
YAO: a generator of parallel code
for variational data assimilation applications

Luigi Nardi∗†, Fouad Badran†, Pierre Fortin‡ and Sylvie Thiria∗

∗ LOCEAN, Laboratoire d’Océanographie et du Climat: Expérimentations et approches numériques.
UMR 7159 CNRS / IRD / Université Pierre et Marie Curie / MNHN.
Institut Pierre Simon Laplace. 4, place Jussieu Paris 75005, France.

† CEDRIC, Centre d’Etude et De Recherche en Informatique du CNAM. EA 1395,
292 rue St Martin Paris 75003, France.

‡ UPMC Univ Paris 06 and CNRS UMR 7606, LIP6, 4 place Jussieu, F-75252, Paris cedex 05, France

Abstract—Variational data assimilation consists in estimating
control parameters of a numerical model in order to min-
imize the misfit between the forecast values and the actual
observations. The YAO framework is a code generator that
facilitates, especially for the adjoint model, the writing and
the generation of a variational data assimilation program for
a given numerical application. In this paper we present how
the modular graph specific to YAO enables the automatic and
efficient parallelization of the generated code with OpenMP on
shared memory architectures. Thanks to this modular graph
we are also able to completely avoid the data race conditions
(write/write conflicts). Performance tests with actual applications
demonstrates good speedups on a multicore CPU.

Keywords: data assimilation; automatic parallelization; shared
memory architectures; OpenMP; dependence graph; numerical
model; adjoint model

I. INTRODUCTION

Numerical models are widely used for studying physical
phenomena. Most of the time, the model is used to forecast or
analyze the evolution of the phenomenon. Since the model is
imperfect, discrepancy between its forecast values and actual
observations may be important due to model parametrization,
numerical discretization, uncertainty on the initial conditions
and boundary conditions. A new method, the so-called data
assimilation [1], which uses both the numerical model of
the phenomenon and the inverse problem method has been
introduced to reduce this discrepancy. Data assimilation uses
actual observations to constrain the control parameters (ini-
tial conditions, model parameters, . . .) in order to force the
numerical model (thereafter also referred to as the direct
model) to reproduce the desired behavior. In variational data
assimilation methods [2], this task is done by minimizing, with
respect to control parameters, a cost function J which mea-
sures the misfit between the direct numerical model outputs
and the observations. The minimization is done by the use
of a gradient method, which requires calculating the gradient
of J as a function of the control parameters. The gradient
computation requires the product of the transpose Jacobian
matrix of the direct numerical model with the derivative vector
of J defined at the observation points. This product is also
called adjoint model. Since the direct numerical model is

usually very complex, the implementation of the programming
code which represents the adjoint model is very complicated.

The YAO framework already presented in [3], [4] is a code
generator dedicated to variational data assimilation. With YAO
the user defines, using specific directives and C programming,
the type of discretization and the specification of the numerical
model. It then generates automatically the numerical and the
adjoint model codes via C++ object-oriented programming.
YAO has already been used with success on several actual
applications in oceanography: Shallow-water [3], [4], Marine
acoustics [5], [6], Ocean color [7], PISCES [8], GYRE con-
figuration of NEMO [9].

The YAO formalism is based on a modular graph, which
is similar to those used in automatic parallelization of nested
loops. In this well-developed research field several concepts
and algorithms have been introduced, which allow the analysis
of nested loops, their decomposition and fusion [10], [11],
[12]. The decomposition obtained is well suited to a multi-
thread parallelization on shared memory architectures where
no communications are required. In this paper, we show how
the YAO modular graph enables us to integrate and adapt
these algorithms in order to identify the available parallelism,
and to allow the automatic generation of parallel code with
YAO while completely avoiding the data race conditions
(write/write conflicts). With the OpenMP directives, it is
then possible to generate a multi-threaded parallel code that
runs efficiently on shared memory architectures. This is an
important improvement over the previous version of YAO [3]
which can generate only sequential code. A large community
in geophysics may thus automatically and transparently exploit
decades of research in automatic parallelization and benefit
from important speedups in computation times on multicore
architectures without any additional effort and without any
knowledge in parallel programming.

For the automatic generation of parallel code, the devel-
opment of algorithms specific to YAO is necessary. Indeed,
the software tools for automatic parallelization with OpenMP
directives have specific constraints related to their design, and
can therefore currently not be integrated in the YAO generator.
For example, the CAPO toolkit [13] supports only Fortran

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

http://hal.upmc.fr/hal-00695513
http://hal.archives-ouvertes.fr

and relies on user interaction to improve the parallelization
process. The Gaspard2 framework [14] enables automatic
OpenMP code generation, but the available parallelism must be
first specified by the user in an UML model. The PLuTo tool
[15] can efficiently parallelize nested loops while taking into
account, via tiling, data locality on multicore architectures with
complex hierarchical memory. However PLuTo does not cur-
rently support object-oriented programming for input source
codes and it has specific limitations (only SCoP programs
with pure function calls, no dynamic branch conditions) that
also prevents a direct integration in YAO. Finally and most
importantly, as detailed further there are data race conditions
(write/write conflicts) in the generated code. These data race
conditions prevent any automatic parallelization from such
tools according to their own data-dependency analysis. To
our knowledge, none of these tools can automatically insert
(for example) OpenMP atomic directives to avoid these race
conditions and thus enable the parallelization. We here show
how to efficiently accomplish this in YAO thanks to its
modular graph.

Adapting state-of-the-art algorithms to YAO while relying
on its modular graph has also several advantages. First, there
is no constraint on the application code written by the user.
Second, a high-level dependency graph is directly provided by
the modular graph which enables to avoid the data-dependency
analysis, to naturally obtain a coarse grain parallelism, and
to possibly scale on real-life applications with thousands of
statements.

In the following, we will first give a brief overview of
the YAO framework in section II. Then, in section III we
will show how the YAO modular graph can be used to
automatically and efficiently parallelize the generated code
on shared memory architectures. Performance results for two
actual YAO applications on a multicore CPU are detailed
in section IV. Finally, in section V concluding remarks are
presented and future work discussed.

II. YAO PRESENTATION

A. The modular graph

We present here the concept of modular graph, which is
fundamental in YAO, as well as the forward and backward
procedures: more details can be found in [3], [4]. We first
define the following terms.

• A module is an entity of computation; it receives inputs
from other modules or from an external context1 and
it transmits outputs to other modules or to an external
context.

• A connection is a transmission of data from a module to
another or between a module and an external context.

• A modular graph is a data flow graph composed by a
set of several interconnected modules; it summarizes the
sequential order of the computations.

1An external context is an entity which initializes and retrieves the com-
putation of certain modules.

In order to perform data assimilation, at each time step a
modular graph is traversed by the forward procedure and then
by the backward procedure.

1) The forward procedure: the input data set of a module
Fp is a vector denoted xp and its output data set is a vector
denoted yp (yp = Fp(xp)). As a consequence, a module
Fp can be executed only if its input vector xp has already
been processed, which implies that all its predecessor modules
have been executed beforehand. Thus there are only flow
dependencies [10] between modules. Since we suppose that
the modular graph is acyclic, it is then possible to find a
module ordering, i.e. a topological order, which allows us to
correctly propagate the calculation through the graph. If we
denote by x the vector corresponding to all the graph input
data, provided by the external context, the forward procedure
enables to calculate the vector y corresponding to all the graph
output values. The modular graph defines an overall function
Γ and makes it possible to compute y = Γ(x). The function
Γ has a physical meaning: it represents a direct numerical
model M , with respect to the YAO formalism. The forward
procedure allows us to compute the outputs of the numerical
model according to its inputs. The incoming connections from
the external context of Γ could be, for example, initializations
or boundary conditions. Outgoing connections transmit their
values to compute, as an example, a cost function.

2) The backward procedure: this procedure enables the
computation of the adjoint of the cost function J with respect
to the control parameters. We suppose that for each module Fp,
with an input vector xp and receiving in its output data points a
“perturbation” vector dyp, we can compute the matrix product
dxp = FT

p dyp, FT
p being the transposed Jacobian matrix of the

module Fp calculated at point xp. It is possible [4] to compute
the gradient of J with respect to the control parameters by
traversing the modular graph in a reverse topological order
and executing local computations on each module in order to
compute dxp. It has been shown [3], [4] that this reversed
traversal leads to a back propagation on the modular graph
characterised by additions (accumulations) of several local
computations. Each of these additions is computed in an
intermediate step and then back propagated. Thus there are
flow and output dependencies [10].

3) YAO formalism: running simulations or data assimila-
tions using an operational numerical model M requires the
definition of a modular graph representing the sequence of
the computations. A numerical model operates on a discrete
grid, where the physical process is computed at each grid
point I and at each time step t. As the phenomenon under
study is quite the same at each grid point, only the modular
subgraph representing a grid point is needed. YAO obtains Γ
by duplicating this subgraph for each I and t.

In the YAO formalism, the user must define a set of basic
functions {F1, F2, . . . Fk} which has to be applied to each grid
point I and at each time step t. The user has to define also the
dependencies between these functions. From this information,
YAO generates the overall modular graph Γ. The modules of
the modular subgraph ΓI,t are denoted by Fp(I, t), where I

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

(a)

ctin F1 from F1 i j-1 t-1
ctin F2 from F1 i j+1 t
ctin F2 from F3 i-1 j+1 t
ctin F2 from F3 i j t-1
ctin F2 from F4 i+1 j t
ctin F3 from F1 i-1 j t-1
ctin F4 from F3 i j t
ctin F4 from F2 i j+1 t

(b)

order YA1
order YA2

F1 F3

order YB1
order YB2

F2 F4

Fig. 1. (a) Part of the specification language used by the user with 2D space
modules. The second ctin directive specifies the connection from F1 at point
(i,j+1,t) to F2 at point (i,j,t). (b) The order directives indicate the ordering in
which we compute the functions Fp and the ordering in which we traverse
the grid.

represents a grid point (1D, 2D or 3D), t is a time step and
Fp a basic function. Thus, a module is the computation of
the function Fp at grid point I and at time t. We denote by
i (respectively j and k) the indices of the first axis (resp.
the second and third axis). An edge from a source module
Fs(I

′, t′) to a destination module Fd(I, t) corresponds to a
data transmission from Fs(I

′, t′) to Fd(I, t) (s may be equal
to d).

The modular graph is similar to the Expanded Dependence
Graph (EDG) used for the parallelism detection in nested loops
[10]. The main difference with the modular graph being that
in the EDG the nodes represent one operation (the instance of
a statement) while the nodes of the modular graph are a set
of operations (the instance of a function composed by a set
of statements) represented by the module Fp(I, t). Thus, the
granularity of the nodes differs. In practice the dimension of
a YAO basic function depends on the application and on the
user design. In general a YAO module has some dozens of
statements but in particular cases it may be very much larger.

B. User specifications and code generation

This section presents two YAO directives, ctin and order,
on which relies the YAO automatic code generation. These
directives generate nested loops, which allow us to traverse
the modules Fp(I, t) in the correct ordering.

1) order and ctin directives: the ctin directive has the
following syntax “ctin from Fs to Fd list of coordinates”.
Such a directive represents one edge (or connection) of the
modular graph which is then automatically replicated by YAO
on space and time. list of coordinates represents, for a generic
point I and time step t of the destination module Fd, the point
I ′ and the time t′ of the source module Fs (with t ≥ t′). The
difference I ′ − I represents the distance vector of the source
module with respect to the destination module; we denote its
coordinates by di, dj or dk. The user has to specify in the list
of coordinates the distance vector and dt = t′−t as a function
of the generic point I of the destination module, which is
the same in all connections. Fig. 1a gives an example of ctin
directives.

Every ctin directive generates an edge from Fs to Fd labeled

F2F1

F3

0,−1,−1

F4

0,+1,0

0
,
+

1
,
0

+
1

,
0

,
0

0,0,0

−
1

,
0

,
−

1

−

1,
+
1,
0

0
,
0
,
−

1

Fig. 2. RDG issued by the ctin directives of Fig. 1a.

by the distance vector I ′ − I and t′ − t. The resulting graph
is a directed multigraph2 which represents all dependencies
between basic functions. This multigraph corresponds to the
Reduced Dependence Graph (RDG) [10] used for the au-
tomatic generation of parallelism in nested loops3. Fig. 2
presents the RDG of the former example. Since the space
dimension is two, the edges are labeled by (di, dj , dt) which
indicates that the destination module, at time t and at point
(i, j), takes its inputs from the source module at time t + dt
and point (i+ di, j + dj) with di, dj ∈ Z and dt ∈ Z≤0.

The YAO order directive allows the user to define a traversal
of the modular graph following a topological order. This
directive allows to visit all the grid points of the space, and
permits the generation of nested loops. The user specifies
one order directive for each dimension of the space. Thus, a
program generated by YAO, contains an outermost loop, that
represents the time, within which the user defines, thanks to
the order directives, the different loops that allows the traversal
of the space for each time step. In general, we have several
ways to traverse a space. In the order directive, YA1 (YAO
Afterward axis 1) means that we are managing the i loop and
we go along this axis in an ascendant way. YA2 means the
same but for the j axis, whereas YB1 (YAO Backward axis 1)
means that we go along the i axis in a descendant way. Fig.
1b gives an example of such order directives.

An order directive is coherent if and only if it ensures the
correct computation of the functions it contains. YAO has an
internal procedure which verifies the coherence, with respect
to the RDG, of the order directives. In the following, we thus
assume that all the order directives specified by the user are
coherent.

The different order directives are executed in a sequential
way in the scheduling specified by the user. The outermost
loop (ascendant or descendant) of one order directive cor-
responds to one axis; in the remainder we use l to denote
this axis and r the number of basic functions contained in
this outermost loop. As explained in [4], if l is ascendant
necessarily all the distances dl of the edges between the r
modules are negative or null due to the coherence hypothesis.
Symmetrically if l is descendant all the distances dl are
positive or null.

2A directed multigraph is a graph with multiple parallel edges.
3As for the analogy between the EDG and the modular graph, the RDG

has one statement per node while the YAO RDG has a basic function (a set
of statements) per node.

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

loop i ascendant
loop j ascendant

F1(i,j,t).forward(F1(i,j-1,t-1))
F3(i,j,t).forward(F1(i-1,j,t-1))

loop i descendant
loop j ascendant

F2(i,j,t).forward(F1(i,j+1,t), F3(i-1,j+1,t),
F3(i,j,t-1), F4(i+1,j,t))

F4(i,j,t).forward(F3(i,j,t), F2(i,j+1,t))

Fig. 3. YAO generator translation of the directives of Figs. 1a and 1b.

2) Generation of the forward and backward procedures:
in Fig. 3 we give the translation, performed by the YAO code
generator, of the ctin and order directives given in Figs. 1a and
1b. This represents the translation, in a pseudo code language,
of the forward procedure. Each order directive generates one
loop, one for each dimension of the space. The way we traverse
the axes, ascendant or descendant, and the scheduling of the
modules are the ones specified in the order directives. For
each object of each module class Fp the local forward function
(a C++ method) is called with the output of its predecessor
modules as inputs. The local forward functions are defined,
for each basic function, by the user. It has to be noticed that
all forward functions are thread-safe because they compute
the result with respect to the generic grid point I , as shown
in Fig. 3. The nested loops allow us to compute the output
of the modules for all the grid points and for one time step.
An overall loop, not shown in the figure, which allows us to
traverse the time steps in an incremental order t, t+ 1, t+ 2,
etc., encompasses all the local forward functions. The time
loop may be considered as a computation barrier where at
current time t, all the computations for time t′ < t are done.

As presented in section II-A2, the backward procedure
traverses the modular graph in a reverse topological order.
For ease of presentation we do not detail the pseudo code of
the backward procedure as we did for the forward procedure.
These are very similar. However it is important to point out
the addition (accumulation) in the back propagation, explained
in [3], [4] and specific to the backward procedure. This
accumulation results in output dependencies which may arise
between two time steps. This computation is briefly explained
in Fig. 4. The yp variables (p ∈ 1, 2, 3) are the outputs of
the local forward functions. The propagation allows us to
provide the predecessor module computations to the successor
modules. On the other side, the back propagation allows us to
back propagate the gradient of J by using the Jacobian matrix
(Jp in the figure) for computing dxp. The back propagation
of several dxp (dx3 and dx2 in Fig. 4) which have the same
predecessor enforces the addition of the dxp (the symbol

∑
in the figure).

III. ALGORITHM FOR AUTOMATIC PARALLELIZATION

A. Parallelization of the forward procedure

In section II we have noted an interesting similarity between
the YAO formalism and the theories of compilation and of
automatic parallelization of nested loops [10]. Thanks to this

x dx1

x
3 dx3

=F()
1 11

1=
y

1

x
1

1F

=F()
1 11

1=
y

1

x
1

1F
y

1 dy1

=F()
3 33

3=
y

3

x
3

3F

y
3 dy

3

timet-1 t

y
1 dy11

y

y

y

J

J

J

x

x

x

l+1

l

Fig. 4. Addition, represented by the symbol
∑

, in the back propagation
of the backward procedure. These two connections represent a data transfer
between two time steps. The two modules F3 and F1 perform the transfer
towards F1 at time step t − 1. This partial graph example case is given by
the YAO directives shown in Fig. 1.

similarity we can adapt these techniques and algorithms to
the YAO automatic code generator. We thus propose here to
integrate and adapt such algorithms in order to automatically
parallelize the forward procedure generated by YAO on shared
memory architectures with multi-thread programming. No
communication is required and we just have to maximize
the number of parallel loops. Because of the strong time
dependencies in all data assimilation applications the temporal
loop is not parallelized and we focus on data parallelism at
each time step. The domain decomposition between threads
is performed as a 1D block distribution on the space and
we rely on a static load balancing since in all the current
YAO applications the computation load of each module is
constant for each grid point. Our goal is thus to label, as
“parallel” or “not parallel”, each outermost order directive
so that the corresponding loop can be generated as parallel
or sequential in the final code (with OpenMP directives). In
order to maintain the coherence hypothesis of one given nest
of order directives we opted not to change or invert the order
defined by the user. However we can still use techniques
such as a loop distributions possibly followed by loop fusions
in order to detect the maximum available parallelism and to
reduce the synchronization points.

Since the temporal loop is not considered in the paralleliza-
tion algorithm, the edges whose t′ − t are negative can be
removed from the RDG. The remaining graph is shown in
Fig. 5, we denote it RDG. This is obtained by removing all
dt = −1 connections and writing only the signs of the distance
vector components. Thus (0,+) means a distance vector equal
to (0,+1).

Considering some nested order directives which have as
outermost axis l and a connection from Fs to Fd we consider
a connection as critical with respect to these nested order
directives if:

• Fs and Fd are contained by the nested directives,
• dt = 0 and dl 6= 0.

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

F2F1

F3 F4

2 40,+1
−

,
+

0,03 5 +,00,+

Fig. 5. RDG obtained by simpli-
fication of the RDG of Fig. 2. The
edges are numbered from 1 to 5.

j

30 1 2 4 5

T T T1 2 3

5
2

3

4

1

i

Fig. 6. Flow dependencies between
3 threads T1, T2 and T3. Same edge
numbers as in Fig. 5.

The analysis of the RDG highlights the critical connections
which prevents parallelization because of flow dependencies
between threads, as presented in Fig. 6. The connection from
F4 to F2 and from F3 to F2 (edges #2 and #4 in Figs. 5
and 6) results in a flow dependency between the couples of
threads (T1, T2) and (T2, T3) because dl 6= 0 (in this example
l is the i axis). This is not the case for the connections #1,
3 and 5 because the two corresponding grid points belong to
the domain computed by one thread, as shown in Fig. 6. The
connection #2 is not critical, since F3 and F2 are not in the
same nested loops (see Figs. 1b and 3). In this example only
connection #4 is critical.

For the analysis of one outermost loop l composed by
functions F1, F2, . . . , Fr we consider the subgraph Gl of
the RDG limited to the r basic functions and the edges
between them. On the edges of this subgraph we retain only
information concerning the distance dl 4. As far as the dl value
is concerned we retain only the sign of dl, (−,+) if dl 6= 0
and 0 if dl = 0. The analysis of Gl allows to decompose the
loop in several loops preserving the computation coherence
hypothesis. Taking into account that the forward functions are
thread-safe, we can apply the Allen-Kennedy algorithm [12]
to decompose the loop in parallel loops as follows.

• Calculate the Strongly Connected Components (SCCs) of
Gl.

• Consider the reduced Directed Acyclic Graph (DAG),
denoted by Gl/SCC , by shrinking each SCC down to a
single vertex and by drawing one, and only one, edge
between two SCCs if there is at least one edge from the
first to the second in the graph Gl. If at least one of the
edge in Gl which connects these two SCCs is labeled
by non 0 (that is to say either − or +), then label the
corresponding edge in Gl/SCC by this value. Else, if all
the labels are 0, then label the corresponding edge in
Gl/SCC by 0.

• Sort in a topological order the Gl/SCC graph and enu-
merate all the SCCs following this order. For each SCC
generate an l loop which computes its basic functions.

This decomposition is a maximum loop distribution of the

4All the distances dl in Gl are either ≤ 0 or ≥ 0 if the l loop is respectively
ascendant or descendant, as they correspond to the same outermost loop.

initial loop, in other words we can not further decompose
without breaking the coherence hypothesis.

We can analyze each SCC loop in order to see if we
can perform a domain decomposition on the l axis. For a
particular SCC we consider all the edges of the graph Gl

between two basic functions being part of this SCC. If at
least one of these connections is labeled by + or −, namely
if dl 6= 0, the SCC is considered to be not parallelizable. The
loop is parallelizable if all these edges are labeled by 0. In
other words it is parallelizable if it does not contain any flow
dependency between threads. We label by p and p̄ the loops
which are respectively parallelizable and not parallelizable.
Such maximum loop distribution gives the largest number of
parallel loops. The critical connections of the RDG have been
minimized.

B. Reducing synchronization points

The previous section applies the Allen-Kennedy algorithm
to YAO thanks to the analogies between the EDG and the
modular graph. This algorithm allows us to automatically
label as parallel or not the SCCs resulting in maximum
loop distribution. As far as performance is concerned, this
loop distribution is not the best solution because it increases
the number of synchronization points. Following Kennedy-
McKinley [11] it is possible to propose a loop fusion algorithm
that will reduce the number of synchronization points. As the
Gl/SCC is a DAG, we can reorganize the SCCs in levels. The
levels are numbered from k = 1 to k =Mlevel where Mlevel

is the maximum number of levels. The first level, k = 1,
contains the SCCs without predecessors; the predecessors of
a SCC at level k, with k > 1, are located in the preceding
levels k′, k′ ≤ k − 1, with at least one predecessor located
at level k − 1. Thanks to the level reorganization there are
no edges between two vertices at the same level. For each
level it is then possible to merge all vertices labeled as p and
separately all vertices labeled as p̄. We obtain a reduced graph
with the same number of levels but with one or two vertices
per level. If a level contains two vertices they are mandatory
labeled as p and p̄.

The fusion process can be extended to the vertices located
at two consecutive levels as follows: for all levels k and k+1

• merge two vertices labeled as p̄, this gives a new p̄ vertex;
• merge two vertices labeled as p which are not connected

by a critical edge (dl = 0), this gives a new p vertex.
The fusion process between different levels may modify the
vertex level repartition. However the modification can affect
only some levels: it does not impact the levels which precede
k. Algorithm 1 allows to manage the fusion of the vertices
with the level technique which maintains the highest degree
of parallelization. The final reduced graph is treated by YAO
which generates code according to the following steps.

• Sort in a topological order the final reduced graph and
enumerate all its vertices following this topological order.

• Write one block of order directives for each vertex. These
order directives have the same axes as the one provided

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

Algorithm 1 Fusion with levels approach.
1: Organize the graph Gl/SCC in Mlevel levels. The vertices are

labeled either p or p̄.
2: Traverse the graph and for each level merge the vertices of the

same label. Update edges and their labels (0, − or +).
3: k := 1
4: while k < Mlevel do
5: Consider two consecutive levels k and k + 1:
6: if there are two vertices labeled by p and there is no critical

edge between them then
7: Fusion the two in one vertex labeled by p
8: else
9: if there are two vertices labeled by p̄ then

10: Fusion the two in one vertex labeled by p̄
11: end if
12: end if
13: if a fusion has been performed then
14: Reorganize the new reduced graph in levels and update

Mlevel

15: else
16: k := k + 1
17: end if
18: end while

by the user and contain the basic functions merged in the
vertex.

C. Parallelization of the backward procedure

The same algorithm can also be applied to the backward
procedure, which results in a complete parallelization of all
computations at each time step. The total elapsed time in a
YAO application is mainly composed by the forward and the
backward elapsed times. Making parallel these two procedures
means that most of the application has been optimized. Pro-
filing measurement on some YAO applications showed that
roughly 99 percent of the total elapsed time is, in general, in
these procedures.

The RDG used for the backward procedure is the same as
for the forward procedure but the arrows are reversed with
respect to the original RDG. These two RDGs have the same
SCCs. As the outermost loops also have the same axis, the
same method used to parallelize the forward procedure is also
valid to parallelize the backward procedure. Likewise, it is
easy to see that the rules used to merge loop blocks previ-
ously introduced remain valid for the backward procedure.
Thus, parallel order directives obtained by the decomposi-
tion/merging methods defined for the forward procedure can
be fully retained for the backward procedure.

However the parallelization of the backward procedure has
a further difficulty in terms of synchronization. This synchro-
nization is enforced by the addition (accumulation) presented
in II-B2. As shown in Fig. 4, in a parallel context this addition
may result in a data race condition (write/write conflicts)
if the back propagations of dxp are performed concurrently
by several threads. This kind of synchronization may arise
between two time steps. Hence, the analysis of the RDG is
not sufficient to point out all the data race conditions of the
backward procedure.

 inner

subdomain

b
o

rd
e

r

b
o

rd
e

r

T1 T2 T3

d
l m

a
x

d
l m

a
x

Fig. 7. Subdomain decomposition with dlmax = 1 for threads T1, T2 and
T3. Each thread domain is decomposed into two border subdomains with
dlmax grid points in the parallel dimension, and one inner subdomain.

This can be solved with OpenMP atomic directives which
ensure that each addition is performed atomically. However
these atomic instructions are costly, as well as numerous in
the backward parallel code, which prevents us from obtaining
good parallel performances in practice. In order to avoid these
OpenMP atomic directives, we rely on the distance vectors of
the RDG to determine the maximum |dl|, denoted dlmax . In the
1D block decomposition, we can now further decompose each
thread domain in three subdomains: two border subdomains
with dlmax grid points in the parallel dimension, and one inner
subdomain with usually much more than dlmax grid points
in the parallel dimension. An example with dlmax = 1 is
presented in Fig. 7.

Data race conditions are now avoided by ensuring that all
threads compute the three subdomains in the same ordering.
OpenMP barrier directives are required between each subdo-
main computation. If there are too many threads, or if the
computational space is too small, the thread domains may be
too small: in these special cases the parallel code generated
by YAO will have to rely on OpenMP atomic directives to run
correctly in parallel without any data race condition.

Taking all this into account, the overall parallelization
algorithm ensures the parallelization of all the computations
done by a YAO generated application. It gives a domain
decomposition with respect to the outermost loop l, which
can then be automatically parallelized in the final generated
code thanks to OpenMP directives. Furthermore if a multi-
level parallelization is desired, it is then possible to apply
the same algorithm for each subloop. We emphasize that the
parallel code generated by YAO respects the order and the ctin
directives which implies that the result of the parallel code is
the same as the sequential code.

D. Marine acoustics example

This section presents an example of the decomposition
algorithm on a 2D modular graph taken from one of the actual
YAO applications. The Marine acoustics example has a small
number of functions Fi, which allows us to easily show the
evolution of the RDG graph. We use the same function names

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

1 F2
0,0

F3

23 F4

45
F7

0,−1

F8

0,+1

6
−1,+1
−1,−1
−1,0

0,−

0,0

0,0

0,0

0,0
0
,0

0,
0

0,
+
1

0
,+

1
F1

F9F5

F6

Fig. 8. RDG: the dashed lines are the Strongly Connected Components.

order YA1
order YA2
F1 F3 F2 F5 F4 F6 F7

order YB2
F8 F9

Fig. 9. order directives de-
fined by the user for the Ma-
rine acoustics example.

order YA1 (parallel)
order YA2

F1 F3 F2 F5 F4

order YA1 (non parallel)
order YA2

F6 F7

order YB2
F8

order YA1 (parallel)
order YA2

F9

Fig. 10. order directives re-
computed by the algorithm
for the Marine acoustics ex-
ample.

as [6], [5]. This YAO application deals with marine acoustics
and allows to assimilate some actual observations of acoustic
pressure in order to retrieve some geoacoustic parameters like
celerity, density and attenuation. In [6] the basic functions are
denoted by n(z), C, B, bet, gam, R, Xt, ψ and ψfd. To make
it simpler we denote them respectively by F1, . . . , F9. Fig. 8
shows the RDG composed by r=9 basic functions and the
edges labeled with the coefficient signs of the ctin directives.
In this figure the SCCs are outlined by the dashed lines and
numbered from 1 to 6. The order directives specified by the
user are given in Fig. 9. In this case, the outermost loop is
related to the ascendant i axis. After computing the Gl/SCC

graph, we label each vertex and we proceed with the level
reorganization, as presented in Fig. 11, where Mlevel equals
5; the single circle is a parallelizable vertex (p) and the double
circle is a non parallelizable vertex (p̄). Fig. 12 shows the
fusion of the vertices 2 and 3 labeled by p in a new vertex
called 2,3 of the same label. This is done in the initialization
phase of the algorithm (step 2). Then the vertices 1 and 2,3
can be merged in a new vertex called 1,2,3 which is parallel
too. The two vertices are located on levels k = 1 and k = 2. A
level reorganization reduces Mlevel to 4. The same operation
is done on the modules 1,2,3 and 4, followed again by a level
reorganization (Mlevel reduced to 3). The topological order is
then: [1,2,3,4], [5], [6] as shown in Fig. 13. The algorithm ends
because it is no longer able to fusion and the level counter has

3

2 6

5
0

4

1

0

0

0

0

0

Fig. 11. Gl/SCC where the double circle represents a non parallelizable
vertex.

1 4 652,3
0 0

0

0 0

Fig. 12. Fusion of the vertices 2 and
3 in a new p vertex called 2,3.

5 61,2,3,4
00

0

Fig. 13. Fusion of the vertices
1,2,3 and 4 in a new p vertex called
1,2,3,4.

reached Mlevel equals 3. This topological order is translated
in an ordering of the modules. The final scheduling respects
the ordering given by the user and corresponds to: [F1 F3

F2 F5 F4], [F6 F7 F8], [F9] or [n(z) B C gam bet], [R Xt

ψ], [ψfd]. The final order directive decomposition is given
in Fig. 10. With the keywords parallel and non parallel the
figure outlines the outermost loops (order directives) that the
algorithm has recognised as parallel or not.

IV. PERFORMANCE RESULTS

We now present the performance results of the parallel
code generated by YAO for two actual applications of data
assimilation: the Shallow-water and the Marine acoustics ap-
plications mentioned before. These tests have been performed
on a server, located at Polytech Paris-UPMC (Paris, France),
composed of one AMD Magny-Cours Opteron 6168 processor
and 16 GB of memory. This processor has 12 cores running at
1.9 GHz which have private L1/L2 (64KB/512KB) caches and
share two 6MB L3 caches. All computations are performed in
double precision.

The RDG of the Shallow-water application is composed
by 6 SCC (each SCC contains one basic function), see [3]
for more details. The parallelization algorithm returns that all
SCCs are parallelizable. Fig. 14 shows the elapsed time and the
parallel speedup for an increasing number of cores used (with
one OpenMP thread per core) and for different computational
space sizes, with both OpenMP atomic directives and our
subdomain decomposition. The data race conditions in the
backward procedure are more efficiently avoided with our sub-
domain decomposition which clearly offers better performance
than the atomic directives. We emphasize that such OpenMP
code automatically generated by YAO is equivalent to a (non-
trivial) manual parallelization, and offers good speedups (up
to 9.4 on 12 cores). Moreover for a fixed number of cores the
speedup increases with the computational space size since this
increases the computational granularity of each thread.

The performance results on the Marine acoustics are very

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

1 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

T
im

e
(s

ec
on

ds
, l

og
 1

0
sc

al
e)

512x512 subdomain
1024x1024 subdomain
2048x2048 subdomain
512x512 atomic
1024x1024 atomic
2048x2048 atomic

1 2 4 6 8 10 12
0

2

4

6

8

10

12

Cores

S
pe

ed
up

512x512 subdomain
1024x1024 subdomain
2048x2048 subdomain
512x512 atomic
1024x1024 atomic
2048x2048 atomic
ideal speedup

Fig. 14. Shallow-water performance measurements for three 2D computa-
tional space sizes over one time step (time averaged over 30 time steps). Both
performances with OpenMP atomic directives and subdomain optimization are
shown. The time encompasses both the forward and the backward procedures.

different. In section III-D we have shown that the paralleliza-
tion algorithm does not parallelize the whole GDR. Three
modules, which unfortunately contain most of the computa-
tion, are excluded from the parallel region. Fig. 15 shows
the elapsed time and the parallel speedup, as well as the
theoretical maximum speedup according to Amdahl’s law for
this application. The parallel speedup is very limited, but the
code generated by YAO offers most of the speedup available
for this application. Again, the performance gain increases
with the computational space size.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have shown how the modular graph
formalism of YAO allows addressing the issue of automatic
parallelization of the code generated by YAO. Indeed, the
YAO modular graph is generated by a reduced graph, which
is similar to the Reduced Dependence Graph (RDG) used
in automatic parallelization of nested loops. This similarity
allows the adaptation to YAO of the algorithms that were
developed in this research field. We have thus presented here
how the Allen-Kennedy [12] and Kennedy-McKinley [11]
algorithms can be integrated and adapted in order to enable the
automatic parallelization, via multiple threads on shared mem-
ory architectures, of the application code generated by YAO.
In the backward procedure the modular graph is furthermore
used to decompose each thread domain into three subdomains,
whose appropriate sizes enable us to completely avoid the race

1 2 4 6 8 10 12
0

2

4

6

8

10

12

T
im

e
(s

ec
on

ds
)

256x4096
512x8192
768x16384

1 2 4 6 8 10 12

1

1.1

1.2

1.3

1.4

1.5

1.6

Cores

S
pe

ed
up

256x4096 real
256x4096 Amdahl
512x8192 real
512x8192 Amdahl
768x16384 real
768x16384 Amdahl

Fig. 15. Marine acoustics performance measurements for three 2D compu-
tational space sizes over one time step (time averaged over 30 time steps).
The time encompasses both the forward and the backward procedures.

conditions of this backward procedure. We have also presented
the performance results of the parallel generated code with
OpenMP on a multicore CPU for two actual applications:
the Shallow-water and the Marine acoustics. We obtain good
speedups (for example up to 9.4 on 12 cores) within the limits
of the parallelism available in the application.

More advanced transformations (unimodular transformation,
loop inversion, SIMD vectorization, tiling, . . .) have already
been developed in automatic loop parallelization, especially
via the polyhedral model [10], [15]. We are currently studying
if and how this polyhedral model can be integrated in the
YAO framework. In the future, we also plan to investigate the
automatic generation of MPI code from OpenMP code in the
YAO context in order to automatically scale data assimilation
applications on distributed memory architectures. It can be
noticed that the subdomain decomposition between border and
inner subdomains, presented here to avoid race conditions,
may help overlap MPI communications with computation in
order to obtain the best speedups in this distributed memory
context: here again, the modular graph of YAO may be very
useful to automatically determine this subdomain decomposi-
tion for any variational data assimilation application.

ACKNOWLEDGMENT

The authors acknowledge funding from Emergence-UPMC-
2010 research program.

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

REFERENCES

[1] E. Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability.
Cambridge University Press, 2003.

[2] O. Talagrand, “Assimilation of Observations, an Introduction,” J. Meteor.
Soc. Japan, vol. 75, pp. 191–209, 1997.

[3] L. Nardi, C. Sorror, F. Badran, and S. Thiria, “YAO: A Software for
Variational Data Assimilation Using Numerical Models.” in LNCS 5593,
Computational Science and Its Applications - ICCSA 2009, pp. 621–636.

[4] L. Nardi, “Formalisation et automatisation de YAO, générateur de code
pour l’assimilation variationnelle de donnèes,” PhD, CNAM, 2011.

[5] F. Badran, M. Berrada, J. Brajard, M. Crépon, C. Sorror, S. Thiria,
J.-P. Hermand, M. Meyer, L. Perichon, and M. Asch, “Inversion of
Satellite Ocean Colour Imagery and Geoacoustic Characterization of
Seabed Properties: Variational Data Inversion Using a Semi-automatic
Adjoint Approach,” J. of Marine Systems, vol. 69, pp. 126–136, 2008.

[6] M. Berrada, “Une approche variationnelle de l’inversion, de la recherche
locale à la recherche globale par carte topologique: application en
inversion géoacoustique,” PhD Thesis, UPMC, France, 2008.

[7] J. Brajard, C. Jamet, C. Moulin, and S. Thiria, “Use of a Neuro-
variational Inversion for Retrieving Oceanic and Atmospheric Con-
stituents from Satellite Ocean Colour Sensor: Application to Absorbing
Aerosols,” Neural Networks, vol. 19, no. 2, pp. 178–185, 2006.

[8] A. Kane, S. Thiria, and C. Moulin, “Développement d’une Méthode
d’Assimilation de Données in Situ dans une Version 1D du Modèle
de Biogochimie Marine PISCES,” Master’s thesis, LSCE/IPSL, CEA-
CNRS-UVSQ, 2006.

[9] G. Madec, NEMO ocean engine. LOCEAN, Paris, France: Note du
Pôle de modélisation de l’Institut Pierre-Simon Laplace No 27, 2008.

[10] A. Darte, Y. Robert, and F. Vivien, Scheduling and automatic paral-
lelization, Birkhaüser, Ed., 2000.

[11] K. Kennedy and K. McKinley, “Typed fusion with applications to
parallel and sequential code generation,” Tech. Rep., 1993.

[12] R. Allen, D. Callahan, and K. Kennedy, “Automatic decomposition of
scientific programs for parallel execution,” in POPL ’87: Proceedings
of the 14th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. NY, USA: ACM, 1987, pp. 63–76.

[13] H. Jin, M. A. Frumkin, and J. Yan, “Automatic Generation of OpenMP
Directives and Its Application to Computational Fluid Dynamics Codes,”
in ISHPC 2000. Springer-Verlag, pp. 440–456.

[14] J. Taillard, F. Guyomarc’h, and J.-L. Dekeyser, “A Graphical Framework
for High Performance Computing Using An MDE Approach,” in Pro-
ceedings of the 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, PDP 2008. USA: IEEE CS, pp. 165–173.

[15] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
PLDI 2008. USA: ACM SIGPLAN, pp. 101–113.

ha
l-0

06
95

51
3,

 v
er

si
on

 1
 -

8
M

ay
 2

01
2

