages contain metric up-
dates only. They are sent to the intermediates for ag-
gregation in the fan-in tree (see next section).

back-end ID count metric ID class · · · metric ID class

Figure 5. Message format for transferring met-
ric updates from back-ends to intermediates

4.3. Intermediate Processes

The intermediates are located on the same nodes
as the back-ends and facilitate the TBON communica-
tion (see Figure 3 in Section 4). If a back-end is also
located on the front-end node (for monitoring the front-
end node), an intermediate may be placed there as well.
Some advanced HPC systems, such as the Cray XT se-
ries and the IBM Blue Gene series, already have hier-
archical RAS systems (see Section 2.1), on which the
TBON can be mapped to by placing an intermediate on
each RAS system node.

Configured for synchronous operation, the inter-
mediates utilize message aggregation plug-ins (primi-
tive forwarding filters) loaded at configuration time that
simply attach incoming messages to each other (see Fig-
ure 6). As wavefronts of metric updates progress along
the fan-in tree in a synchronous fashion, the number of
messages shrinks and their size grows with each step
toward the root (front-end).

back-end ID count metric ID class · · · metric ID class · · ·
· · ·

· · · back-end ID count metric ID class · · · metric ID class

Figure 6. Message format for aggregating met-
ric updates by the intermediates

http://www.boost.org
http://www.gnu.org/software/libtool
http://www.gnu.org/software/libtool
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf
http://openipmi.sourceforge.net

The synchronous operation and data aggregation
permits in-flight processing, such as statistical analysis,
by applying the same operation on the incoming data
at each intermediate. However, data processing at the
intermediates using more advanced plugins is currently
not implemented as this is an ongoing research project.

5. Experimental Results

5.1. Monitoring Data Accumulation

We deployed the framework on the same 64-node
cluster (in a 32-node degraded fashion due to faulty
hardware) that was used for our earlier investigations
(see Section 2.1 and [9, 6]). For this test, we sampled
18 metrics on 32 nodes over a 4 hour period with con-
stantly varying classes and a sample interval for all met-
rics of 30 seconds. The test resulted in about 1 MB of
data collected at the front-end, which corresponds to an
accumulation rate of ≈250 kB/h or ≈2 kB/interval.

Adjusted to the number of nodes and metrics in-
volved, roughly 56× less data than in our previous
experiments with Ganglia was transmitted and stored.
While this is not necessarily a fair comparison as not ex-
actly the same metrics were gathered, it points out the
significant contribution provided by classifying moni-
toring data and by omitting unchanged values.

100 

1,000 

10,000 

100,000 

1,000,000 

10,000,000 

16
 

32
 

64
 

12
8 

25
6 

51
2 

1,
02

4 

2,
04

8 

4,
09

6 

8,
19

2 

16
,3
84

 

32
,7
68

 

65
,5
36

 

13
1,
07

2 

26
2,
14

4 

52
4,
28

8 

1,
04

8,
57

6 

Number of Nodes/Monitoring Data in kB per Hour

Figure 7. Scaling up the experienced monitor-
ing data rate (accumulation rate in kB/h on the
y-axis vs. node count on the x-axis)

The amount of data collected by the implemented
monitoring system currently scales linear with the num-
ber of compute nodes. A simple scaling study (Figure 7)
based on the experienced ≈64 B/interval per compute
node reveals an accumulation rate of ≈6.1 MB/interval
on 100,000 nodes and ≈61 MB/interval on 1,000,000
nodes. Using a 30 second interval, this corresponds to
≈732 MB/h on a 100,000-node system and ≈7.2 GB/h
on a 1,000,000-node system. For realistic real-time re-

sponse scenarios to emerging health threads or utiliza-
tion issues, this accumulation rate is still to high as the
collected data needs to be processed by statistical tools
for analysis. Future research and development needs to
focus on further monitoring data reduction.

5.2. Performance Impact on Applications

Although the main goal of the presented work is
to reduce the amount of data collected by a monitor-
ing system in a large-scale computing environment, we
have also measured the performance impact of the mon-
itoring system on applications (see Table 1) using the
NAS Parallel Benchmark (NPB) suite (see http://www.
nas.nasa.gov/Resources/Software/npb.html). Similar to
our earlier results [9], the cluster is to small, i.e., pro-
duced not enough data, to have a measurable impact
on applications. This result is not surprising as the im-
plemented monitoring system produces much less data
than Ganglia used in our earlier experiments.

These results emphasize that the performance im-
pact is not an issue. Both, Ganglia and the presented so-
lution, do not have a performance impact on small-scale
systems, yet our prior effort in analyzing system relia-
bility was hampered by the fact that a standard moni-
toring system, like Ganglia, provides even at this small
scale way too much data to analyze in real-time.

Class C NPB on 32 nodes CG FT LU
Without monitoring 264 235 260
With monitoring 264 235 260
Overhead 0% 0% 0%

Table 1. NPB performance on the test cluster
with/without the developed monitoring system
(averages over 10 runs in seconds)

6. Conclusions and Future Work

We have developed a monitoring solution for paral-
lel and distributed environments that allows to trade-off
accuracy in a tunable fashion to gain scalability without
compromising fidelity. The approach relies on classify-
ing each gathered metric based on individual needs and
on aggregating messages containing classes of individ-
ual metrics in a fan-in tree fashion. In comparison to
Ganglia, the implemented prototype was able to reduce
the amount of data gathered and stored by a factor of
≈56. However, a simple scaling study revealed that fur-
ther research and development efforts are needed in re-
ducing the amount of data to monitor future-generation
extreme-scale HPC systems with up to 1,000,000 com-
pute nodes. The implemented monitoring solution did
not had a measurable impact on running applications as

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html

the test cluster was too small, i.e., produces not enough
monitoring data to interfere with applications. Further
implementation details, additional experimental results,
and a user guide are available in a Master’s thesis [2].

The presented solution is a first step toward scal-
able system monitoring. The developed prototype has
been equipped with certain features to enable our on-
going research and development efforts in optimizing
monitoring systems, and in analyzing the health and
utilization of large-scale HPC systems. Our planned
work on the presented monitoring system includes fur-
ther data reduction and statistical processing using com-
putational plugins at TBON intermediates, as well as
extending its capabilities to aggregate local message
logs across a large-scale system. Our planned work in
analyzing HPC systems primarily focuses on identify-
ing anomalies and pre-failure indicators by correlating
monitoring data logs with application failure logs. A re-
cent study by our team [12] focused on nonparametric
multivariate anomaly analysis using off-line monitoring
data gathered with Ganglia. We plan to extend this work
with the newly developed monitoring system.

References

[1] W. Barth. Nagios: System and Network Monitoring, 2nd

Edition. No Starch Press, San Francisco, CA, USA, Oct.
2008.

[2] S. Böhm. Development of a RAS framework for HPC
environments: Realtime data reduction of monitoring
data. Master’s thesis, Department of Computer Science,
University of Reading, UK, Mar. 12, 2010.

[3] J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. R.
Mayo, P. P. Pébay, D. Thompson, and M. H. Wong.
OVIS-2: A robust distributed architecture for scal-
able RAS. In Proceedings of the 22nd IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS) 2008: 4th Workshop on System Management
Techniques, Processes, and Services (SMTPS) 2008, Mi-
ami, FL, USA, Apr. 14-18, 2008. ACM Press, New
York, NY, USA.

[4] M. J. Brim and B. P. Miller. Group file operations
for scalable tools and middleware. In Proceedings of
the 16th IEEE International Conference on High Perfor-
mance Computing (HiPC) 2009, Kochi, India, Dec. 16-
19, 2009. IEEE Computer Society.

[5] J. Dongarra, P. Beckman, T. Moore, J.-C. Andre,
J.-Y. Berthou, T. Boku, F. Cappello, B. Chapman,
X. Chi, A. Choudhary, S. Dosanjh, A. Geist, B. Gropp,
R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway,
B. Kramer, J. Labarta, B. Lucas, B. Maccabe, S. Mat-
suoka, P. Messina, B. Mohr, M. Mueller, W. Nagel,
H. Nakashima, M. E. Papka, D. Reed, M. Sato, E. Sei-
del, J. Shalf, D. Skinner, T. Sterling, R. Stevens,

W. Tang, J. Taylor, R. Thakur, A. Trefethen, M. Snir,
A. van der Steen, F. Streitz, B. Sugar, S. Sumimoto,
J. Vetter, R. Wisniewski, and K. Yelick. International ex-
ascale software project roadmap (draft 0.93), Nov. 2009.

[6] C. Engelmann, G. R. Vallée, T. Naughton, and S. L.
Scott. Proactive fault tolerance using preemptive migra-
tion. In Proceedings of the 17th Euromicro International
Conference on Parallel, Distributed, and network-based
Processing (PDP) 2009, pages 252–257, Weimar, Ger-
many, Feb. 18-20, 2009. IEEE Computer Society.

[7] G. A. Geist and R. F. Lucas. Major computer science
challenges at exascale. Technical report, International
Exascale Software Project, Feb. 2009.

[8] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carl-
son, W. Dally, M. Denneau, P. Franzon, W. Harrod,
K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Ster-
ling, R. S. Williams, and K. Yelick. ExaScale comput-
ing study: Technology challenges in achieving exascale
systems. Technical report, Defense Advanced Research
Project Agency (DARPA) Information Processing Tech-
niques Office (IPTO), 2008.

[9] A. Litvinova, C. Engelmann, and S. L. Scott. A proac-
tive fault tolerance framework for high-performance
computing. In Proceedings of the 9th IASTED Inter-
national Conference on Parallel and Distributed Com-
puting and Networks (PDCN) 2010, Innsbruck, Austria,
Feb. 16-18, 2010. ACTA Press, Calgary, AB, Canada.

[10] M. L. Massie, B. N. Chun, and D. E. Culler. The Gan-
glia distributed monitoring system: Design, implemen-
tation, and experience. Parallel Computing, 30(7):817–
840, 2004.

[11] A. Nataraj, A. D. Malony, A. Morris, D. C. Arnold, and
B. P. Miller. A framework for scalable, parallel per-
formance monitoring. Concurrency and Computation:
Practice and Experience, 22(6):720–735, 2010.

[12] G. Ostrouchov, T. Naughton, C. Engelmann, G. R.
Vallée, and S. L. Scott. Nonparametric multivariate
anomaly analysis in support of hpc resilience. In Pro-
ceedings of the 5th IEEE International Conference on e-
Science (e-Science) 2009: Workshop on Computational
Science, Oxford, UK, Dec. 9-11, 2009. IEEE Computer
Society.

[13] P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet:
A software-based multicast/reduction network for scal-
able tools. In Proceedings of the ACM/IEEE Interna-
tional Conference on High Performance Computing and
Networking (SC) 2003, Phoenix, AZ, USA, Nov. 15-21,
2003. IEEE Computer Society.

[14] R. Subramaniyan, P. Raman, A. D. George, and
M. Radlinski. GEMS: Gossip-enabled monitoring ser-
vice for scalable heterogeneous distributed systems.
Cluster Computing, 9(1):101–120, 2006.

[15] J. W. Zhu, P. G. Bridges, and A. B. Maccabe.
Lightweight online performance monitoring and tuning
with embedded gossip. IEEE Transactions on Paral-
lel and Distributed Systems (TPDS), 20(7):1045–9219,
2009.

http://www.cs.reading.ac.uk
http://www.reading.ac.uk
http://www.iasted.org/conferences/home-676.html
http://www.iasted.org/conferences/home-676.html
http://www.iasted.org/conferences/home-676.html
http://www.actapress.com

	Introduction
	Related Work
	System Monitoring
	Tree-based Overlay Networks

	Technical Approach
	Implementation
	Front-End Process
	Back-End Processes
	Intermediate Processes

	Experimental Results
	Monitoring Data Accumulation
	Performance Impact on Applications

	Conclusions and Future Work

