
Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

 
 
 
 
 
 
Hamilton, G., and Pezaros, D. (2012) A service-oriented measurement 
infrastructure for cloud computing environments. In: 14th IEEE 
International Conference on High Performance Computing and 
Communications (HPCC 2012), 25-27 June 2012, Liverpool, UK. 
 
 
http://eprints.gla.ac.uk/68369/ 
 
Deposited on: 14th August 2012 
 
 

http://eprints.gla.ac.uk/view/author/5079.html


A Service-Oriented Measurement Infrastructure for Cloud Computing
Environments

Gregg Hamilton, Dimitrios Pezaros
School of Computing Science

University of Glasgow
Glasgow, UK

g.hamilton.3@research.gla.ac.uk, dimitrios.pezaros@glasgow.ac.uk

Abstract—With an ever-increasing number of services being
moved to cloud computing platforms, it is essential for data
centre operators to quickly identify any problems in their
network in order to ensure optimal performance and provide
guidance for when actions such as migration of computing
instances are required. This paper introduces a distributed
measurement infrastructure using low-cost in-line link mea-
surements to reveal the true traffic-perceived service quality
in short timescales. In-line measurement is highly relevant for
data centres as it allows an accurate measure of important
network services without the problem of injecting artificial
traffic into a network with high contention for resources.
The infrastructure presented allows real-time monitoring and
visualisation of the state of the network, which can be used
to inform virtual machine migration/instantiation events. We
show that the in-line measurements used by the infrastruc-
ture have negligible impact on network traffic and the hosts
conducting the measurements. The low overhead of in-line
measurements potentially enables the infrastructure to function
as an always-on measurement and management platform.

Keywords-Measurement, network monitoring, network per-
formance, distributed systems, cloud computing

I. INTRODUCTION

Cloud computing has become prominent in recent years as
a way for allowing end users to offload large processing tasks
to data centres. With the volatile workloads such on-demand
systems are required to handle network congestion can easily
occur on links connecting hosts, requiring action to maintain
the performance of particular services communicating on
those links.

Anecdotal evidence suggests that regional cloud data
centre operators typically upgrade their infrastructure only
when they reach 80% utilisation. This is often because
cloud operators cannot afford ISP-like over-provisioning of
resources and require a better return on investment. If the
network could be efficiently monitored problems could be
quickly detected, enabling remedial action, such as migration
of instances, and longer timescales before infrastructure
upgrades are required.

This paper introduces a low-cost, real-time measurement
infrastructure using in-line measurements to address the
issue of informative always-on real-time measurements of
actual network traffic at short timescales.

II. BACKGROUND

A. Cloud Computing

Cloud computing services, such as Amazon’s EC2, typ-
ically give users access to a computing instance, or a
collection of instances, on which to perform computations
and charge for the time that the instance is being used. Users
can often scale the required number of instances up or down
dynamically to either increase performance or reduce the
overall running time of a distributed set of tasks.

Within cloud computing infrastructures, instance place-
ment and migration must be taken into consideration. Place-
ment is the act of deploying a virtual machine (VM) instance
and migration is the act of moving an instance from one
deployment location to another, while in a running state.
New instances must be carefully placed such that they can
achieve expected performance levels without the activity
of existing instances degrading that performance. Similarly,
if the performance of an instance is becoming severely
degraded it is desirable to migrate that instance elsewhere.
The measurement infrastructure presented in this paper can
aid in the placement and migration process by allowing
network operators to make informed decisions based upon
the real-time network performance.

B. Network Measurement

In an environment such as a data centre there could be tens
of thousands of interconnected servers, each hosting several
VMs. Each of the VMs may be competing with others for
already over-subscribed network resources. If this is the case,
it is sometimes desirable to migrate VM instances to another
server where there will be less contention. To handle the
measurement of such large-scale distributed environments,
suitable infrastructures must be put in place that would take
into account system and network resource contention.

Numerous types of network measurement techniques exist
such as passive [1][2], active [3][4] and hybrid [5] measure-
ments. However, active measurements are only as good as
the type of traffic that they mimic, while passive measure-
ments can be costly to process and are often only of use for
analysis of network problems after they have occurred. In a



cloud environment, many network services may need real-
time measurement results. The in-line measurements used in
this paper address this with the ability to measure any type
of traffic, allowing a diverse picture of actual network traffic
performance.

III. AN ALWAYS-ON NETWORK MEASUREMENT
INFRASTRUCTURE

The main goal of this paper is to introduce a distributed
network measurement infrastructure, suitable for always-
on low-cost measurements which reveal the real perfor-
mance of traffic in short timescales. There exist previous
attempts at monitoring large-scale networks, such as ISP
networks [1][3]. Cloud data centres, often composed of tens
of thousands of servers, pose similar problems.

Work on cloud environments has looked at monitoring
individual computing instances or clusters of instances in
cloud data centres [6], but not the links connecting instances.
In a data centre the servers may be operating upon large
distributed tasks, e.g., MapReduce jobs, where network
performance is a serious consideration. To address this,
we implemented a distributed measurement infrastructure
capable of using in-line measurements [7].

In-line network measurements are low-overhead measure-
ments that are piggybacked within traffic already destined
for the network. This is achieved with a source module
that attaches measurement data to packets and a destination
module that retrieves measurement data from packets. For
high-performance operation, the modules operate within
the Linux kernel, necessitating their implementation in C.
The in-line measurement modules are discussed fully in
Section IV-A.

Our infrastructure is intended to make deployment and
operation of the infrastructure itself relatively painless. The
system is focused around a network operations centre (NOC)
which is used to coordinate measurements and aggregate and
visualise measurement data.

A. Implementation and Deployment

The Java programming language provides remote method
invocation (RMI) for method calls between hosts across a
network, and the Java Native Interface (JNI) for interaction
with native C code to allow communication with the Linux
kernel modules, making Java a suitable choice for this
infrastructure.

In-line measurements operate in kernel space, requiring
modifications to the Linux kernel. Data centre operators
can avoid patching individual servers by deploying pre-
configured custom operating system images to collections
of machines, along with the associated Java components.

B. Interface

The interface presented to a user is graphical and consists
of several distinct aspects, as shown in Fig 1. The main

window of the interface presents the user with a module
configuration panel, a network topology panel, and a real-
time measurement chart panel. The primary function of
the interface is to easily visualise the state of the network
between the measurement hosts. As measurement traces are
transmitted back to the NOC, charts are displayed for one-
way delay or loss between two hosts, enabling an at-a-
glance notification of the current state of the network. The
real-time visualisation of network traffic performance can
easily allow for identification of a problem when it occurs,
allowing an operator to make an informed decision to man-
ually migrate a set of instances, or avoid placing any new
instances in a particular area within the data centre that may
be experiencing network troubles. As the number of links
between end-hosts monitored by the infrastructure increases,
intermediate measurement controllers and aggregators could
be introduced, which would allow for offloading of high
quantities of network traffic and data processing from the
NOC itself.

The interface also attempts to provide a topology vi-
sualisation, which can be of great value in a complex
network setup such as that of a data centre. To achieve
the topology visualisation, the NOC coordinates traceroute
measurements that are remotely initiated between end-hosts
and the resulting outputs are used to construct a topology
graph at the NOC. However, if traceroute is unable to
identify all hosts during an execution, the unknown hops
are omitted from the topology visualisation.

C. Configuration

The measurement infrastructure primarily allows the abil-
ity to conduct real-time network measurements and view
instant results of those measurements. Java RMI enables
a NOC to insert a module on a remote host to begin
network measurement or remove a module to terminate a
measurement session. Measurement sessions can also be
scheduled for future execution among a set of hosts, which
can be exploited for monitoring the network at various points
throughout the day for operators to get regular snapshots of
the network performance. The setting-up of a time for a
future measurement session, and the schedule of planned
sessions, are shown in Fig 2 and Fig 3, respectively.

Sampling schemes can be configured for individual hosts,
allowing monitoring to be adapted for a subset of traffic of
interest and limiting the frequency with which measurements
are piggybacked.

To allow for analysis of a measurement session, measure-
ment traces are transmitted back to the NOC. The traces
stored and transmitted are small and configurable, often
consisting of only host and port information along with the
appropriate measurement information, such as delay values.
When traces are transmitted back to the NOC they are
reconstructed back into flows at user-defined levels of traffic
granularity, e.g., at host level only or at host-and-port level.



Figure 1. The distributed measurement interface

Figure 2. Configuration of a future measurement session

Figure 3. Future scheduled measurements

This is primarily useful for per-flow visualisation in the
analysis of traffic performance.

D. Integration with Measurement Modules

The in-line measurement modules operate within the
Linux kernel. The benefit of having the modules operate

Kernel Space

User Space

char dev buffer

src module dst module

config char dev

Configuration Measurement Data

Inline Measurement Packet

Figure 4. Operation of measurement modules

from within the kernel is more efficient piggybacking of
measurement data by modifying packets directly within the
kernel. Communication with user space applications is via
Linux character devices, allowing the measurement infras-
tructure to configure measurement modules and retrieve
measurement data.

In-line measurements are carried as a pseudo-layer be-
tween the IP and transport layers of a packet. When a
packet containing measurement data is received at a host,
the data is stripped from the packet and passed to a character
device containing a circular buffer. When data is read from
the character device, it is copied from kernel space into
user space memory. The communication processes of the
modules are illustrated in Fig 4.



Figure 5. Measurement data header

JNI code reads raw measurement data from native char-
acter devices into a Java-based parser that reconstructs
the measurement results, and associated identifying headers
from the IP and transport layers, into Java objects that
can be used within the infrastructure, e.g., for measurement
visualisation purposes.

IV. IN-LINE MEASUREMENTS

In-line measurement techniques are currently imple-
mented natively in IPv6 using extension headers. However,
IPv6 has not yet come to prominence, leaving IPv4 as the
dominant Internet protocol. To achieve in-line measurements
in IPv4, a new layer has to be introduced into the IPv4 stack.
The implementation of in-line measurements for IPv4 traffic
is discussed in this section.

A. Measurement Injection

In order to piggyback measurement data we inject it as a
pseudo-layer between the IP layer and the transport layer, as
this makes the injection mechanism suitable for all Internet
traffic. Like other TCP/IP layers, it requires a header to
identify its presence and properties. The header used to
identify in-lined data is shown in Fig 5.

As the in-lining mechanism is intended to allow future
expansion the header incorporates a measurement type field.
The header also contains a next protocol field to identify
the transport layer protocol. The next protocol field in the
IP header is set to 253, a value reserved for experiments as
outlined in RFC 3692, and the original next protocol value
is copied into the in-line header. Finally, the header also has
a length field so that measurement data may be successfully
removed.

While insertion of measurement data between the IP
and transport layers should allow for routing to operate as
normal, strictly configured routers could drop the packet due
to an unrecognised next header value in the IP header. To
overcome this, we perform IP-in-IP encapsulation on the
packet, as defined in RFC 2003, to tunnel measurement
packets through a network.

The injection mechanism discussed here requires changes
only to the TCP/IP stacks of end-hosts conducting mea-
surements and no modification of any systems performing
intermediate routing.

B. Measurement Modules

To illustrate the use of the in-lining mechanism, two types
of network measurement were implemented: one-way delay
and one-way loss. The rationale and benefit of implementing

such measurements in an in-lined nature is discussed in this
section.

One-way delay: Measuring one-way delay across net-
work links between hosts requires high resolution times-
tamps for accurate measurements. Our measurement mech-
anism allows for an in-line one-way delay measurement
module that injects source and destination timestamps as
close to the link layer as possible by implementation within
the Linux kernel.

One-way loss: Packet loss typically goes hand-in-hand
with link delay measurements. If a link has a high delay
value it will often indicate congestion. Such congestion often
leads to an increased loss of packets which can lead to
further congestion as packets are re-transmitted.

C. Configurable Measurement Control

Although in-line measurements give significantly less
overhead than techniques that inject extra traffic into the
network, it may not be of interest to measure and analyse
all the traffic in a network. In order to facilitate a variety of
targeted measurement capabilities, we have implemented a
configurable packet sampling system. This comes with the
ability to rate-limit the measurement data that is sent in-line
with packets. A 1-in-N packets and 1-per-N milliseconds
sampling scheme are offered.

D. Implementation

The measurement mechanism was implemented by adding
hooks to version 2.6.30 of the Linux kernel and implement-
ing the one-way delay and one-way loss measurements as
loadable kernel modules (LKMs). The hooks were arrays of
pointers to functions, allowing the measurement modules to
plug processing functions into them, so that they may insert
or retrieve measurement data.

In order for the insertion or retrieval of measure-
ment data to take place as close to the link layer as
possible, handling code is placed in each of the ker-
nel ip_finish_output2() and ip_rcv() functions,
which loops over the hooks described above. These are the
last function to handle a packet before it is dispatched to the
network hardware and the first to handle a packet after it is
received by the network hardware, respectively.

We reserve space for measurement data and the encapsu-
lation header by clamping the MSS in TCP packets. Once
a packet with enough spare space has been identified the
kernel socket buffer is modified accordingly to insert the
measurement data and its header.

Before the outgoing packet is handed back to the network,
it is wrapped in an outer IP header to ensure safe passage
through intermediate routers, as described above, which is
then removed when the packet reaches its destination.

As the mechanism operates within routines in kernel
space, communication must take place between kernel space



and user space, facilitated by character devices for measure-
ment configuration and retrieval of measurement data.

A second implementation of the measurement mechanism
was also developed using the Click Modular Router to
compare the performance of an extensible router framework
to native kernel code [8]. Click is a router framework which
consists of a collection of self-contained modules that each
perform a single task upon a packet, such as applying an
IP header. Multiple Click modules can be combined in a
configuration and run as a software router.

V. EVALUATION

In order to evaluate the impact of the infrastructure upon
a network, a set of network throughput experiments was
conducted on the underlying in-line measurements used
within it. These experiments were conducted on a 2.4GHz
Pentium 4 with a 100 Mbit/s NIC and an AMD Athlon
64 3500+ with a 100 Mbit/s NIC. The two systems were
connected via a 100 Mbit/s switch.

A. Throughput

The throughput tests were first run to gain an understand-
ing of the effect the measurement mechanism has on network
performance. In the tests, for comparison, the measurement
mechanism was run against the native Linux kernel and the
Click prototype. The experiment was run on four setups in
total:

• A vanilla Linux kernel
• A basic Click IP router setup
• A Click IP router with in-line measurement modules
• A modified Linux kernel using in-line measurements
Linux kernel 2.6.24.7 was used on both systems, due to

the latest version of the Click kernel patch available. One-
way delay was the measurement module used. The Iperf
network testing tool was used to conduct the throughput
experiments on packet sizes of 150, 250, 500, 1000 and
1500 bytes.

Each test was run for 10 seconds and five runs were
conducted for each packet size, with the result being the
average of the five runs. The results of the throughput tests
are shown in Mbit/s in Fig 6.

As the figures show, the in-line measurement mechanisms
have little effect on the throughput when large packet sizes
of 1000 or 1500 bytes are transmitted. Packets of this size,
which are close to the Ethernet MTU, are the most prevalent
in transfers in the Internet, so in real world usage adding in-
line measurements to packets around this size should have
a negligible effect on network throughput.

However, as packet size decreases, the performance gap
widens. As more packets can be sent on a link per time
unit when using smaller packets, the lower throughput is
likely caused by the per-packet processing time. It is worth
noting that although sending 150 byte packets with in-
line measurements only achieves a throughput of around

Figure 6. Throughput in Mbit/s

Table I
PROCESSOR UTILISATION BY LINUX AND CLICK IMPLEMENTATIONS

Processor utilisation
Linux Click

Source one way delay src 2.0%
Total: 19.2%module ipv4 encapsulation 4.8%

Total: 6.8%
Destination one way delay dst 0.65%

Total: 4.5%module ipv4 decapsulation 0.43%
Total: 1.8%

30 Mbit/s, a vanilla Linux kernel could still only achieve
a throughput of 49 Mbit/s. However, we do not advise
instrumenting minimum-sized packets.

B. Profiling

To evaluate the performance impact on individual hosts,
another 10 second throughput experiment using 150-byte
MTU packets was run, this time using the OProfile [9]
system profiler to measure processor utilisation on the hosts.
A 150-byte MTU was chosen as the application-level mini-
mum allowed by the experimental setup, but is close to the
theoretical minimum of 64 bytes. OProfile instrumented the
respective unhalted state counter on each processor, with a
counter limit of 105. The results are presented in Table I.

While Click may achieve a comparable throughput to
Linux, the Click architecture has a much higher process-
ing overhead, requiring roughly two and a half times the
processing power. An observation of interest is that the des-
tination module has a significantly lower overhead in both
implementations. This is down to the potential allocation of
extra packet headroom and the resulting copying of socket
buffers that may occur in the source module.

These evaluations have shown that, in the common case
of near MTU-sized packets, the measurement mechanism
operates with a very low overhead on both network per-
formance and processor utilisation. The comparison of the



Click prototype and Linux implementation has shown that
while they may achieve comparable throughput, Click does
so at a substantial cost in processor usage.

VI. RELATED WORK

The work of most relevance to this paper are in-line
measurements for IPv6 [7]. There have also been studies
into providing frameworks for programmable network mea-
surements [10][11].

Network measurement infrastructures for large-scale net-
works in general have been widely studied in the liter-
ature. However, they are often based upon costly active
measurements [4], or are based on passive measurement
techniques [1]. There have been few attempts focused on
measurement in cloud data centres [6]. However, such work
is limited to exploring the monitoring of the performance of
individual instances and clusters of instances, rather than the
critical networks required for inter-instance communication
in cloud data centres.

In terms of adding extra functionality to the networking
stack, as the measurements in this paper introduce, there
is the Click Modular Router, which is a module-based
routing framework that allows the quick construction of
custom routers [8]. There are also SILO, which attempts
to apply cross-layering to the networking stack [12] and
NetServ, which looks at adding services at the core of the
network [13].

VII. CONCLUSION

This paper has presented a low-cost in-line measurement
infrastructure for data centres. The infrastructure has been
designed to allow the measurement of data centre net-
works in short timescales, revealing the actual performance
of any traffic type supported by the data centre in real-
time. Measurement sessions can be reconfigured in real-
time and future sessions can be scheduled, while charts of
the performance of network traffic can be displayed. The
information presented by the measurement infrastructure can
be leveraged to make informed decisions on when to take
action to maintain network performance, such as migrating
or instantiating new VM instances.

An in-line measurement implementation for IPv4 has been
provided for native Linux as well as for the Click Modular
Router framework, and throughput experiments have demon-
strated that with the typical near MTU-sized packets in the
Internet there is little instrumentation overhead, even at full
line speeds, while moderate sampling would further reduce
any overhead to virtually zero.

The mechanism introduces extensibility to the TCP/IP
stack, with the potential for further control and management
applications, e.g., performance-based routing updates for
link-state protocols like OSPF. New in-line data injection
applications can be realised merely by implementing a new
control data structure in a kernel module and loading it onto
a running kernel.

REFERENCES

[1] D. Antoniades, P. Trimintzios, M. Polychronakis, S. Ubik,
A. Papadogiannakis, and V. Smotlacha, “Lobster: a European
platform for passive network traffic monitoring,” in Proc.
TridentCom ’08, 2008, pp. 8:1–8:10.

[2] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R.
Kompella, and D. G. Andersen, “CSAMP: a system for
network-wide flow monitoring,” in Proc. 5th USENIX Symp.
on Networked Systems Design and Implementation (NSDI
’08), 2008, pp. 233–246.

[3] M. Luckie, “Scamper: a scalable and extensible packet prober
for active measurement of the internet,” in Proc. 10th Annual
Conference on Internet Measurement (IMC ’10), 2010, pp.
239–245.

[4] H. H. Song, L. Qiu, and Y. Zhang, “NetQuest: a flexible
framework for large-scale network measurement,” in Proc.
Joint International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS ’06), 2006, pp. 121–
132.

[5] P. Papageorge, J. McCann, and M. Hicks, “Passive aggressive
measurement with MGRP,” in Proc. ACM SIGCOMM ’09,
2009, pp. 279–290.

[6] S. De Chaves, R. Uriarte, and C. Westphall, “Toward an
architecture for monitoring private clouds,” Communications
Magazine, IEEE, vol. 49, no. 12, pp. 130–137, December
2011.

[7] D. Pezaros, M. Hoerdt, and D. Hutchison, “Low-overhead
end-to-end performance measurement for next generation
networks,” IEEE Transactions on Network and Service Man-
agement, vol. 8, no. 1, pp. 1–14, March 2011.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek,
“The click modular router,” ACM Transactions on Computer
Systems, vol. 18, pp. 263–297, August 2000.

[9] “Oprofile system profiler.” [Online]. Available:
http://oprofile.sourceforge.net/

[10] J. Sommers, P. Barford, and M. Crovella, “Router primitives
for programmable active measurement,” in Proc. 2nd ACM
SIGCOMM Workshop on Programmable Routers for Exten-
sible Services of Tomorrow (PRESTO ’09), 2009, pp. 13–18.

[11] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards
programmable network measurement,” IEEE/ACM Transac-
tions on Networking, vol. 19, pp. 115–128, February 2011.

[12] R. Dutta, G. Rouskas, I. Baldine, A. Bragg, and D. Stevenson,
“The silo architecture for services integration, control, and
optimization for the future internet,” in Proc. IEEE Interna-
tional Conference on Communications (ICC ’07), June 2007,
pp. 1899–1904.

[13] S. Srinivasan, J. Lee, E. Liu, M. Kester, H. Schulzrinne,
V. Hilt, S. Seetharaman, and A. Khan, “NetServ: dynamically
deploying in-network services,” in Proc. Workshop on Re-
architecting the Internet (ReArch ’09), 2009, pp. 37–42.


	citation_temp.pdf
	http://eprints.gla.ac.uk/68369/


