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Abstract—The Fast Multipole Method (FMM) allows O(N)
evaluation to any arbitrary precision of N-body interactions
that arises in many scientific contexts. These methods have
been parallelized, with a recent set of papers attempting to
parallelize them on heterogeneous CPU/GPU architectures [1].
While impressive performance was reported, the algorithms
did not demonstrate complete weak or strong scalability.
Further, the algorithms were not demonstrated on nonuniform
distributions of particles that arise in practice. In this paper,
we develop an efficient scalable version of the FMM that can be
scaled well on many heterogeneous nodes for nonuniform data.
Key contributions of our work are data structures that allow
uniform work distribution over multiple computing nodes,
and that minimize the communication cost. These new data
structures are computed using a parallel algorithm, and only
require a small additional computation overhead. Numerical
simulations on a heterogeneous cluster empirically demonstrate
the performance of our algorithm.

Keywords-fast multipole methods; GPGPU; N-body simula-
tions; heterogeneous algorithms; scalable algorithms; parallel
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I. INTRODUCTION

The N-body problem, in which the sum of N kernel
functions ® centered at /N source locations x; with strengths
q; are evaluated at M receiver locations {y;} in R (see
Eq. 1), arises in a number of contexts, such as stellar
dynamics, molecular dynamics, boundary element methods,
vortex methods and statistics. It can also be viewed as a
dense M x N matrix vector product. Direct evaluation on
the CPU has a quadratic O(NM) complexity. Hardware
accelerations alone to speedup the brute force computation,
such as [2] using the GPU or other specialized hardware,
can achieve certain performance gain, but not improve its
quadratic complexity.
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An alternative way to solve such N-body problems is to
use fast algorithms, for example, the Fast Multipole Method
[3]. The FMM reduces the computation cost to linear for any
specified tolerance ¢, up to machine precision. In the FMM,
Eq. 1 is divided into near-field and far-field terms given a

Figure 1. Problems in distributing the FMM across two nodes. Left:
lightly-shaded boxes are on node 1 (Partition I) and darkly shaded boxes
are on node 2 (Partition II). The thick line indicates the partition boundary
line and the dash line shows the source points in both partitions needed by
Partition II. The hashed boxes are in Partition I but they have also to be
included in Partition II to compute the local direct sum. Right: light boxes
belong to Partition I and dark boxes belong to Partition II. The multipole
coefficients of the box with thick lines (center at C) is incomplete due to
one child box on another node. Hence its parents (B and A) in the tree up
to the minimal level are all incomplete.
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in which the near-field sum is evaluated directly. The far-
field sum is approximated by using kernel expansions and
translations using a construct from computational geometry
called “well separated pair decomposition” (WSPD) with
the aid of recursive data-structures based on octrees (which
usually have a construction cost of O(N log N)).

There are several different versions of distributed FMM
algorithms in the literature, such as [4], [5], [6], [7], [8],
[9]. The basic idea is to divide the whole domain into
spatial boxes and assigned them to each node in a way
that the work balance can be guaranteed. To obtain correct
results with such a data distribution several issues have to
be accounted for (Fig. 1). The first is domain overlap: while
receiver data points can be mutual exclusively distributed on
multiple nodes, source data points which are in the boundary
layers of partitions need to be repeated among several nodes
for the near-field sum. The correct algorithm should not
only determine such overlap domains and distribute data



Figure 2. Non-uniform domain distribution. Each node has the boxes with
the same color. Here the box labeled as 12 needs box data from white, light
gray and dark gray regions. It also has to distribute its data to those regions.

efficiently but also guarantee that such repeated source
data are only translated once among all nodes. The second
issue is incomplete translations, i.e. complete stencils may
require translation coefficients of many boxes from other
nodes. Thirdly, when source or receiver data points are
distributed non-uniformly, the number of boxes assigned to
each node may be quite different and the shape of each
node’s domain and its boundary regions may become ir-
regular. Such divisions require inter-node communication of
the missing or incomplete spatial box data of neighborhoods
and translations among nodes at all the octree levels (Fig. 2).
Given the fact that no data from empty boxes are kept, it is
challenging to efficiently determine which boxes to import
or export data for all the levels.

In the literature, distributed FMM and tree code algo-
rithms commonly use the local essential tree (LET [9], [10])
to manage data exchange among all the computing nodes.
Implementation details for import or export data via LETs
are not explicitly described in the well known distributed
FMM papers, such as [8], [9], [11], [12]. Recently, [1]
developed a distributed FMM algorithms for heterogeneous
clusters. However, their algorithm repeated part of trans-
lation computations among nodes and required coefficients
exchange of all the spatial boxes at the octree’s bottom level.
Such a scheme works well for small and middle size clusters
but is not scalable to large size clusters. In another very
recent work [13], the homogeneous isotropic turbulence in
a cube containing 233 particles was successfully calculated,
using a highly parallel fast multipole method (FMM) using
2048 GPUs, but the global communication of all the LETs
is the performance bottleneck. In this paper, our purpose
is to provide our new data structures and algorithms with
implementation details to address the multiple node data
management issues.

A. Present contribution

Starting from [1], we design a new scalable heterogeneous
FMM algorithm, which fully distributes all the translations
among nodes and substantially decreases its communication

costs. This is a consequence of the new data structures
which separate the computation and communication to avoid
synchronization during GPU computations. The data struc-
tures are similar to the LET concept but use a master-slave
model and further have a parallel construction algorithm, in
which the granularity is spatial boxes (which allows finer
parallelization than at the single node level). Basically, each
node divides its assigned domain into small spatial boxes via
octrees and classifies each box into one of five categories in
parallel. Based on the box type, each node determines the
boxes that need to import and export data so that it would
have the complete translation data after one communication
step with the master. This can be computed on the GPU at
negligible cost and this algorithm can handle non-uniform
distributions with irregular partition shapes (Fig. 2). Our
distributed algorithm improves timing results of [1] sub-
stantially and can be applied to large size clusters based
on the better strong and weak scalability demonstrated. On
our local Chimera cluster, we can perform a N-body sum
for 1 billion particles on 32 nodes in 12.2 seconds (with the
truncation number p = 8).

II. THE BASELINE FMM ALGORITHM

In the FMM, the far-field term of Eq. 2 is evaluated
using the factored approximate representations of the kernel
function, which come from local and multipole expansions
over spherical basis functions and are truncated to retain
p? terms. This truncation number p is a function of the
specified tolerance € = e(p). Larger values of p result in
better accuracy, but also increase computational time. The
WSPD is recursively performed to subdivide the cube into
subcubes via an octree until the maximal level [,,,., or
the tree depth, is achieved. The level [,,,, is chosen such
that the computational costs of the local direct sum and far
field translations can be balanced, i.e. roughly equal. The
baseline FMM algorithm consists of four main parts: the
initial expansion, the upward pass, the downward pass and
the final summation.

1) Initial expansion:

a) At the finest level [,,,4., all source data points are
expanded at their box centers to obtain the far-
field multipole or M-expansions {C™} over p?
spherical basis functions. The truncation number
p is determined by the required accuracy.

b) M-expansions from all source points in the same
box are consolidated into a single expansion.

2) Upward pass: For levels from [, to 2, M-
expansions for each child box are consolidated via
multipole-to-multipole (M2M) translations to their
parent source box.

3) Downward pass: For levels from 2 to [,,,., local or
L-expansions are created at each receiver box

a) Translate M-expansions from the source boxes
at the same level belonging to the receiver
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Figure 3. An overview of the distributed FMM algorithm. Hashed parts

are the overheads. Light and dark gray parts represent the kernel evaluation.
GPU processes light gray part while CPU computes dark gray part.

box’s parent neighborhood but not the neighbor-
hood of that receiver itself, to L-expansions via
multipole-to-local (M2L) translations and con-
solidate the expansions.

b) Translate the L-expansion from the parent re-
ceiver box center to its child box centers (L2L)
and consolidate expansions.

4) Final summation: Evaluate the L-expansions for all
receiver points at the finest level /,,,,, and performs a
local direct sum of nearby source points.

The evaluations of the nearby source point direct sums
are independent of the far-field expansions and translations,
and can be performed separately. The costs of near-field
direct sum and the far-field translations must be balanced
to achieve optimal performance. Several different bases and
translation methods have been proposed for the Laplace ker-
nel. We used the expansions and methods described in [14],
[15] and do not repeat details. Real valued basis functions
that allow computations to be performed recursively with
minimal use of special functions, or large renormalization
coefficients are used. L- and M-expansions are truncated to
retain p? terms given the required accuracy. Translations are
performed using the RCR decomposition.

III. DISTRIBUTED HETEROGENEOUS FMM ALGORITHM

Our distributed algorithm (Fig. 3) has five main steps :

1) Source and receiver data partition: a partition of the
whole space that balances the workload among the
computing nodes based on a cost estimation; it also
handles overlapped neighborhoods.

2) Upward evaluation: each node performs initial M-
expansions of source points, upward translations and
computes its own export/import box data.

Global Data Structure (K trees, roots at level 2)
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Figure 4. Global data structure with K trees with roots at level 2 and
partitioned data structure with roots at any level.

3) Multiple node data exchange: we build a data ex-
change manager, which collects, merges and then
distributes data from and to all nodes.

4) Downward evaluation: each node performs the down-
ward pass and final L-expansions of its receiver points.

5) Local direct sum: each node performs this evaluation
independent of the translations.

The costs of partitions in Step (1) depend on the applications.
For example, in many dynamics problems, from one time
step to the next, it is very likely that most particles still
reside on the same node, in which case the new partition may
only require a small data exchange. In this paper, however,
we assume the worst case that all data is assigned initially
on each node randomly, which involves a large amount
of particle data exchange. Based on the conclusion of [1],
we perform Step (5) on the GPU, while Steps (2)—(4) are
performed on the CPU in parallel.

A. Distributed data structures

The FMM data structure is based on data hierarchies for
both sources and receivers; Figure 4 shows one. This can
be viewed as a forest of K trees with roots at level 2 and
leaves at level [,,,4.. In the case of uniform data and when
the number of nodes K < 64 (for the octree) each node
may handle one or several trees. If the number of nodes is
more than 64 and/or data distributions are substantially non-
uniform, partitioning based on the work load balance should
be performed by splitting the trees at a level > 2. Such a
partitioning can be thought of as breaking of some edges of
the initial graph. This increases the number of the trees in
the forest, and each tree may have a root at an arbitrary level
l =2, ...,lmqe- Each node then takes care for computations
related to one or several trees according to a split of the
workload. We define two special octree levels:

« Partition level [,,,: At this level, the whole domain is
partitioned among different nodes. Within each node,



Figure 5. An example of source box types. White boxes are Partition I
and gray boxes are Partition II. The partition level is 3 and the critical level
is 2. Solid line boxes correspond to level 2 and dash line boxes correspond
to level 3. At partition II, box e and E are export boxes. Boxe i and I are
import boxes. Box R is a root box. Box d is a domestic box. Box o is an
other box.

all the subtrees at this level or below are totally com-
plete, i.e., no box at level > [,,4, is on other nodes.

o Critical level l.,;; = max (lper — 1,2): At this level,
all the box coefficients are broadcasted such that all
boxes at level < [.,;; can be treated as local boxes, i.e.,
all the box coefficients are complete after broadcasting.

Note that the partition level is usually quite low for 3D
problems, e.g., lpqr = 2, 3,4, therefore only a small amount
of data exchange is needed to broadcast the coefficients at
the critical level [..;;. To manage the data exchange, we
classify source boxes at all levels into five types. For any
node, say .J, these five box types are:

1) Domestic Boxes: The box and all its children are on
J. All domestic boxes are organized in trees with roots
located at level 1. All domestic boxes are located at
levels from [,,,,, to 2. The roots of domestic boxes at
level 1 are not domestic boxes (no data is computed
for such boxes).

2) Export Boxes: These boxes need to send data to
other nodes. At [..;;+, the M-data of export boxes may
be incomplete. At level > [..;;, all export boxes are
domestic boxes of J and their M-data are complete.

3) Import Boxes: Their data are produced by other
computing nodes for importing to J. At [..;+, the M-
data of import boxes may be incomplete. At level
> lorit, all import boxes are domestic boxes of nodes
other than J and their M-data are complete there.

4) Root Boxes: These are boxes at critical level, which
need to be both exported and imported. For level >
leri there is no root box.

5) Other Boxes: Boxes which are included in the data
structure but do not belong to any of the above types,
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Figure 6. The distributed FMM algorithm. The hashed part are the data
partition module. The light gray parts of the algorithm is computed by using
the GPU while dark gray parts are computed by using the CPU. Double
ended Arrows represent the communication with other nodes. The rectangle
with dash lines represents the parallel region.

e.g. all boxes of level 1, and any other box, which for
some reason is passed to the computing node (such
boxes are considered to be empty and are skipped
in computation, so that affects only the memory and
amount of data transferred between the nodes).

Refer Fig. 5 for an example. Note that there are no import
or export boxes at levels from [..;; — 1 to 2. All boxes at
these levels are either domestic boxes or other boxes after the
broadcast and summation of incomplete M-data at I.,;. In
our algorithm, we only need compute M-data and box types
from level /40 to lor: and exchange the information at
lerit- After that we compute the M-data for all the domestic
boxes up to level 2 then produces L-data for all receiver
boxes at level /,,,,, handled by the computing node.

B. The distributed FMM algorithm

In our FMM algorithm, all the necessary data structures,
such as octree and neighbors, and particle related informa-
tion, are computed on the GPU using the efficient parallel
methods presented in [1], [16]. Details of the algorithms
and implementations are not reported here. Given the global
partition, how the algorithm appears on a single node is
illustrated in Fig. 6. Assume that all the necessary data
structures for the translations, such as box’s global Morton
indices, the neighbor, export/import box type lists and those
initial M-expansion data, are available, then each node J
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Figure 7. A simple multiple node 2D FMM algorithm illustration (l.,-;+ =
2) : the top rounded rectangular is the MASTER NODE which is also
chosen as the data exchange manager. The bottom rounded rectangular is the
SLAVE NODE. From left to right is how the algorithm proceeds. Each node
perform upward M-translations from lpmqz t0 leri. At critical level the
manager collect and distribute data from and to all the nodes. Those isolated
boxes in this figure are import/export boxes. After this communication with
master, all the nodes perform downward M2L and L2L translations only
for its own receiver boxes.

executes the following translation algorithm:
1) Upward translation pass:

a) Get M-data of all domestic source boxes at 44
from GPU global memory.

b) Produce M-data for all domestic source boxes at
levels | = lar — 1, ..., max(2, lepit)-

c) Pack export M-data, the import and export box
indices of all levels. Then send them to the data
exchange manager.

d) The master node, which is also the manager,
collects data. For the incomplete root box M-
data from different nodes, it sums them together
to get the complete M-data. Then according to
each node’s emport/import box indices, it packs
the corresponding M-data then sends to them.

e) Receive import M-data of all levels from the data
exchange manager.

f) If l..;+ > 2, consolidate S-data for root domestic
boxes at level l.p;z. If lop > 3, produce M-
data for all domestic source boxes at levels [ =
levit — 1, ..., 2.

2) Downward translation pass:

a) Produce L-data for all receiver boxes at levels
1=2,.. lnaz.

b) Output L-data for all receiver boxes at level l,,,44.

¢) Redistribute the L-data among its own GPUs.

d) Each GPU finally consolidates the L-data, add
the local sums to the dense sums and copy
them back to the host according to the original
inputting receiver’s order.

Here all boxes mean all boxes handled by each node. A
simple illustration of this algorithm for a 2D problem is
shown in Fig. 7.
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Algorithm 1 Compute source box type on the node J

Input: a source box index BoxIndex[1i]= k at level [
Output: BoxType [1]
isOnNode<¢—isImportExport<-isExport<-FALSE
if I<l.,;; then
BoxType [1]4+-DOMESTIC
else if [=l.,;; then
for any k’s child c; at partition level do
if c; is not on J then
isImportExport<-TRUE
else
isOnNode<-TRUE
if 1sOnNode=FALSE then
BoxType [1]+-IMPORT
else
for any k’s neighbor of M2L translation n; do
if one of n;’s children at [.,;; is not on J then
isExport<-TRUE
// update the type of a different box
n;’s box type <~ IMPORT

else
if Kk’s ancestor at [..;; is not on J then
BoxType [1]<-OTHERS
else
for any k’s neighbor of M2L translation n; do
if the ancestor of n; at [..;; is not on J then
isExport<-TRUE
// update the type of a different box
n;’s box type <-IMPORT

synchronize all threads

if isImportExport=TRUE then
BoxType [1]+-ROOT

else if i sExport=TRUE then
BoxType [1]+-EXPORT

else
BoxType [1]+-DOMESTIC

Since each node only performs translations for its own
assigned spatial domains, i.e. octree boxes, there are no
repeated translation operations, therefore, this algorithm is
truly distributed. The amount information exchanged with
the manager is actually small since only boxes on the
partition boundary layers (2D surface in contrast to 3D
space) need to be sent/received.

C. Algorithm to assign source box type

The type of a source box k is determined by the M2M
and M2L translation because its children or neighbors might
be missing due to the data partition, which have to be
requested from other nodes. However, once the parent box
M-data is complete, the L2L translations for its children are
always complete. Hence, based on this observation, we can



summarize the key idea of Alg. 1, which computes the type
of each box, as follows:

o At the critical level, we need all boxes to perform
upward M2M translations. If one child is on a node
other than J, its M-data is either incomplete or missing,
hence we mark it an import box. We also check its
neighbors required by M2L translation stencil. If any
neighbor is not on J, then the M-data of these two
boxes have to be exchanged.

o For any box at the partition level or deeper levels, if
this box is not on J, then it is irrelevant to this node,
in which case it is marked as other box. Otherwise we
check all its neighbors required by M2L translations.
Again if any neighbor is not on J, these two boxes’
M-data have to be exchanged.

We compute all box types in parallel on the GPU. For each
level from [,,,, to 2, a group of threads on the node J
are spawned and each thread is assigned by one source box
index at that level. After calling Alg. 1, all these threads have
to be synchronized before the final box type assignment in
order to guarantee no race conditions. Note that some “if-
then” conditions in Alg. 1 can be replaced by OR operations
so that thread “divergent branches” can be reduced.

D. Communication cost

We cannot avoid moving O(N + M) data points if the
initial data on each node are distributed randomly. However,
in many applications, this cost can be avoided if the data
distribution is known. Also many papers discuss initial
partition (tree generation) and data exchange such as [10],
[12], [17], which can be used.

Let the total number of source/receiver boxes (non-empty)
at all levels be Bg,./B;ec,. Because of data partition, each
node roughly has Bg,../P source boxes and Bjc.,/P re-
ceiver boxes. There are no simple expressions for the cost
of sending export boxes and receiving import boxes, and
the cost of the master node finding and packing M-data for
each node. However, the boundary layers are nothing but the
surface of some 3D object. Thus, it is reasonable to estimate
its box number as uB%g’v with some constant y for all the
nodes (as for example, [9]). Thus at [..;;, the total cost of
data exchange can be estimated as:

Bgre Biecw 2/3
Teomm = aO?‘i’alM (P) pQP—I—aQSZC”‘pQ log P.
(3)

Each term of Eq. (3) is explained in Table I. Since I,
is usually small and MPI broadcasts data efficiently, the last
term can be treated as a small constant. Even though our
communication cost is asymptotically proportional to P/3,
its asymptotic constant is very small such that the overall
cost can be neglected compared with kernel evaluation.

ao% each node examines its source box types and

extract import and export source box indices

each node exchanges boundary box’s M-data

Pl
alp (Brlgm, > 3 p2
with the master node; the total cost is its P times

the master node broadcasts M-data at the critical
level (log P is due to the MPI broadcast)

as8leritp? log P

Table T
DESCRIPTION OF EQUATION (3)

IV. PERFORMANCE TEST
A. Hardware

We used a small cluster (“Chimera”) at the University
of Maryland (32 nodes) to perform tests. The basic node
architecture was interconnected via Infiniband. Each node
was composed of a dual socket quad-core Intel Xeon 5560
2.8 GHz processors, 24 GB of RAM per node, and two Tesla
C1060 accelerators each with 4 GB of RAM.

B. Single heterogeneous node

On a single node, we test the present algorithm and
compare with the performance reported in [1]. We run the
same tests by using both spatially uniform random particle
distributions and non-uniform distributions (points or the
sphere surface). As expected, the present algorithm is more
or less the same as [1] on a single node with the similar
behavior hence we won’t repeat the algorithm analysis. Test
results are summarized in Tables III and II, which show
comparable performance.

Prec p=4 8 12 16
Time S 0.36 0.39 0.69 1.45
(sec) D 0.97 1.02 1.13 1.68
Error S 34.(—4) | 1.2:(=6) | 37-(=7) | 1.3-(=7)
D 33.(—4) [ 94-(=7) | 41-(=8) | 4.6:(—9)
Table 11

PERFORMANCE AND ACCURACY !

C. Multiple node algorithm test

In the multiple heterogeneous node tests, we varied the
numbers of particles, nodes, GPUs per node, and the depth
of the space partitioning to derive optimal settings, taking
into account data transfer overheads and other factors.

As in [1], we repeat the time taken for the “parallel
region”, where the GPU performs local summation while the
CPU cores perform translation. We test the weak scalability
of our algorithm fixing the number of particles per node
to N/P = 223 and varying the number of nodes (see
Table 4). In Fig. 8, we show our overhead vs. parallel

'The GPU computation uses either single or double precision. Here(—m)
means 10~"™. Tests are performed for potential computation for N = 220
on a workstation with a NVIDIA Tesla C2050 GPU with 3 GB, and two
dual core Intel Xeon X5260 processors at 3.33 GHz and 8 GB RAM.



Time (s) \ N 1,048,576 2,097,152 4,194,304 8,388,608 16,777,216

Num of GPUs 1 2 1 2 1 2 1 2 1 2
CPU wall clock 0.13 | 0.13 | 1.09 | 1.08 | 1.08 | 1.08 | 1.06 | 1.08 8.98 1.08
C/G parallel region 0.55 | 028 | 1.09 | 1.08 | 1.24 | 1.08 | 424 | 2.14 8.98 9.23
Force+Potential total run | 0.68 | 0.37 1.31 1.20 | 1.62 | 1.30 | 495 | 2.52 | 10.75 10.00
Potential total run 039 | 022 | 1.21 | 0.83 | 1.32 | 1.22 | 2.83 | 1.44 | 10.08 5.74
Partitioning - 0.20 - 0.47 - 0.85 - 1.69 - 3.25

Table IIT

PERFORMANCE ON A SINGLE HETEROGENEOUS NODE?
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Figure 8. The CPU/GPU parallel region time and the overhead (data
transfer between the nodes and CPU/GPU sequential region) in the present
implementation for 2 GPUs per node against the results in [1]. The testing
case increases proportionally to the number of nodes (8M particles per
node). The time is measured for computations of the potential.

region time against the results in [1]. For perfect paralleliza-
tion/scalability, the run time in this case should be constant.
In practice, we observed an oscillating pattern with slight
growth of the average time. In [1], two factors were ex-
plained which affect the perfect scaling: reduction of the par-
allelization efficiency of the CPU part of the algorithm and
the data transfer overheads, which also applies to our results.
We distribute L2L-translations among nodes and avoid the
related unnecessary duplication of the data structure, which
becomes significant at large sizes. Since our import/export
data of each node only relates to the boundary surfaces,
we improve the deficiency of their simplified algorithm
which also showed up in the data transfer overheads, which
increases with l,,x. In Fig. 8, our algorithm shows almost
the same parallel region time for the cases with similar
particle density. Moreover, the overheads of our algorithm
only slightly increases in contrast to the big jump seen in
[1] when [,,,, changes. Even though the number of particles
on each node remains the same, the problem size increases
hence results in the deeper octree and more spatial boxes to
handle, which also contributes to such overhead increase

Time (s)

£ Present (1 GPU) Huetal. (1 GPU)

MllPresent (2 GPU)

M Hu et al. (2 GPU)

Figure 9. The time comparisons between the present algorithm and [1].
The testing case has 8M particles and run on 1, 2, 4, 8 nodes using 1 or 2
GPUs on each node.

(besides communication cost). As for the total run time
comparisons, we summarize the improvements in Fig. 9.
Generally speaking, as the problem size and octree depth
increase, our algorithm shows substantial savings against [1],
which implies our much improved weak scalability.

We also performed the strong scalability test, in which
N is fixed and P is changing (Fig. 10). The tests were
performed for N = 223,224 and P = 1,2,4,8,16 with
one and two GPUs per node. Even though, our algorithm
demonstrates superior scalability compared with [1], we still
observe the slight deviations from the perfect scaling for the
8M case. For 16M case, the scaling of the total run time of
both 1 and 2 GPU is quite good because the GPU work was
a limiting factor of CPU/GPU parallel region (the dominant
cost). This is consistent with the fact that the sparse MVP
alone is well scalable. For 8M case, in the case of two
GPUs, the CPU work was a limiting factor for the parallel
region. However, we can see approximate correspondence
of the times obtained for two GPUs/node to the ones with
one GPU/node, i.e. doubling of the number of nodes with

2The tests are performed on a single node of Chimera. We evaluate both
force and potential. We report the time profiling for force but only the total
time for potential.
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Figure 10. The results of the strong scalability test for 1 and 2 GPUs per
node of the testing cluster. The thick dashed line shows perfect scalability
t = O (1/P). The time is measured for potential only computations. In the
top figure, it shows the present algorithm’s performance and the problem
size is fixed to be 16M running on 1 to 16 nodes. In the bottom figure, it
shows the strong scalability comparison (total run time) between the present
algorithm and the [1]. The problem size is fixed to be 8M running on 1 to
16 nodes.

one GPU or increasing the number of GPUs results in
approximately the same timing. This shows a reasonably
good balance between the CPU and GPU work in the case
of 2 GPUs per node, which implies this is more or less the
optimal configuration for a given problem size.

To validate the reduced cost of our communication
scheme and the computation of box type, we compare the
data manager processing time including M-data exchange
time and the overall data structure construction time with the
total running time in Fig. 11. Given the problem size and
truncation number fixed, our communication increases as
the number of nodes (roughly P'/3 in Eq. 3). In our strong
scalability tests, such time is in the order of 0.01 seconds
while the wall clock time is in the order of 1 or 0.1 seconds
(contribute 1% ~ 15% of overall time), even though GPUs
are not fully occupied in some cases. Thus this cost can be
neglected in larger problems in which the kernel evaluations
keep all GPUs fully loaded. Our implementation incorporate
the box type computation with other data structures, such
as octree and translation neighbors, hence it makes more
sense to report the total data structure cost. From Fig. 11 we
observe that our data structure time decrease similarly as the
wall clock time (as 1/P) and shows good strong scalability.

We did similar tests on the cluster to match their billion
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Figure 11. The data manager and data structure processing time against

the total run time. The problem sizes are fixed to be 8M (top) and 16M
(bottom) running on 1 to 16 nodes. Each node uses 1 (left) or 2 (right)
GPUs. The time is measured for potential only computations.

case performance. In Fig. 12, we only show the best results
of the optimal settings when the GPU(s) reach their peak
performance up to N = M = 228, For larger problems
a suboptimal performance is obtained because it requires
more nodes by using the optimal particle size; however, such
cases are still of practical importance, as solving billion-size
problems in terms of seconds per time step is quite useful
and shows the substantial improvements by compared the
latest best results on heterogeneous clusters reported in [1].
Fig. 12 presents the results of the run employing 32 nodes
with one or two GPUs per node. Note that the overhead
increases also linearly as the problem size and is a small
part of the overall time. The largest case computed in the
present study is N = 239 for 32 two-GPU nodes. For this
case, the CPU/GPU parallel region time was 10.3 s and the
total run time 12.2 s (in contrast 12.5 s and 21.6 s in [1]).
We believe that the achieved total run times are among the
best ever reported for the FMM for the sizes of the problems
considered (e.g, comparing with [1], [8], [11], [18], [19]).
Using the same method of performance counting as [1],
we can estimate the single heterogeneous node performance
for two GPUs as 1243 GFlops and the 32 nodes cluster with
two GPUs each as 39.7 TFlops. To evaluate the performance
count, we use the same method as [1] by looking at the
actual number of operations performed on the GPU during
the sparse MVP. Given the number of operations per direct
evaluation and summation of the potential or potential+force
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contribution, which value 27 is the commonly accepted, our
present algorithm provides 612 GFlops (933 GFlops peak
performance reported by NVIDIA). For the contribution of
the CPU part of the algorithm in the parallel region, we
count all M2M, M2L, and L2L translations, evaluated the
number of operations per translation, and used the measured
times for the GPU/CPU parallel region at [,,x = 5. That
provided as a estimate of 28 GFlops per node for 8 CPU
cores. Alternatively, following [8], [11], [20], [21], we could
also use a fixed flop count for the original problem and
computed the performance that would have been needed to
achieve the same results via a “brute-force” computation.
For N = 230 sources/receivers and a computation time of
12.2s (total run), which we observed for 32 nodes with two
GPUs per node, the brute-force algorithm would achieve a
performance of 2.21 Exaflops.

V. CONCLUSION

In the light of recent heterogenous FMM algorithms
developments, our presented algorithmic improvements sub-
stantially extend the scalability and efficiency of the FMM

algorithm for large problems on heterogenous clusters. Our
algorithm provides both fast data structure computations
and efficient CPU/GPU work split, which can best utilize
the computation resources and achieve the state of the art
performance. With the present algorithm, dynamic problems
in the order of millions or billions from fluid mechanical
applications, molecular dynamics or stellar dynamics can be
efficiently solved within a few seconds per time step on a
single workstation or small heterogeneous cluster.

We demonstrate the weak and strong scalability improve-
ment compared with algorithms presented in [1]. Both our
single node algorithm and distributed algorithm using novel
data structures are shown to outperform those results in
all cases. A FMM run for 230 > 1 billion particles is
successfully performed with this algorithm on a midsize
cluster (32 nodes with 64 GPUs) in 12.2 seconds.

The data structures developed here can handle non-
uniform distributions and achieve workload balance. In fact,
our algorithm splits the global octree among all the nodes
and processes each subtree independently. Such a split can
be treated as an isolated module which is free to use
different methods based on different applications, to estimate
workload. Moreover, since each node constructs its own
subtree independently, the limitation of the depth of octee
constructed by GPU only applies to the local tree, which
implies such algorithm can handle deeper global octrees.
Our approach using import and export box concepts only
exchange necessary box data hence substantially reduces the
communication cost. We develop parallel algorithms to de-
termine the import and export boxes in which the granularity
is spatial boxes. Their parallel GPU implementations are
shown to have very small overhead and good scalability.
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