
Analytical Assessment of the Suitability of Multicast  

Communications for the SpiNNaker Neuromimetic System  

Javier Navaridas 
†
,       Mikel Luján 

†
,       Luis A. Plana 

†
,       Jose Miguel-Alonso 

‡
,       Steve B. Furber 

†
 

†
 School of Computer Science 

University of Manchester 

M13 9PL, Manchester, UK. 

e-mail: {javier.navaridas, mikel.lujan, plana, 

steve.furber}@manchester.ac.uk 

‡
 Dept. of Computer Architecture and Technology 

University of the Basque Country 

P. Manuel de Lardizabal, 1 

20018, San Sebastian, SPAIN 

e-mail: j.miguel@ehu.es 

 
Abstract—SpiNNaker is a custom-made architecture designed 

to model large-scale spiking neural nets. One of the most sig-

nificant characteristics of neural nets is their extreme commu-

nication needs; each neuron propagates its activation to thou-

sands of other neurons. This paper shows analytical proof that 

the novel multicast router in SpiNNaker is a better solution for 

simulating neural nets than more powerful point-to-point 

routers such as those found on datacentres or high perform-

ance computing systems, even when it has significantly lower 

requirements in terms of complexity, area and power. First, we 

characterised the utilization of resources required by both 

multicast and unicast networks. Then we derived the band-

width needs of different communication architectures. Finally, 

we derived the amount of neurons the different networks can 

support. From these analyses we determined that the multicast 

communications adopted in SpiNNaker will be able to support 

the target application under the expected operation conditions.  

Keywords- Massively parallel processing, Multicast networks, 

Neuromimetic architecture, VLSI systems. 

I. INTRODUCTION 

The SpiNNaker system is a biologically-inspired mas-
sively parallel architecture designed with the aim of simulat-
ing very large-scale spiking neural networks in biological 
real-time with the special objective of providing low power 
consumption. Its design is based around bespoke multicore 
SoCs which are interconnected using a custom-made net-
work. The largest configuration will house 64K nodes creat-
ing a system with over one million computing cores, which 
will be able to simulate spiking neural nets with more than 
10

9
 neurons (roughly the number of neurons in small pri-

mates’ brains and 1% of a human’s brain [16]). Neurons are 
modelled in software and their spikes generate packets that 
propagate through the on- and inter-chip communication 
fabric relying on bespoke on-chip multicast routers. Spike 
events are communicated to all connected neurons (typically 
in the order of thousands). The use of multicast routers helps 
alleviate the pressure exerted onto the interconnection net-
work due to the high connectivity of the simulated neural 
models. This paper shows analytical evidence of its benefits 
measured both in terms of network bandwidth and number of 
supported neurons. 

Currently, some SpiNNaker chips have been produced 
and successfully demonstrated running spiking neural net-
work models  [20]. SpiNNaker chips, due to their low-power 

design, can be used in embedded control systems such as 
robots, providing them with real-time stimulus-response be-
haviour [11, 12]. However, it is still unclear whether, once 
large-scale SpiNNaker systems are constructed, the commu-
nication needs of the application will prevent real-time op-
eration with the predicted number of neurons per core. This 
paper provides some insights into when and how the system 
will be able to accommodate different application needs. 

Our analysis begins with the derivation of the require-
ments in terms of network resources demanded by general 
unicast and multicast communications. From these results, 
we will derive the link bandwidth necessary to maintain the 
communication needs of neural nets for different router ar-
chitectures. In this study we will consider multicast and uni-
cast versions of the router implemented in SpiNNaker plus 
two state-of-the art routers used in datacentres and high per-
formance computing systems (the SeaStar2 router in the 
Cray XT4 family of supercomputers [32] and the router in 
the Blue Gene/P family of supercomputers [2]). We close 
our study by deriving the number of neurons that those sys-
tems can support showing when the network may become a 
limiting factor. 

The main conclusion of this study is that, thanks to the 
use of a multicast architecture, the communication infrastruc-
ture implemented in SpiNNaker can achieve the anticipated 
performance levels when simulating neural nets under nor-
mal operating conditions 

II. OVERVIEW OF THE SPINNAKER SYSTEM 

SpiNNaker is a massively parallel architecture composed 
of SpiNNaker chips arranged in a 2D triangular torus topol-
ogy as depicted in Figure 1. 

A. Supported Application 

SpiNNaker is, in principle, designed to perform real-time 
simulation of spiking neural networks. It has been demon-
strated, however, that it provides an architecture general 
enough to seamlessly execute a wide range of applications 
 [30]: from the simulation of neural non-spiking models such 
as the Multilayer Perceptron  [31] to a variety of applications 
completely unrelated to neural networks: discrete simulation, 
many-body interaction, real-time ray-tracing, finite element 
analysis and analogue circuit simulation. 

Spiking neural systems have abundant parallelism and no 
explicit requirement of coherence as only local information 
is used by the neurons. The modelled application is in prin-



ciple very simple  [10]. Neurons have a membrane potential 
which is affected by each received signal. Whenever an exci-
tatory signal is received the membrane potential is increased; 
in contrast, if the signal is inhibitory the membrane potential 
is reduced. After an excitatory signal, if the membrane po-
tential exceeds a given threshold, the neuron discharges and 
fires a signal (a so-called spike). This signal propagates to all 
neurons sharing a synaptic connection, typically in the order 
of 10

3
. The dynamics of the spiking neurons are emulated in 

SpiNNaker using two well-known models: Izhikevich [17] 
and Leaky Integrate and Fire [21]. In biological brains con-
nected neurons have to come in close proximity, i.e. have a 
physical synapse. In SpiNNaker, however two connected 
neurons can be located in distant areas of the system. 

Biological neurons work in a noisy environment [37] 
and, indeed, die during normal operation (adult humans lose 
about one neuron per second [8]). Thus their operation is 
neither perfect nor deterministic. In fact biological neural 
networks use best-effort communications in which spikes try 
to reach their intended destinations but, if this is not possible, 
the neural system continues its operation normally. The de-
sign of SpiNNaker reflects this behaviour. Neurons are mod-
elled as event-driven applications executed by the processing 
cores. Spikes are represented by short network packets using 
Address-Event Representation (AER), a format widely used 
in neural network models [22, 23, 35]. Packets are multicast 

routed in hardware with the on-chip routers replicating them 
as necessary to reach all their destination cores through the 
interconnection network which is in charge of handling both 
intra- and inter-chip packets. 

Given that digital electronics are orders of magnitude 
faster than the biological process – for example, biological 
spikes are propagated through an axon for up to 20 millisec-
onds while transmitting a packet through the SpiNNaker 
interconnection network should take a few microseconds at 
most – it is possible to multiplex many neurons onto a proc-
essor and many spikes onto a network. 

B. System Architecture 

Each SpiNNaker chip (in Figure 2) contains one multi-
core SoC with 18 low-power ARM968 cores. Each core has 
a tightly-coupled dedicated memory that can hold 32KB of 
instructions and 64KB of data. Each core runs an independ-
ent event-driven neural process with events generated by 
modules such as the timer, the vectored interrupt controller 
(VIC), the communication controller (CC) or the DMA con-
troller. All the cores in a chip share an SDRAM of up to 
128MB which is used to store synaptic information, among 
other things. Access to this shared storage space is carried 
out by means of a self-timed Network-on-Chip (NoC) which 
connects resources within the chip  [28]. The router can be 
accessed through this NoC for configuration purposes, but 
during regular execution the ARM cores use the communica-
tion controller to send or receive packets. The NoC provides 
higher communication bandwidth (8 Gbps), lower contention 
and lower power consumption than any typical bus-based 
interconnect  [29]. Detailed simulations of the chip using 
Verilog and SystemC showed that each core can model in 
biological real-time up to around 1000 individual neurons 
 [19]. This figure will be used in the analyses performed later 
in this paper. 

The heart of SpiNNaker chip’s communications is the 
novel multicast router that allows inter- and on-chip connec-
tivity  [14]. Its primary role is to direct neural event packets 
to those cores where their connected neurons are located. 
The router has 18 ports for internal use by the ARM cores 
and six ports to communicate with six adjacent chips (to-
wards North, South, East, West, Northeast and Southwest). 
All ports are full-duplex and implement self-timed protocols.  

To reduce area and power requirements, instead of im-
plementing a central crossbar, the router is organized hierar-

 

Figure 1. 8×8 SpiNNaker topology. Most peripheral  

wrap-around links are not shown for the sake of clarity. 

 

  

Figure 2. SpiNNaker chip before and after packaging (left) and schematic model of the SpiNNaker chip with its main components depicted (right). 



chically: ports are merged in three stages before using the 
actual routing engine. Note that the router is able to forward 
a single packet at once, but it works faster than the transmis-
sion ports. Thus, most of the time routers will be idle, and 
router delay barely affects the pace at which packets are 
processed. The router is designed to support point-to-point 
and multicast communications using small packets of 40 or 
72 bits. Compared to a pure point-to-point alternative, the 
multicast engine helps reduce pressure at the injection ports, 
and reduces significantly the number of packets that traverse 
the network. 

Following AER principles, routers make routing deci-
sions based on the source address of a packet, i.e. the identi-
fier of the firing neuron. In other words, a neural-event 
packet does not contain any information about its destina-
tion(s). The information necessary to deliver a neural packet 
to all the relevant cores and chips is compressed and distrib-
uted across the 1024-word routing tables within the routers. 
The routing tables have to be preloaded using application-
specific information. To further compress communication 
data, routing tables offer a masked associative route look-up 
and the routers are designed to perform a default routing 
which needs no entry in the tables by sending the packet to 
the port opposite to the one the packet comes from. For ex-
ample, if the packet comes from the North it will be sent to 
the South.  

Network flow-control is very simple. When a packet ar-
rives to the routing engine, one or more output ports are se-
lected and the router tries to transmit the packet through 
them. If the packet cannot be forwarded, the router will keep 
trying for a while and after a timeout the packet will be 
dropped. This has been demonstrated to be enough to guar-
antee deadlock-free communications [26]. To avoid livelock 
situations, packets have an age field in their header. When 
two ages pass and the packet is still in transit, it is considered 
outdated, and it is dropped. The ages are global to the whole 
system and its time-span is arbitrary, a router configuration 
parameter. Emulating the behaviour of biological neural 
networks, dropped packets in SpiNNaker are not re-sent. 
Losing neurons or signals does not impede the normal func-
tioning of the biological processes; nonetheless, packet drop-
ping levels must be kept (very) low. A more detailed descrip-
tion of the features of the multicast router can be found in 
 [39]. 

III. DEFINITIONS 

In this section we discuss the notation used in the analyti-
cal study. The average distance from a source to a destina-
tion is defined as d  and is measured in hops. Note that we 
consider random, uniformly distributed destinations, which 
means that the destinations for a given neuron do not tend to 
be clustered. This emulates a network configuration in which 
neuron placement has not been optimised, which provides a 
worst case scenario for the multicast router. The reader 
should note that if destinations were clustered, creating a 
multicast tree would be easier and would require less net-
work resources. For this reason this study has to be consid-
ered as a worst-case analysis for the multicast router. In the 
following analyses, we will consider values of d  ranging 

from 1 to 32 which cover reasonable configurations from 
very local to very distant. 

The number of destinations of a multicast tree, i.e. the 
fan-out, is defined as F. Note that when discussing neural 
networks, the fan-out refers to the number of connected neu-
rons. However in this study we will measure this figure in a 
slightly different way; given that several neurons can be mul-
tiplexed in the same node and that a single packet can be 
delivered to several neurons in the same node, it does not 
make sense, therefore, to send two packets to two neurons in 
the same node. For this reason we will consider a node-based 
fan-out and hence F will measure destination nodes per 
spike. Note that the actual relation between the neuron-based 
and node-based fan-out depends on several characteristics of 
the executed application mostly related to the communica-
tion patterns and the placement. A very pessimistic configu-
ration may have every destination neuron in a different node, 
whereas an optimistic scenario may have most of the destina-
tion neurons in the same node. In the next section we will 
consider values of F ranging from 1 to 2048 and growing 
exponentially. This covers scenarios well beyond those ex-
pected with reasonable placements, but provides a wider 
view of the design space. 

The number of outputs per node is identified as L 
(links/node) and will always be 6 as all the routers have this 
number of ports. nn represents the number of neurons in each 
node (neurons/node). We will consider a thousand neurons 
running in each node – the limit imposed by the processing 
cores (18K neurons per node). fs represents the frequency at 
which neurons generate a spike, on average, i.e. the firing 
rate (spikes/second). We will consider a value of fs = 10Hz 
which is considered the upper limit for a very active popula-
tion [10].  

Finally ps defines the packet size (bits) and the link 
bandwidth is represented as BL (bits/sec). These two parame-
ters depend on the underlying architecture. For the purpose 
of this paper we will consider five different configurations, 
three of them related to SpiNNaker and the remaining two 
related to state-of-the-art routers used in datacentres and high 
performance computing systems: 

1. Worst-case multicast for the SpiNNaker router  
(BL = 1Gbps, ps = 40 bits). 

2. Average case for the SpiNNaker router when using 
multicast. 

3. Average case for the SpiNNaker router when using 
unicast. This configuration will show how the sys-
tem would behave if a unicast approach had been 
implemented. 

4. Average unicast for the router in the Blue Gene/P 
supercomputer (BL = 3.2Gbps, ps = 64 bits) [2]  

5. Average unicast for the SeaStar2 router on Cray’s 
XT4 (BL = 6Gbps, ps = 64 bits) [32]. 

The later two routers are beyond the design constraints of 
SpiNNaker both in terms of power consumption and chip 
area, and hence cannot be implemented in the actual system. 
However, from their analyses we will see how a low-power 
multicast design can draw reasonable performance levels 
when compared with unicast-based high-performance coun-
terparts.  



All the routers considered in this paper have six output 
ports and therefore can be arranged using the same topology. 
In this paper we will consider the SpiNNaker topology, but 
the results for this topology can be extrapolated to other 
mesh-like topologies such as the three-dimensional tori in 
both Blue Gene and Cray XT families. 

IV. PERFORMANCE ANALYSIS 

This section is devoted to analyze the performance of the 
different configurations. We will start by deriving the net-
work requirement of general unicast and multicast ap-
proaches. After that we will derive the link bandwidth re-
quired to support the execution of an application and instan-
tiate it in each of the router configurations. Finally we will 
show the amount of neurons that can be supported by each 
configuration to show when the network may become a lim-
iting factor. 

A. Network Resources Utilization 

We have formulated the network requirements of unicast 
and multicast approaches to deliver the neural communica-
tions to be executed on top of SpiNNaker. The first figure to 
derive is the amount of network resources employed in order 
to communicate a spike to all connected neurons. We will 
represent this figure as N which is measured as the total 

number of traversed links (hops) and will be derived from d  
and F, which depend solely on the workload. 

In the case of unicast, deriving the average network re-
quirement from these two parameters is straightforward; F 

packets travelling an average distance of d . Hence, given 
that unicast routes are not shared it will be: 

 NdNu ⋅=
 (1)

In the case of multicast, it is not easy to derive an expres-
sion for the average network requirements because it 
strongly depends on the distribution strategy. We will derive, 
instead, an upper bound estimator. This estimator considers 
the worst configuration; this is when routes to the destina-
tions share as few as possible of their paths. The estimator 
for the upper boundary can be formulated as follows:  

 ( )∑
−=

=







 −=
1·2

1

·6·2,
2

,·6min
di

i

M id
F

iN
 

(2)

Figure 3 shows Nu and NM for the values of interest of the 

parameters d  and F. For the sake of completeness we also 
show Nm, the empirical average network utilization of 10

5
 

random runs using a simple multicast route generation algo-
rithm. In the figure it is clear that NM is always lower than Nu 
except for very small numbers of destinations which are 
equal. As the fan-out and the average distance grow, the dif-
ferences between unicast and multicast increase. In the most 
extreme configurations the average unicast requires over 10 
times more network resources than the worst multicast case 
and over 25 times more resources than the average multicast 
case. More than one order of magnitude in terms of required 
network resources is a considerable difference which justi-
fies the implementation of a multicast communications infra-
structure, such as the one in SpiNNaker. 

To sum up, the main conclusion of this first experiment is 
that implementing a multicast scheme for simulating neural 
networks provides substantial savings in terms of network 
utilization. For this reason we encourage other research 

  

 

Figure 3. Required network resources. a) Multicast upper boundary - NM.  b) Average multicast - Nm (105 runs – ESPR). c) Average unicast – Nu. 



groups in the area to not disregard multicast architectures 
when designing such systems. 

B. Link Bandwidth 

We will derive next the network bandwidth required to 
support a given system configuration. In the formulation 
below we assume that the traffic is distributed evenly among 
all the links of the network, which may not be the case. 
However as the unbalanced use of the network would affect 
both the unicast and the multicast to a similar extent, it is fair 
and safe to make such an assumption. The required link 
bandwidth can be computed as the total number of injected 
packets times the packet size times the network resources 
required by each configuration divided by the number of 
links: 

 

L

pnfN
B sns

L

···
=

 

(3) 

The network bandwidth required to support the neural 
simulation using the different system configurations and 
routers is plotted in Figure 4. Note how the bandwidth re-
quirement when using any unicast router can be over one 
order of magnitude higher than the worst case for a multicast 
router and roughly two orders of magnitude when compared 
with the average case of multicast. In the worst cases, the 
unicast systems would require a sustained link bandwidth of 
over 100 Gbps; 100 times more than the link bandwidth pro-
vided by SpiNNaker and around 20 times the link bandwidth 
provided by the high performance routers considered here. 
The multicast results show that the maximum link bandwidth 
required by an extremely poorly configured application (with 
no exploitation of locality) could be 3 to 5 times that pro-
vided by SpiNNaker. This second experiment throws similar 
insights to the previous one: a multicast architecture seems to 
be a more sensible design than a unicast one, even if the mul-
ticast architecture has a priori poorer characteristics. 

  

  

 

Figure 4. Network bandwidth (BL) required to support regular operation of SpiNNaker (18000 neurons firing at 10 Hz).a) Multicast upper boundary. 

 b) Average multicast (105 runs). c) Average unicast SpiNNaker router.d) Average unicast Blue Gene/P router. e) Average unicast SeaStar2 router 



C. Supported Neurons 

Until now we have analyzed system-level properties such 
as network resources or network bandwidth. However, these 
properties may, and indeed probably do, mean nothing to the 
average user of SpiNNaker, whose expertise is in a very dif-
ferent area of research. For this reason, we will close our 
analysis by deriving an important figure of merit: the number 
of neurons per node that the system can support during regu-
lar operation. This figure can be computed as the per-node 
available bandwidth divided by the per-neuron required 
bandwidth: 

 

ss

L
n

pfN

LB
n

··

·
=

 

(4) 

From (1), (2), (4) and the router dependent values, we 
can compute the average number of neurons that each system 
is able to execute per node. To be able to see when the net-
work becomes a limiting factor, we will use the limit im-

posed by the cores (18K) as an upper bound for the number 
of simulatable neurons, see Figure 5. In the plots it is evident 
that, in those configurations with non-demanding network 
utilization (low number of destinations and/or low distances) 
all networks can support the execution of a regular neural 
network simulation (plateaus in the plots). However as these 
two figures increase the networks start to become the limit-
ing factor (slopes). This happens more often with the unicast 
routers, even when the Blue Gene and SeaStar2 have no-
ticeably higher bandwidths than SpiNNaker’s multicast 
router. Furthermore, in those cases in which the network 
becomes the limiting factor, the multicast alternative is able 
to support a larger number of neurons; in the worst case uni-
cast routers fall to several hundreds of neurons, whereas mul-
ticast is able to support thousands of them, roughly one order 
of magnitude difference.  

Reducing the number of neurons simulated in each node 
is one way to allow a proper operation of the system. An 
alternative way would be to execute the application slower 

  

  

 

Figure 5. Number of neurons supported by the system, considering the limit imposed by the cores (18000 neurons). a) Multicast lower boundary.  

b) Average multicast (105 runs ESPR). c) Average unicast SpiNNaker router. d) Average unicast Blue Gene/P router. e) Average unicast SeaStar2 router 



than real time. For example, in the worst case, the multicast 
architecture could simulate around 2,000 neurons per node in 
real-time, but it could alternatively simulate 18,000 neurons 
per node if executed 9 times slower than real-time. In the 
case of the unicast architectures, going from a few hundred 
neurons per node to 18,000 would require slowing down the 
execution by up to 30-50 times slower than real-time. The 
final decision on whether reducing the number of neurons 
per node or slowing execution ultimately depends on the 
purpose of the simulation. For simulating very large-scale 
neural networks it would be preferable to slow execution, 
whereas for an embedded control system as those discussed 
before, keeping real-time and reducing the number of neu-
rons per node seems a more reasonable decision. 

At any rate, in the real implementation we do not expect 
fan-outs and distances as extreme as the worst cases reported 
here. Hence, we can anticipate that large-scale SpiNNaker 
systems will be able to operate under the assumed function-
ing conditions. 

V. RELATED WORK 

Research in simulating biologically plausible neural net-
works (brain-like systems) is not new and has remained a hot 
topic for the last decades. In the early nineties a team at U.C. 
Berkeley worked on the Connectionist Network Supercom-
puter  [4]. This project aimed to build a supercomputer spe-
cifically tailored for neural computation as a tool for connec-
tionist research. The system was designed to be implemented 
as a 2D mesh, with a target size of 128 nodes (further scal-
able to 512). Each node would incorporate a general-purpose 
RISC processor plus a vector coprocessor, 16MB of RAM 
and a router. The router, however, did not support multicast 
communication, as the system was expected to rely on spatial 
locality to improve performance. To our knowledge, a proto-
type of the node was built (under the codename T0), but the 
system never operated as a network. Experiments using up to 
five nodes in a bus configuration were discussed in  [27]. 

More recently, the Microelectronics Division at the T.U. 
of Berlin worked in a research project  with objectives similar 
to those of SpiNNaker [25]. Part of this project was an accel-
eration board, called SSE, implemented with a collection of 
FPGAs interconnected via an on-board bus. An SEE accel-
erator was able to perform neural computations 30 times 
faster than a desktop PC  [15]. Other projects used FPGAs for 
similar purposes, obtaining speedups of up to 50 compared 
to software-only implementations. Nevertheless, as these 
boards could not be connected to form a network, they did 
not have support for multicast. 

As far as we know, there are only three active projects 
comparable to SpiNNaker in terms of simulation scale. First, 
the Blue Brain project [6] aims to create biologically accu-
rate functional models of the brain; however, model com-
plexity (far more intricate than SpiNNaker's) only allows 
real-time execution of roughly a neuron per node [24]. This 
is a low figure in comparison with the several thousand (sim-
pler) neurons per node supported by SpiNNaker. 

Secondly, the DARPA's System of Neuromorphic Adap-
tive Plastic Scalable Electronics (SyNAPSE) project claims 
that it has achieved the simulation of spiking neural networks 

the size of a cat's brain (10
9
 neurons) using Izhikevich mod-

els like those supported by SpiNNaker [3]. Their simulations 
run 2-3 orders of magnitude slower than real-time. 

In contrast with the biologically-inspired SpiNNaker ar-
chitecture, neither Blue Brain nor SyNAPSE contemplate the 
construction of a custom architecture but use general-
purpose supercomputers from the IBM Blue Gene family. 
Blue Gene systems offer native support for broadcast and 
multicast communications  [1, 2] using a dedicated tree-like 
network which may not be adequate for the kind of applica-
tion supported by SpiNNaker. As discussed, Blue Gene su-
percomputers or others, such as the Cray XT supercomputers 
[32], being general-purpose will provide solutions that do not 
match the power-efficiency of SpiNNaker. 

Last but not least, the FACETS project [13] is attempting 
to create a faster than real-time hardware system for the 
simulation of networks of large but unspecified size. This 
architecture, while biologically inspired, uses a fixed synapse 
and neuron model and, therefore, is not a system as general 
as SpiNNaker. It employs analogue circuits to implement 
most of the central dynamic functions. The FACETS archi-
tecture uses wafer-scale devices [33] to achieve the neces-
sary connectivity. It uses AER signalling (similar to SpiN-
Naker), but with a circuit-switched, synchronous communi-
cations subsystem which has no support for multicast. Thus 
the FACETS system and its associated HICANN devices 
once again represent a very different system designed to 
solve a different problem: faster than real-time neural simu-
lation, for which power consumption is not a factor and 
communications merely a side effect rather than a design 
feature. 

Regarding multicast communications, to our knowledge 
most of its research is on the areas of communication net-
works (IP networks) and multistage networks for high per-
formance computing systems, neither of which can be ap-
plied to SpiNNaker. In IP networks, the network is com-
pletely irregular, thus topology discovery becomes a very 
important area of research [7, 34]. In multistage networks, 
the construction of multicast routes focuses on minimizing 
the interactions between concurrent multicast communica-
tions to increase network throughput [5, 9]. Finally, research 
into multicast communications for mesh-like topologies such 
as the one in SpiNNaker is scarce [18, 38]. The reason for 
this is that their main use is the implementation of collective 
operations, which can be easily and efficiently deployed in 
software over a point-to-point architecture [36]. This soft-
ware-based approach of collective operations reduces the 
complexity of implementation and, for this reason it is more 
commonly adopted. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have highlighted the importance of mul-
ticast routing for the kind of application executed on top of 
SpiNNaker in which each neuron must communicate its acti-
vation to thousands of other neurons. Our analysis shows that 
a multicast approach requires noticeably less network band-
width than a unicast approach and therefore it is able to sup-
port the simulation of a larger number of neurons. More spe-
cifically we have shown how the multicast router imple-



mented in SpiNNaker can achieve better performance than 
more complex router designs such as Blue Gene’s router or 
the SeaStar2 router, even though they provide noticeably 
higher network bandwidth. 

As future work, we plan to explore different methodolo-
gies for the generation of multicast routes as it is an impor-
tant, non-trivial aspect of using a multicast architecture. Our 
research will include the use of optimization-based ap-
proaches both to allocate neurons and to generate multicast 
routes. Optimizing the allocation of neurons will help to re-
duce the node-based fan-out and also the distance among 
communicating nodes. Optimizing route generation will pro-
vide more balanced use of network resources. These meth-
odologies can become of exceptional importance once the 
large-scale SpiNNaker system is constructed. 

ACKNOWLEDGMENT 

The SpiNNaker project is supported by the Engineering 
and Physical Sciences Research Council, through Grants 
EP/D07908X/1 and GR/S61270/01, and also by ARM. Dr. 
Navaridas holds a Royal Society Newton International Fel-
lowship. Dr Luján is supported by a Royal Society Univer-
sity Research Fellowship. Prof. Miguel-Alonso is supported 
by the Spanish Ministry of Education and Science, grant 
TIN2010-14931, and by Basque Government grant IT-242-
07. 

REFERENCES 

[1] NR Adiga et al. “An Overview of the BlueGene/L Supercomputer”. 
ACM/IEEE Supercomputing conference. 16-22 Nov 2002. 

[2] S. Alam, et al. "Early evaluation of IBM BlueGene/P". ACM/IEEE 
Conference on Supercomputing, pp. 1-12, 15-21 Nov. 2008 

[3] R Ananthanarayanan, et al. “The cat is out of the bag: cortical 
simulations with 109 neurons, 1013 synapses”. ACM/IEEE Conference 
on Supercomputing. 2009. New York, NY, USA 

[4] K Asanovic, et al. “A supercomputer for neural computation.” Proc. 
1994 Intl. Conf. on Neural Networks (ICNN94). 

[5] S Bhattacharya, et al. "Multicasting in Generalized Multistage 
Interconnection Networks". Journal of Parallel and Distributed 
Computing 22(1) 1994, pp. 80-95. DOI: 10.1006/jpdc.1994.1071 

[6] BlueBrain project. Available (Nov. 2011) at: http://bluebrain.epfl.ch/ 

[7] Y Breitbart, et al. "Topology discovery in heterogeneous IP networks: 
the NetInventory system". IEEE/ACM Transactions on Networking 
12(3), 2004, pp. 401-414. DOI: 10.1109/TNET.2004.828963 

[8] H Brody. “Cell counts in cerebral cortex and brainstem”. Alzheimer 
Disease Senile Dementia and Related Disorders. 1978. pp. 345 – 351. 

[9] S Coll, et al. "Efficient and Scalable Hardware-Based Multicast in 
Fat-Tree Networks". Trans. on Parallel and Distributed Systems 20(9) 

[10] P Dayan and L Abbott, “Theoretical Neuroscience”. Cambridge: MIT 
Press, 2001. 

[11] S Davies, et al. "Interfacing Real-Time Spiking I/O with the 
SpiNNaker neuromimetic architecture". Australian Journal of 
Intelligent Information Processing Systems 11(1), 2011, pp. 7-11. 

[12] T Elliott, N Shadbolt, “Developmental robotics: Manifesto and 
application,” Philosophical Trans. Royal Soc., vol. A, no. 361, 2003. 

[13] J Fieres, J Schemmel, K Meier. “Realizing biological spiking neural 
network models in a configurable wafer-scale hardware system”. Int’l 
Joint Conf. on Neural Networks. 2009. pp. 969–976 

[14] S Furber, S Temple, A Brown, “On-chip and inter-chip networks for 
modelling large-scale neural systems,”. Procs. Intl. Symposium on 
Circuits and Systems, ISCAS-2006, Kos, Greece, May 2006. 

[15] HH Hellmich, et al.“Emulation engine for spiking neurons and 
adaptive synaptic weights”. In Proc. IEEE International Joint 
Conference on Neural Networks (IJCNN), 2005. 

[16] S. Herculano-Houzel, “The human brain in numbers: a linearly 
scaled-up primate brain”, Frontiers of Human Neuroscience 3. 

[17] E Izhikevich. “Simple model of spiking neurons”. IEEE Trans. on 
Neural Networks 14, (2003) pp. 1569–1572. 

[18] NE Jerger, LS Peh ,M Lipasti. “Virtual Circuit Tree Multicasting: A 
Case for On-Chip Hardware Multicast Support”. Proceedings of the 
35th Annual International Symposium on Computer Architecture 

[19] X Jin, SB Furber, and JV Woods. “Efficient Modelling of Spiking 
Neural Networks on a Scalable Chip Multiprocessor”. In Proc. of the 
International Joint Conference on Neural Networks, 2008. 

[20] X Jin, et al. "Modelling Spiking Neural Networks on SpiNNaker". 
IEEE Computing in Science & Engineering 12(5), 2010, pp 91-97. 

[21] C Koch, I Segev. “Methods in Neuronal Modeling”. The MIT Press 

[22] W Maass, CM Bishop. “Pulsed Neural Networks”. The MIT Press. 

[23] M Mahowald. “VLSI Analogs of Neuronal Visual Processing: a 
Synthesis of Form and Function”. PhD Dissertation (1992), California 
Institute of Technology, Pasadena, CA. 

[24] H Markram. “The Blue Brain Project”. Nature Revs. Neuroscience 7, 
Feb. 2006, pp. 153-160. DOI: 10.1038/nrn1848 

[25] Microelectronics Division T.U. of Berlin. “Design and 
implementation of spiking neural networks.” Available (Feb. 2012) 
at: http://mikro.ee.tuberlin.de/spinn. 

[26] J Navaridas, et al. Understanding the Interconnection Network of 
SpiNNaker. 23rd International Conference on Supercomputing 
(ICS'09), June 8 to 12, 2009, York Town Heights, New York, USA. 

[27] P Pfaerber and K Asanovic. “Parallel neural network training on 
multispert”. IEEE 3rd International Conference on Algorithms and 
Architectures for Parallel Processing (ICA3PP’97), 1997. 

[28] LA Plana et al. “A GALS Infrastructure for a Massively Parallel 
Multiprocessor”. IEEE Design & Test of Computers, Volume: 24 , 
Issue: 5, pp. 454 - 463, Sept.-Oct. 2007 

[29] LA Plana et al. “An on-chip and inter-chip communications network 
for the spinnaker massively-parallel neural net simulator”. Intl. 
Symposium on Networks-on-Chip (NoCS 2008), 2008, pp. 215 - 216 

[30] AD Rast, et al. “Managing burstiness and scalability in event-driven 
models on the SpiNNaker neuromimetic system”. International 
Journal of Parallel Programming (2011). In Press. 

[31] F Rosenblatt. “Principles of Neurodynamics: Perceptrons and the 
Theory of Brain Mechanisms”. Washington, Spartan Books 

[32] AR Sadaf, et al. "Cray XT4: an early evaluation for petascale 
scientific simulation". Proc. of the 2007 ACM/IEEE Conference on 
Supercomputing, pp. 1-12, 10-16 Nov. 2007, Reno, NV, USA.  

[33] J Schemmel, J Fieres, K Meier. “Wafer-scale integration of analog 
neural networks”. IEEE International Joint Conference on Neural 
Networks, 2008. pp. 431 – 438. 

[34] JK Shapiro, et al. "Topology discovery service for router-assisted 
multicast transport". Procs. of IEEE Open Architectures and Network 
Programming Proceedings, 2002, pp. 14-24 . 

[35] MA Sivilotti. “Wiring Considerations in Analog VLSI Systems, with 
Application to Field- Programmable Networks (VLSI)”. California 
Institute of Technology, Pasadena, CA, Ph.D. thesis (1991) 

[36] R. Thakur and W. Gropp, “Improving the Performance of Collective 
Operations in MPICH”,  

[37] P Tiesinga, T Sejnowski. “Precision of pulse-coupled networks of 
integrate-and-fire neurons.” Network 12 (2). 2001. pp. 215–33. 

[38] L Wang, et al. “Recursive partitioning multicast: A bandwidth-
efficient routing for Networks-on-Chip”. International Symposium on 
Networks-on-Chip, 2009.  

[39] J Wu, S Furber. "A Multicast Routing Scheme for a Universal 
Spiking Neural Network Architecture". The Computer Journal 53(3)


