
Parallel Computational Modelling of Inelastic
Neutron Scattering in Multi-Node and Multi-Core

Architectures
Michael T. Garba∗, Horacio González–Vélez∗ and Daniel L. Roach†

∗ School of Computing, Robert Gordon University, Aberdeen AB25 1HG, UK
† Physics and Materials Research Centre, University of Salford, Salford M5 4WT, UK

E-mail: {m.t.garba,h.gonzalez-velez}@rgu.ac.uk {d.roach}@salford.ac.uk

Abstract—This paper examines the initial parallel implemen-
tation of SCATTER, a computationally intensive inelastic neutron
scattering routine with polycrystalline averaging capability, for
the General Utility Lattice Program (GULP). Of particular
importance to structural investigation on the atomic scale, this
work identifies the computational features of SCATTER relevant
to a parallel implementation and presents initial results from
performance tests on multi-core and multi-node environments.
Our initial approach exhibits near-linear scalability up to 256
MPI processes for a significant model.

Index Terms—Computational Physics; Lattice Dynamics; Neu-
tron Scattering; Parallel Programming; Scientific computing;
Algorithmic Skeletons; Multi-Core Processors

I. INTRODUCTION

An increasingly significant role in modern scientific investi-
gation and engineering is played by computational simulation
techniques. With a character distinct from the traditional
approaches that are theory and experimentation, scientific
computing and numerical modelling have emerged as es-
tablished means of research in their own right within the
physical sciences. Often capable of providing answers to
analytically intractable problems unamenable to these traditio-
nal approaches, they render further insights into closed-form
analytical solutions where they exist. A consequence of the
trend towards more powerful machines and the evolution of
these techniques is that predictions can often be made ahead
of experimentation on the basis of computer models.

The General Utility Lattice Program (GULP) is a generalised
symmetry-adapted lattice dynamics and simulation environ-
ment for the study of solid materials that provides a number
of routines for the modelling, prediction and interpretation
of experimental data in the study of atomic, molecular, and
bulk crystalline structures [1]. As a research tool in the
physical sciences with interdisciplinary applications in che-
mistry, physics, and material science, GULP is cited with
increasing frequency in research within these domains. The
regular introduction of new routines and enhancements to
existing functionality is the result of an active development
effort.

GULP is available as an open source software package for
non-commercial use and as part of the Materials Studio from
Accelrys. Input-file driven routines range from simulation
to model fitting. Execution options, required and optional

simulation parameters, general program options, and structural
information are specified in the input deck. GULP outputs
results to file or standard output alongside intermediate files
that may contain data relevant to their interpretation. The time
and space complexities of these GULP routines are directly
correlated to the parametric and structural characteristics of
the solid under investigation.

SCATTER, a new routine, makes extensive use of existing
functionality to bring coherent and incoherent inelastic neutron
scattering (INS) capabilities for lattice models to GULP [2],
[3]. Until recently, INS was considered impractical on account
of its significant computational requirements and the high cost
and general unavailability of neutron scattering experimental
facilities and instrumentation. INS modelling is experiencing
increasing popularity for structural determination in solids
among the materials science community, as a result of its
suitability to problems such as those that occur in the study
of nano-materials. A growing need has been created for tools
that aid in the swift interpretation of complex data genera-
ted [2], nonetheless the implementation of efficient parallel
INS solutions remains an open problem.

The contribution of this paper is the deployment of a
performance-oriented parallel version of SCATTER for both
multi-core and multi-node architectures. As parallel program-
ming aims to capitalise on concurrency, the simultaneous exe-
cution of different components of SCATTER shall be mapped
to distinct processing elements in order to improve overall
performance.

This paper briefly outlines the significance of GULP as a
tool in scientific computing and the particular contribution of
SCATTER. It then examines the operation of SCATTER, pre-
sents an approach to its parallelisation and the initial results of
execution and scalability testing in the SARA supercomputing
facilities in the Netherlands.

II. BACKGROUND

GULP is intended to solve a range of problems in molecular
modelling and experimental data interpretation, with routines
covering potential applications that range from simulation to
model fitting. Symmetry is exploited within GULP to minimise
redundant computation and provide a performance advantage
over existing software in the same problem domain[1].

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.45

447

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.45

509

GULP includes complex MD capabilities to determine tra-
jectories in a molecular ensemble. These routines compute
positions and momenta of interacting particles over small
discrete time increments until system-wide equilibrium is
attained. This solution of the n-body problem is the only means
of tracing the motion of a large number of interacting particles,
and MD runs involving millions of atoms are not uncommon
with applications spanning different scientific disciplines.

Heavily computationally intensive for large problem sizes,
MD has yielded a number of approaches aimed at reducing
its computational footprint to acceptable levels while main-
taining its scalability. Ab-initio MD require solutions of the
Schrödinger equation from quantum mechanics at each time-
step, using the Born-Oppenheimer approximation to permit
the calculation of a possible numerical solution [4]. Different
authors have employed ab-initio approaches with GULP to
produce several computational models [5], [6].

While ab-initio methods can be accurate and capable of
modelling quantum phenomena such as molecular bonding,
they disregard the contributions of longer range potentials to
improve performance at the cost of accuracy and predictive
power.

Moreover, INS is itself a powerful investigative tool that
generates vast amounts of data that are a challenge to interpret.
SCATTER models the interaction of neutrons incident on single
crystal and polycrystalline samples in reciprocal space, achie-
ving this by extensive use of existing GULP routines [2], [3].
SCATTER allows the comparison and refinement of theoretical
models against experimentally obtained results on the accuracy
of which space sampling resolution has direct bearing. Howe-
ver, determinations of the scattering function for all values of
a large set of magnitudes and directions create a significant
computational load, frequently requiring days to weeks of
execution time. The analogously computationally demanding
nature of MD [7] is believed to be of particular relevance to
an implementation of SCATTER.

Other libraries for INS modelling include PHONON [8] and
a-CLIMAX [9]. However, these packages focus on modelling
INS datasets from ab-initio and density functional theory
techniques, and lack semi-empirical modelling capabilities,
which are of core interest in the study of a wide range of
technological nanocarbons, hydrogen storage materials and
carbon composite materials.

From an architectural point of view, the advent of multi-core
processors, chip multiprocessors, and multi-node clusters and
constellations has steeply increased the number of concurrent
processors available to a single application. From a single node
perspective, dozens of cores are becoming progressively more
commonplace. Consequently, the development of effective
simulation tools, which can be staged in a scalable, structured,
fashion and are capable of exploiting parallelism on multiple
architectural levels, has remained a target of sustained effort.

Arguably, a better compromise between accuracy and com-
putational demand is obtained with the semi-empirical ap-
proach, as used in SCATTER, but scant research has been
devoted to the use of these methods [2]. As the time and

space complexities of semi-empirical MD methods remain
an open problem in computational science, we would like to
explore the application of structured parallelism to improve
the SCATTER routines for the molecular simulation section of
GULP in multi-core and multi-node architectures.

III. METHODOLOGY

SCATTER calculates the coherent and incoherent scattering
intensities, denoted by expressions (1) and (2) respectively, for
a momentum transfer vector Q representing the momentum
change between incident and scattered wave vectors, and a
vibrational frequency of the quantised lattice vibration (or
phonon) created or annihilated by this scattering event. This
frequency change is directly related to the modulus of the
energy transfer between the target material and the scattered
neutron, as determined by energy conservation and the prin-
ciple of detailed balance [10], [3].

θ=ϕ=0

Figure 1. Reciprocal Space Onion Sampling in SCATTER. Concentric shells
are traced in reciprocal space as data points are gathered for increasing
magnitudes and orientations of the momentum transfer vector, Q, in spherical
polar coordinates.

Scoh(Q,ω) (1)

Sinc(Q,ω) (2)

The coherent component of the scattering intensity in
expression (1) takes into account cross-correlative pairwise
interactions of the nuclei in the system and describes inelastic
interference effects which provide information on the positions
and vibrational modes of planes of atoms. Expression (2)
represents the self-correlative, incoherent component of the
scattering intensity, the vibrational contribution of individual
atoms considered in isolation, without this interference term.
SCATTER is capable of determining both cross-correlative and
self-correlative components, however the primary application
of this method is for coherent scattering computations and the
majority of simulation runs currently involve this [2].

448510

While it is possible to perform these calculations along fixed
directions in reciprocal space, as is the case for a single crystal
sample in an experimental configuration, it is usually of greater
interest, and a better fit to experimental conditions where
only polycrystalline samples may be available, to perform
this determination over a range of values for magnitudes and
spatial orientations of the momentum transfer vector Q in three
dimensions.

One space sampling technique implemented in SCATTER is
the Reciprocal Space Onion (RSO) sampling method illustra-
ted in Figure 1. RSO provides data points for this computation,
taking values of Q, as it is rotated about a series of concentric
spheres by varying its magnitude |Q| and angles θ and φ in
a spherical polar coordinate system[3]. This traces concentric
shells that bear close correspondence to the space sampling
performed by the actual experimental triple-axis spectrometer
around the target material. Our parallelisation effort will use
the RSO sampling method.

In practice, better results are obtained by the choice of a
greater number of sample points as, otherwise, artifacts may
begin to appear in the final output for higher values of |Q|,
where space is sampled in a sparser manner. Significant com-
putational load results from the need to invoke several GULP

routines on large dynamical matrices for each determination of
expression (1) over the large range of values for Q generated
by space sampling. A trade-off is necessitated between model
resolution and execution time.

SCATTER concludes with a polycrystalline or powder ave-
raging, allowing the generation of 3D plots comparable to
empirically determined results. This final phase of execution
involves the creation of a 3D histogram, matching values of
expression (1) with corresponding values of |Q| and ω with
the use of separate visualisation tools. A key additional feature
is the generation of computational log and data output files,
(sq-onions), detailing the progression of intermediate com-
putations at several stages. This data is capable of significantly
enhancing an investigator’s ability to arrive at deductions on
the basis of the model.

A. Identifying parallelism

GULP implements a parallel MD routine based on MPI, ori-
ginally documented to support up to 64 concurrent processes
with rank-based task distribution. It evenly divides the work-
load among the available processes and furnished structured
calls to the MPI communication primitives unify results at
the conclusion of computation. Reasonable performance gains
have been reported on a homogeneous multiprocessor system
for the parallel MD routines in GULP [11], [12].

Potential parallelism is identifiable within SCATTER by an
examination of the nature of dominant tasks in a typical
polycrystalline run. Evaluations of the coherent and incoherent
scattering magnitudes occur in loops over sampled space,
with no data dependence between iterations, that indicate
strong potential task parallelism. This leads naturally to a data
decomposition scheme in which each task handles evaluations
for only a limited subset of sampled space. This absence

of data dependencies between evaluations makes SCATTER

embarrassingly parallel. However, the I/O requirements of
the massive output datasets generated place real constraints
on achievable performance that is dictated by the underlying
hardware.

It is considered highly desirable that a parallel SCATTER

remains compatible on an architectural level with the existing
parallelism within GULP to address maintainability issues
and achieve a reduction of duplicated effort. However, it
is not sine qua non. Furthermore, as it is now known that
most assumptions that hold for multi-node environments are
not entirely applicable to multi-core architectures [13], our
approach must efficiently target both paradigms.

IV. IMPLEMENTATION

The parallel execution of SCATTER begins with the initial
program input deck, of relatively small size, read via stan-
dard input and distributed to cooperating processes. The root
process uses control of the actual standard input and output
channels to perform this necessary initialisation before the start
of computation. Figure 2 illustrates this distribution in an MPI
broadcast operation. This approach to parallel input is already
implemented within GULP, and it is crucial that the parallel
SCATTER version is compliant with this interface.

With complete details of all execution parameters, each
process independently generates the entire global sample space
and proceeds to the actual SCATTER calculation. Task distri-
bution is cyclical over concentric shells by rank. Fine-grain
parallelism is impractical at present as each shell forms an in-
tegral input to subsequent invocations of intrinsic routines that
operate on dynamical multi-dimensional arrays of significant
size and computational requirements. This phase dominates
the execution time of the SCATTER run.

As the intermediate results of these calculations are of
analytical importance, MPI/IO provides scalable, distributed,
simultaneous output of this large dataset.

In the final stages, each process generates a three-
dimensional |Q|, ω “histogram” representing the polycrystal-
line average for the relevant region of the partitioned sampled
space that represents a local contribution to the ultimate result.
A global reduction operation communicates these results to
the root process in a final summation that merges the data
generated from each task into a polycrystalline average.

Our implementation of the parallel SCATTER routine has
followed the SPMD model. Using the existing optional MPI
bindings in GULP, it exploits the absence of data dependencies
between successive evaluations of expression (1) in a replica-
ted data pattern with reduction via MPI_REDUCE.

V. EVALUATION

We created the first development version of SCATTER with
MPI support in early 2010. We initially tested the pure
multi-node feasibility on a iMac cluster, forcing a one core
per node mapping, and the multi-core behaviour on a IBM
BladeCenter. Both versions were compiled with gfortran only.

449511

Table I
MULTI-NODE AND MULTI-CORE TEST MACHINE SPECIFICATIONS

iMac Cluster IBM BladeCenter JS21 IBM pSeries 575
(Huygens)

Nodes 8 1 101
Processing Elements per

Node
2 4 32

Processor Speed 2.66 GHz 2.3 GHz 4.7 GHz
Processor Architecture Intel Core 2 Duo IBM PowerPC 970MP

dual-core
IBM Power6

RAM 2 GB 16 GB 128 GB
Network 100baseTX N/A Infiniband 160 Gbit/sec

Operating System Mac OS X 10.5.8 Redhat Linux (kernel 26.18-8) GNU Linux Kernel 2.6.27
Compiler GCC gfortran 4.4.1 GCC gfortran 4.1.2 GCC gfortran 4.3.2

(-O3)
IBM XL Fortran for Linux, V12.1

(-O3 -qstrict -qarch=auto -qtune=auto)
MPI Version OpenMPI 1.4.2 OpenMPI 1.4.2 OpenMPI 1.3.3

INPUT OUTPUT

INPUT INITIALISATION RSO
SAMPLING

COHERENT & INCOHERENT
S(Q,ω) EVALUATION

POWDER
AVERAGING SUMMATION OUTPUT

INPUT INITIALISATION RSO
SAMPLING

POWDER
AVERAGING

INPUT INITIALISATION
RSO

SAMPLING
POWDER

AVERAGING

INPUT INITIALISATION
RSO

SAMPLING
POWDER

AVERAGING

COHERENT & INCOHERENT
S(Q,ω) EVALUATION

COHERENT & INCOHERENT
S(Q,ω) EVALUATION

COHERENT & INCOHERENT
S(Q,ω) EVALUATION

BROADCAST REDUCTION

PROCESS 0

PROCESS 1

PROCESS ...

PROCESS n

Figure 2. Communication and communication structure between MPI processes in SCATTER.

Their software and hardware specifications are described in
Table I.

Subsequently, the complete performance evaluation has
been conducted on the PRACE supercomputing prototype
(huygens) located at SARA, the Dutch National High Per-
formance Computing and e-Science Support Centre. This
prototype has large shared memory (4-8 GB/core) and fast
I/O configuration with the new IBM Power6 processors and
IBM Power Cluster fat node architecture. In order to find the
most suitable system optimisations, both the GNU Fortran and
the IBM XL Fortran compiler have been employed as shown
in the last column of Table I.

As described in its webpage [14], the huygens system
has 1664 dual core processors, equivalent to 3328 cores,
15.25 terabytes of main memory, and 700 terabytes of disk
space. Being a multi-node environment with multiple cores, it
represents parallelism on multiple levels.

The input dataset was a 40-atom 10,10 Carbon Nanotube
model with

(
|Q|max−|Q|min

δ|Q|
)

= 256 shells and 2π
δθ =200 angular

steps, as originally illustrated in Figure 1. An initial calibration
run with coarse angular resolution provided an estimated time-
to-completion for the full model using equation (3).

t ≈ k

(|Q|max − |Q|min

δ|Q|
)
×
(
2π

δθ

)2

(3)

In equation 3, t is the approximate completion time, k
is a constant for a given execution environment and model,
|Q|max− |Q|min is the difference between the maximum and
minimum values of the momentum transfer vector, δQ is the
finite increment in momentum transfer between successive
RSO shells and δθ = δφ is the finite change in angles of
the momentum transfer vector.

It is also important to note that the SCATTER I/O require-
ments are primarily defined by the same relationship expressed
in equation 3. This dataset is composed by the intermediate
calculation logs (sq-onions) and the final summary file, a
relatively small file in comparison.

A. Discussion

The results of the initial calibration run, available in Fi-
gure 3, indicate significantly improved performance with the
IBM XL Fortran compiler over GNU Fortran. This difference
can be attributed to the ability of the IBM XL Fortran compiler
to exploit the on-chip parallelism and other architecture-
specific optimisations.

The estimated completion time for the full model was ori-
ginally 2733 hours (114 days) with the GNU Fortran version

450512

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

No. of Processes

IBM XL Fortran Compiler
GNU Fortran Compiler

12298

6147

3077

1542

784

390

200

104

2485

1236

620

313

159

82

45

26

Figure 3. Performance of GNU Fortran and IBM XL Fortran (with architecture-specific optimisations) versions of GULP with 2n processes a (10,10)
Carbon Nanotube model in a coarse reciprocal space onion sampling for runtime estimation.

(|Q|max−|Q|min
δ|Q|

)
= 128 and 2π

δθ
=10. Cell parallelism achieves

significant speed-up for SCATTER kernel evaluation

and 552 hours (23 days) with the IBM XL Fortran version on a
single processor. This calibration also revealed near-linear sca-
ling up to 128 processes with a small discontinuity between 32
and 64 processes, indicating moderately degraded performance
at the intra-node to inter-node transition boundary.

Execution times for the actual model on 32, 64, 128 and 256
processes are presented in Figure 4, generating a 120GB out-
put dataset in each run and completing in 7405 seconds—just
over 2 hours—for the 256-process case. This version, compiled
with the IBM XL Fortran compiler, exhibits linear scaling
in the multi-node case, despite the fact that it is memory
and I/O intensive. We believe that the fast interconnection at
Huygens and the MPI implementation have made a significant
difference in easing any potential bottlenecks.

VI. FINAL REMARKS

Future work intends to explore the two main directions of
parallel construct refinement and scalability.

In terms of parallel constructs, further development is plan-
ned to take advantage of the intrinsic SCATTER parallelism.
We intend to deploy algorithmic skeletons [15], possibly in
the form of a refined task farm [16], with the objective of
achieving closer-to-optimal resource utilisation. Subsequent
versions will seek to examine the possibility of adaptive sche-
duling based on the structural and parametric characteristics of
the physical models and execution environment. As successive

evaluations are totally independent from each other, they can
be regarded as a divisible load [17], we intend to explore their
scheduling using known scheduling heuristics [18].

In terms of scalability, an evaluation of the performance
of SCATTER and GULP for complex physical models, such
as nano-structures and carbon compounds, is a natural pro-
gression. To the extent of our knowledge, the original GULP

versions have been evaluated up to 64 processes, a bar that has
been raised to 256 processes in SCATTER. Ideally, we would
like to evaluate the performance of GULP+SCATTER with
thousands of processes, running on as many nodes, in order
to significantly improve the experimental resolution and range
of potential applications. Achieving finer-grained parallelism
to permit this will arguably require parallelising the large
dynamical Hessian matrix calculations central to scattering
kernel evaluation.

In summary, we have demonstrated that our deployment of a
parallel SCATTER routine within GULP is theoretically feasible
and practically necessary. The implementation under develop-
ment has shifted the balance away from lengthy execution
times and towards higher model resolutions, allowing material
scientists to examine compounds of greater complexity and
interest. Our preliminary results have indeed met the expec-
tations that the current approach is an effective means of
obtaining near-optimal performance in multi-core/multi-node
architectures.

451513

 1000

 10000

 100000

 32 64 128 256

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

No. of Processes

57269

28832

14369

7405

Figure 4. Computation times for the actual (10,10) Carbon Nanotube model with
(|Q|max−|Q|min

δ|Q|
)

= 256 and 2π
δθ

=200, generating a 120GB dataset.
Results indicate near-linear scalability for 32, 64, 128 and 256 processes in the multi-node configuration.

ACKNOWLEDGEMENTS

The authors would like to thank the Partnership for Advan-
ced Computing in Europe (PRACE) for their support and grant
of computing time in the SARA supercomputing facilities. The
PRACE project receives funding from the EU’s Seventh Fra-
mework Programme (FP7/2007-2013) under grant agreement
no. RI-211528. The Authors would also like to acknowledge
the support of a collaboration travel grant awarded by the
STFC Collaborative Computational Project 5 (CCP5). One of
the authors (DLR) would like to acknowledge the support of
EPSRC (EP/G049130) in the development of the SCATTER

code.

REFERENCES

[1] J. Gale, “GULP: A computer program for the symmetry-adapted simu-
lation of solids,” Journal of the Chemical Society, Faraday Transactions,
vol. 93, no. 4, pp. 629–637, 1997.

[2] D. L. Roach, “Computational investigations of polycrystalline systems
using inelastic neutron scattering techniques,” Ph.D. dissertation, Uni-
versity of Salford, Salford M5 4WT, UK, 2006.

[3] D. L. Roach, J. Gale, and D. Ross, “Scatter: A New Inelastic Neutron
Scattering Simulation Subroutine for GULP,” Neutron News, vol. 18,
no. 3, pp. 21–23, 2007.

[4] M. Griebel, S. Knapek, and G. Zumbusch, Numerical simulation in mo-
lecular dynamics: Numerics, Algorithms, Parallelization, Applications,
ser. Texts in Computational Science and Engineering. Heidelberg:
Springer-Verlag, 2007, vol. 5.

[5] B.-L. Huang and M. Kaviany, “Ab initio and molecular dynamics
predictions for electron and phonon transport in bismuth telluride,” Phys.
Rev. B, vol. 77, no. 12, pp. 125–209, Mar 2008.

[6] F. Torres, P. Ugliengo, B. Civalleri, A. Terentyev, and C. Pisani, “A
review of the computational studies of proton- and metal-exchanged
chabazites as media for molecular hydrogen storage performed with the
CRYSTAL code,” International Journal of Hydrogen Energy, vol. 33,
no. 2, pp. 746–754, 2008.

[7] D. C. Rapaport, The art of molecular dynamics simulation, 2nd ed.
Cambridge: Cambridge University Press, 2004.

[8] K. Parlinski, Z. Q. Li, and Y. Kawazoe, “First-principles determination
of the soft mode in cubic zro2,” Phys. Rev. Lett., vol. 78, no. 21, pp.
4063–4066, May 1997.

[9] D. Champion, J. Tomkinson, and G. Kearley, “a-CLIMAX: a new INS
analysis tool,” Applied Physics A: Materials Science & Processing,
vol. 74, pp. 1302–1304, 2002.

[10] G. Squires, Introduction to the theory of thermal neutron scattering.
Cambridge Univ. Press, 1978.

[11] D. Marx and J. Hutter, Ab initio molecular dynamics: basic theory and
advanced methods. Cambridge Univ Pr, 2009.

[12] S. Plimpton and B. Hendrickson, “A new parallel method for molecular
dynamics simulation of macromolecular systems,” Journal of Computa-
tional Chemistry, vol. 17, no. 3, pp. 326–337, 1996.

[13] M. D. Hill, “Amdahl’s law in the multicore era,” in HPCA-14 2008.
Salt Lake City: IEEE Computer Society, Feb. 2008, p. 187.

[14] SARA, “Description of the huygens system,” Dutch National
High Performance Computing and e-Science Support Center,
https://subtrac.sara.nl/userdoc/wiki/huygens/description/, Web page,
2010, (Last Accessed: 30 Jun 2010).

[15] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation, ser. Research Monographs in Parallel and Distributed
Computing. London: MIT Press/Pitman, 1989.

[16] H. González-Vélez, “Self-adaptive skeletal task farm for computational
grids,” Parallel Computing, vol. 32, no. 7-8, pp. 479–490, 2006.

[17] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible load theory:
A new paradigm for load scheduling in distributed systems,” Cluster
Computing, vol. 6, no. 1, pp. 7–17, 2003.

[18] H. González-Vélez and M. Cole, “Adaptive statistical scheduling of
divisible workloads in heterogeneous systems,” Journal of Scheduling,
Oct. 2009, in Press. DOI: 10.1007/s10951-009-0138-4.

452514

