
ar
X

iv
:1

20
6.

49
73

v1
 [

cs
.D

C
]

21
 J

un
 2

01
2

An Adaptative Multi-GPU based
Branch-and-Bound. A Case Study: the Flow-Shop

Scheduling Problem
I. Chakroun, N. Melab

Université Lille 1, LIFL/UMR CNRS 8022 - INRIA Lille Nord Europe
59655 - Villeneuve d’Ascq cedex - France

Email: {imen.chakroun, nouredine.melab}@lifl.fr

Abstract—Solving exactly Combinatorial Optimization
Problems (COPs) using a Branch-and-Bound (B&B) algorithm
requires a huge amount of computational resources. Therefore,
we recently investigated designing B&B algorithms on top of
graphics processing units (GPUs) using a parallel bounding
model. The proposed model assumes parallelizing the evaluation
of the lower bounds on pools of sub-problems. The results
demonstrated that the size of the evaluated pool has a significant
impact on the performance of B&B and that it depends
strongly on the problem instance being solved. In this paper,
we design an adaptative parallel B&B algorithm for solving
permutation-based combinatorial optimization problems such as
FSP (Flow-shop Scheduling Problem) on GPU accelerators. To
do so, we propose a dynamic heuristic for parameter auto-tuning
at runtime. Another challenge of this pioneering work 1 is to
exploit larger degrees of parallelism by using the combined
computational power of multiple GPU devices. The approach
has been applied to the permutation flow-shop problem.
Extensive experiments have been carried out on well-known FSP
benchmarks using an Nvidia Tesla S1070 Computing System
equipped with two Tesla T10 GPUs. Compared to a CPU-based
execution, accelerations up to×105 are achieved for large
problem instances.

Index Terms—Branch-and-Bound Algorithms, Multi-GPU
Computing, Parallel Bounding, Flow-Shop Scheduling Problem.

I. I NTRODUCTION

Solving to optimality large size combinatorial optimization
problems (COPs)2 using a Branch and Bound algorithm
(B&B) is CPU time-consuming. Although B&B allows to
reduce considerably the exploration time using a bounding
mechanism, often only small or moderately-sized instancescan
be practically solved. Therefore, over the last decades, parallel
computing has been revealed as an attractive way to deal with
larger instances of COPs. However, while many contributions
have been proposed for parallel B&B methods using Massively
Parallel Processors [4], Networks or Clusters of Workstations
[1] and SMP machines [5], very few contributions have
been proposed for designing B&B algorithms on Graphical
Processing Units (GPUs) [11], [9]. For years, the use of

1To the best of our knowledge, our work is the first implementation of an
adaptative Branch and Bound on multi-GPUs platforms.

2An optimization problem consists in minimizing or maximizing a cost
function. Without loss of generality, in this paper the minimization case is
considered.

graphics processors was dedicated to graphics applications.
Driven by the demand for high-definition 3D graphics on
personal computers, GPUs have evolved into a highly parallel,
multithreaded and many-core environment. Their utilization
has recently been extended to other application domains such
as scientific computing [12].

Most of existing parallel B&B algorithms, such as the above
ones, are based on the parallel exploration of the search tree.
Such parallel model is not suited to GPUs because the explored
search tree is highly irregular. In our work [11], we proposed a
pioneering investigation of using a parallel bounding model for
designing B&B algorithms over GPUs. The proposed model
assumes parallelizing the evaluation of the lower bounds on
pools of sub-problems. The experimental results show that
significant accelerations can be obtained especially for large
problem instances and large pools of subproblems. Results
demonstrate also that the size of the evaluated pool has an
important impact on the performance of the B&B and that it
depends strongly on the problem instance being solved. It is
thus hard to fix it a priori and so has to be tuned dynamically
depending on the problem instance being tackled.

In this paper, we design an adaptative parallel B&B algo-
rithm for solving permutation-based combinatorial optimiza-
tion problems such as FSP (Flow-shop Scheduling Problem)
on GPU accelerators. The idea is to dynamically tune the
size of the pool being off-loaded to the GPU taking into
consideration both the characteristics of the used device and
the problem instance being tackled. Another challenge of this
work is to exploit larger degrees of parallelism by utilizing
multiple GPUs. Indeed, execution on parallel GPUs is promis-
ing since applications that are best suited to run on GPUs
inherently have large amounts of parallelism. Using multiple
GPUs avoids also dealing with the limitations of devices, like
memory resources, by exploiting the combined resources of
multiple boards.

The remainder of the paper is organized as follows: Sec-
tion II presents the B&B algorithm and the permutation
Flow-shop Scheduling Problem. In Section III, we describe
our adaptative GPU-based proposed approach for B&B. In
Section IV, we describe our methodology for using multiple
GPUs. In Section V, we report experimental results demon-
strating the efficiency of our approach. Finally, some conclu-

http://arxiv.org/abs/1206.4973v1

sions and perspectives of this work are drawn in Section VI.

II. B&B FOR THEPERMUTATION FLOW-SHOP

SCHEDULING PROBLEM

A. B&B algorithms

Branch-and-Bound (B&B) algorithms are well-known exact
methods for solving to optimality combinatorial optimization
problems. They are based on an implicit enumeration of all
the solutions of the considered problem. The search space
is explored by dynamically building a tree whose root node
designates the original problem. The construction of the B&B
tree and its exploration are performed using four operators:
branching, bounding, selection andelimination. The algorithm
proceeds in several iterations during which the best solution
found so far is progressively improved. The generated and not
yet examined sub-problems are kept into a list initialized to the
original problem. At each iteration, a sub-problem is selected
from this list according to some defined strategy (depth-first,
best-first,. . .), using theselection operator. Then, abranching
operator is applied on the selected sub-problem, subdividing
its solution space into two or more subspaces to be investigated
in a subsequent iteration. For each one of the generated sub-
problems, thebounding operator calculates a lower bound that
is compared to the upper-bound. Each sub-problem having
a greater bound than the upper-bound, the cost of the best
solution found so far, is pruned using theelimination operator.

Thanks to the bounding operator, B&B allows to reduce
considerably the computation time needed to explore the
whole solution space. However, the exploration time remains
significant and parallel processing is thus required. In [10],
three parallel models are identified for B&B algorithms:
parallel application of the operators on the generated sub-
problems (Type 1), parallel building and exploration of a
B&B tree (Type 2), and parallel (cooperative or independent)
building and exploration of several B&B trees (Type 3). We
have already rethinked these parallel approaches for large-
scale computational grids [7] using Type 2 parallel model.
Grid computing provides an impressive computing power to
solve challenging instances in combinatorial optimization [3].
However, computational grids providing a huge amount of
resources are not easily available and accessible for any user.
Recently, Graphics Processing Units (GPU accelerators) have
emerged as a new popular support for massively parallel
computing. GPUs are high-performance many-core processors
capable of very high computation and data throughput. Such
resources are also energy-efficient and unlike grids they are
highly available every where. In the following, we use the
Type 1 parallel model on GPU for solving Flow-Shop prob-
lems.

B. The permutation Flow-shop Scheduling problem

The general FSP can be formulated as follows [2]. FSP
consists in scheduling a pool ofn jobs on a set ofm machines
such that each of the jobsJ1, J2, . . . , Jn has to be processed
on the machinesM1, M2, . . . ,Mm in that order. JobJi (i = 1,
2, . . . , n) consists therefore of a sequence ofm operationsOi1,

���������
���������
���������

���������
���������
���������

���
���
���
���

����
����
����
����

�����
�����
�����
�����
������
������
������
������

����������
����������
����������

����������
����������
��������������

����
����
����

��
��
��
��

���������
���������
���������
���������

��
��
��

��
��
��

����������
����������
����������
����������

�������
�������
�������

�������
�������
�������

M

M

M

M

1

2

3

4

J

J

J

J

J

J

J

J J

J

J

J
3

3

2

2

2

1

1

1

3 2 1

3

Processing Times

Optimal Solution

16

1 3 5
3

2

5 3 4 1

2 2 1 4

J

J

J

M M M M

2

1

1 2 3 4

Fig. 1. Illustration of a permutation FSP withn = 3 andm = 4. The table
reports the processing times of the jobs on the machines. TheGantt diagram
shows the optimal solution to the problem instance.

Oi2, . . .Oim; Oik being the processing ofJi on Mk during
an uninterrupted processing timepik. Mk (k = 1, 2, . . . , m)
can handle at most one job at a time. The objective is to find
a processing order on eachMk such that the time required
to complete all jobs is minimized. If the problem is restricted
to the minimization over all permutation schedules, meaning
with the same processing order on each machine, the resulting
problem is called the permutation Flow-Shop problem, which
is the focus of this work. Figure 1 shows an example of an
FSP instance (withn = 3 and m = 4) and its associated
optimal solution.

In the B&B applied to the the FSP, the node numberi
in the search tree represents the sub-problem in which job
Ji is scheduled first on all machines. The decomposition of
this problem generatesn sons, each of them designates a
sub-problem. The recursive application of the decomposition
operator on the generated sub-problems allows to develop the
search tree. The number of potential schedules (permutations)
is n!, which is extremely large for large problem instances
such as200 × 20 (200! schedules!) Taillard’s ones [14]. To
speedup the exploration of such large search trees, two major
powerful ways are used. The first way consists in using an
efficient bounding operator. Applied to a sub-problem, such
operator associates a value to its corresponding tree node using
a lower bound function. If this lower bound value is greater
than the cost of the best schedule found so far (upper bound),
the sub-problem is not decomposed and its tree node is pruned.
The second way is to use massively parallel computing based
on the three parallelism types presented in the section II-A.
We remind that the focus of this paper is only onType 1 i.e.
the parallel evaluation of the lower bound on a pool of sub-
problems.

In the following, we present a new auto-adaptative GPU-

based approach for the parallel evaluation of the lower bound
in B&B algorithms.

III. O UR ADAPTATIVE GPU-BASED B&B ALGORITHM

The proposed approach is based on the GPGPU (CUDA or
OpenCL) parallel paradigm. According to this paradigm, the
programmer writes a serial program that calls parallel kernels.
The kernel is the core code that defines the computation to
be performed by a large number of threads. These threads are
organized in collections called blocks that can be assignedto
a single multiprocessor and which execution is time-shared. A
collection of all blocks in a single execution is called a grid.

In our revisited GPU-based B&B algorithm, the generation
(elimination, selection and branching operations) of the sub-
problems to be solved is performed on CPU and the evaluation
of their lower bounds (bounding operation) is executed on
the GPU device. As illustrated in Figure 2, the pool of sub-
problems generated on CPU is off-loaded to the GPU device
to be evaluated by a pool of threads. Each thread applies the
lower bound function to one sub-problem. Once the evaluation
is completed, the lower bound values are returned back to
the CPU to be used by the elimination operator. The process
is iterated until the exploration is completed and the optimal
solution is found.

One of the challenging concerns that must be considered
to make efficient our GPU-based B&B is supplying the
device with a large pool of subproblems. Indeed, in [11],
experiments show that the proposed parallel bounding model
is efficient only when large pools (thousands of sub-problems)
are considered whatever the size of the FSP instances being
tackled is. As a solution for the problem, we come up with a
new selection strategy. Indeed, rather than selecting a single
pending node as in traditional B&B algorithms, our approach
assume that a pool of pending nodes is selected from the
search tree (see Figure 2). At each iteration of the algorithm,
a pool of unexplored nodes is selected from the search tree
according to their depth. Deepest pending nodes are the first
selected for being branched. As explained before, that pool
of sub-problems, corresponding to the generated tree nodes
and resulting from the branching operation, is off-loaded from
CPU to GPU to be evaluated by blocks of threads.

In our investigation proposed in [11], results also demon-
strate that the size of the pool to be off-loaded to the GPU
has an important impact on the performance of the algorithm.
We have also noticed that this parameter depends strongly on
the problem instance being solved. It is thus hard to be fixed
a priori and so has to be tuned dynamically depending on the
problem. For dealing with this issue, we propose an empirical
heuristic for parameters auto-tuning at runtime. Algorithm 1
gives the general template for this heuristic. The main idea
of this approach is to send the pending sub-problems using
different-sized “waves” to the GPU device during the first
iterations of the B&B algorithm. Regularly, we compute the
efficiency of the used pool and then double the size of the
pool to off-load to the GPU. After a fixed number of trials, the
better efficiency overall selected configurations is used for the

1 2 4 5

3 6

1 2 4 5

3 6

pool to evaluate using

Exploration

GPU

1 6

LB LB

Node . . . Node

61

Elimination

root node

inner nodes

pending (unnexplored) nodes

CPU

predefined selection strategy

T
0

T
m

T
1

H
ie

ra
rc

hi
ca

l M
em

or
y

LB
 C

om
pu

tin
g

F
un

ct
io

n

Fig. 2. The overall architecture of our GPU-accelerated branch-and-Bound
algorithm. Our approach introduces two main adaptations compared to a
traditional B&B : selection of thousand of nodes and evaluation in parallel.

remaining iterations of the algorithm. As explained above,the
pool of sub-problems off-loaded to the GPU is evaluated by a
pool of threads where each thread applies the lower bound
function to one sub-problem. Consequently, the number of
sub-problems to evaluate in parallel strongly depends of the
total number of threads that would be triggered on the GPU.
Actually, tunning the size of the ”wave” to submit to the GPU
is equivalent to adjusting the number of the threads to run in
parallel.

Our heuristic first identifies the characteristics of the used
hardware. Thanks to this property, the algorithm becomes
highly portable and could easily be run over heterogeneous
GPU architetures transparently to the user. The heuristic deter-
mines the maximum configuration that can be used, namely the
maximum number of threads and blocks that can run in parallel
over the GPU card. Indeed, in some cases, when a thread block
allocates more registers than are available on a multiprocessor,
the kernel execution fails since too many threads are requested.
During all the tuning process, the number of threads per
blocks is set using the occupancy calculator tool provided by
NVIDIA which allows the programmer to easily calculate the
best thread block size based on register and shared memory
usage of a kernel. Regarding the number of blocks per grid, our
primary concern when choosing this parameter was keeping
the entire GPU busy. Indeed, the number of blocks in a grid
should be larger than the number of multiprocessors so that
all multiprocessors have at least one block to execute. Thus,
we first initialize the number of blocks with the number of
the multiporcessors detected on the device. This number is
doubled repeatdly after a certain number of iterations (fixed
experimentally) and until the number of threads per blocks×
the number of blocks doesn’t exceed the maximum number of
active threads allowed on the device.

So far, our empirical search of the best efficiency is coarse-
grained. Indeed, doubling the size in every step, and stopping

when the efficiency is no longer improved, or when the limits
of the GPU have been reached might founds an imprecise
upper bound of the performance. For this reason and in order
to make the tuning more thorough, we considered to also
perform a binary search around the best pool size found so
far. When the maximum number of active threads is reached,
the iterative doubling proccess terminates and returns thebest
found configuration parameters. The heuristic then computes
a downwards and an upwards search around the best pool size
found so far. The better efficiency overall selected configura-
tions is used for the remaining iterations of the algorithm.

Algorithm 1 Dynamic parameter tuning heuristic
Data: nb iterations;
Result: best number of threads
max nb threads = DetectGPU Charateristics();
nb threads = UseCuda OccupancyCalculator();
nb blocks := GetNumber Of Multiporcessors();
while not empty tree() do

while pool size ≤ nb threads × nb blocks do
take sub problem();

end
Iteration pre-treatment on host side;
Kernel evaluation on GPU;
Iteration post-treatment on host side;
if (iteration % nb iterations = 0) and ((nb threads ×
nb blocks) ≤ max nb threads) then

if Is best pool improved() then
best numberof threads = nbthreads ×
nb blocks ;

end
nb blocks := nb blocks * 2 ;

end
else

ComputeBinary SearchAround Best Pool() ;
end
iteration := iteration + 1 ;

end

IV. RESHAPING THEGPU-BASED B&B ALGORITHM FOR

MULTI -GPU ARCHITECTURE

Nowadays, the trend in general-purpose computing on
graphics processing units is to use multiple GPUs on a given
system, much like using multiple cores on CPU-based systems.
In the following, we detail the changes we have made to
our GPU-based B&B algorithm presented in section III. Our
objective here is to consider the benefits of exploiting larger
degrees of parallelism by running our algorithm on multiple
(parallel) GPUs.

The first step toward a multi-GPU design is to determine
how many GPUs will be used and how each GPU will be
exploited. In this work, our aim in using multi-GPUs is
to speedup kernel execution rather than utilizing each GPU
differently (for example for evaluating different lower bound
functions). Consequently, our concern here is to define a
workload distribution between the used GPUs in order to

make all the available devices compute the same work in
parallel without need of synchronization. Since our approach
ensures that the decomposed sub-problems are different and
independent from each other and since the used lower bound
function is problem-dependent, we opted for simply splitting
the pool of sub-problems among the selected GPUs. Each pool
is then be evaluated in parallel and independently from other
pools. However, after each GPU finishes computing the kernel
function, the outputs from each device have to be merged to
get final results. The size of the pool to submit to each GPU
is calculated using the proposed heuristic (see Section III).

As explained in Section III, the main CPU thread selects
a pool of unexplored nodes from the search tree according
to their depth. That pool of sub-problems is equally splitted
into as much pools as the number of the used devices. In
order to ensure complete concurrency between the bounding
computations, we create as much CPU threads3 as GPUs to
be utilized. We assign to each thread CPU an individual GPU
using the NVIDIA CUDA Runtime API “cudaSetDevice()”
method [6], which gives the possibility to select which device
to execute the kernel on. Each created thread CPU copies its
pool of sub-problems from the CPU to its affiliated GPU,
executes the kernel, and copies the resulting bounds back tothe
CPU. The main CPU thread waits for all other CPU threads to
complete and merges results into one. The process is illustrated
in figure 3.

Fig. 3. Parallel evaluation of bounds over multiple GPUs

V. EXPERIMENTS

In the following, an experimental study is presented with the
objective to evaluate the performance impact of the presented
auto-tuned GPU-accelerated B&B algorithm and the effect
of exploiting larger degrees of parallelism by using multiple
GPUs accelerators.

3 We used lightweight threads defined by the POSIX Threads library.

A. Flow-shop instances

In our experiments, we used the flow-shop instances defined
by Taillard [14]. These standard instances are often used
in the literature to evaluate the performance of algorithms
that minimize the makespan. Optimal solutions of some of
these instances are still not known. The different instances are
designated byn ×m, wheren andm represent respectively
the number of jobs (between20 and500) to be scheduled and
the number of machines (20,10,5) to be used. In our exper-
iments, we used only the instances with10 or 20 machines
since instances with5 machines are easy to solve. For these
instances, with5 machines, the used bounding operator gives
so good lower bounds that it is posssible to solve them in few
minutes using a sequential B&B. Therefore, these instances
do not require the use of a GPU. We also omit instances with
500 jobs because they do not fit in the memory of the CPU.

B. Hardware and software platforms

The approach has been implemented using C-CUDA 4.0.
The experiments have been carried out using an Intel Xeon
E5520 bi-processor. This bi-processor is 64-bit, quad-core
and has a clock speed of 2.27GHz. It is coupled with an
Nvidia Tesla S1070 Computing System which is an 1U rack-
mount system equiped with two Tesla T10 GPUs. Each GPU
contains 240 CUDA cores, a 4GB global memory, a 16.38KB
shared memory, and a warp size of 32 threads. Using the
occupancy calculator tool provided by NVIDIA, which allows
the programmer to easily calculate the best thread block size
based on register and shared memory usage of a kernel,
we figure out that a block size equal to256 gives the best
results. Therefore, we fixed the block size to256 in all our
experiments. Here we notice that the number of threads per
block is a multiple of the warp size which makes the kernel
avoid wasting computation on underpopulated warps. We vary
the number of blocks in order to guarentee that the total
number of active threads equals the size of the pool to submit
to the GPU. As explained in Section III, we first initialize
the number of blocks with the number of the multiporcessors
detected on the device.

C. Experimental protocol: speedup computation

To evaluate the performance of the proposed approach,
we calculate the speedup obtained by comparing our GPU
B&B version to a sequential B&B version deployed on a
single CPU core. Since the used instances are very hard
to solve (optimal solutions for many of these instances are
still not known), we used the approach defined in [3] to
run experiments. Employing this method allows to obtain a
random listL of subproblems such as the resolution ofL
lastsTcpu minutes with a sequential B&B. To ensure that the
subproblems explored by the GPU and CPU B&B versions
are exactly the same, we initialize the pool of our GPU-
based B&B with the same listL of subproblems used in the

3A warp contains 32 threads in the G80 model

sequential version. If we suppose the resolution of the GPU-
based B&B lastTgpu minutes, the reported speedup of our
algorithm will be equal toTcpu/Tgpu.

D. Performance impact of GPU-based parallelism

The objective of the experimental study presented in this
section is to demonstrate that the use of a GPU allows
to significantly accelerate the execution time of the B&B
algorithm whatever is the FSP instance. The second objective
is to find for each problem instance the best pool size that
allows to take the most benefit from the use of the GPU.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

20x10 50x10 100x10 200x10 20x20 50x20 100x20 200x20

S
pe

ed
up

Problem instances

Best-Pool 8192

Best-Pool 8192
Best-Pool 8192

Best-Pool 8192

Best-Pool 12288

Best-Pool 16384

Best-Pool 65536

Best-Pool 65536

Fig. 4. The speedups and corresponding used pools obtained using the auto-
tuned algorithm.

Figure 4 depicts the speedups obtained for the different
problem instances using the approach proposed in Section III.
For each problem instance we report the best pool returned by
our dynamic parameter tuning heuristic. The reported results
show that evaluating in parallel the bounds of a judiciously
selected pool allows to significantly speedup the execution
of the B&B. Indeed, an acceleration factor up to (×78) is
obtained for the 200× 20 problem instances. The results
show also that the parallel speedup grows with the size of
the problem instance. For a fixed number of machines, the
obtained speedup grows accordingly with the number of jobs.
For instance, the speedup obtained with 200 jobs (×78) is
higher than the one obtained with 100 jobs (×73), 50 jobs
(×62) and 20 jobs (×44). This is due to the complexity of
the computation of the lower bound which isO(m2.n.logn).
For large problem instances (i.e. large values ofn and m)
the grain size of the kernel executed by each thread is much
higher which increases the GPU throughput.

To validate the proposed heuristic for auto-tuning the pool
size, we run several experiments using different pre-fixed pool
sizes. The corresponding results are reported in Table I. The
rows correspond to the problem instances defined by (Number
of jobs× Number of machines) and the columns correspond
to the size of the pool of sub-problems to be evaluated in
parallel.

Reported results clearly confirm that the best size of the
pool depends strongly on the problem instance being solved.

For instance, the best speedups for the 200× 20 instances are
obtained with a pool size of 65536. However, with the 50× 20
instances, the best speedup is obtained with a pool of 16384
problems. Another important result is that the best speedups
measured when varying the sizes of the pool are obtained with
the same pool sizes returned by our heuristic (see figure 4).
For example, the best speedup for the 200× 20 instances is
obtained with a pool size of 65536 which is the best pool size
our heuristic figure out for those instances.

E. Performance impact of MultiGPU-based parallelism

In this section, we experiment the use of our parallel
B&B algorithm with multiple GPUs. The objective here is
to evaluate the impact of the multiGPU-based parallelism
proposed in section IV.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110

20x10 50x10 100x10 200x10 20x20 50x20 100x20 200x20

S
pe

ed
up

Problem instances

Using One GPU
Using Two GPUs

Fig. 5. Comparing the parallel efficiency for different problem instances
using a single / multiple GPUs.

Figure 5 compares the computed speedups obtained for the
different problem instances using respectiveley one and two
GPU(s). The reported results show that evaluating bounds in
parallel over two GPUs provides further orders of speedups
compared to an execution where only a single GPU is used
whatever the instance is. For instance, an acceleration factor
up to ×105 is obtained with two GPUs for the 200× 20
problem instances while a speedup of×78 is obtained for
the same instances using only one device. In this case, exe-
cuting the bounding operation on parallel GPUs provides an
improvement about 26% compared to a single GPU execution.

The improvement we noticed when using two GPUs was
somehow predictable. Indeed, exploiting the combined re-
sources of multiple boards is promising for applications that
have large amounts of parallelism. Our preliminary investiga-
tion [11] demonstrated that computing the lower bounds for
the flow-shop permutation problem is one of those applications
since significant acceleration factors have been mesured when
running this function on parallel over a GPU.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented new insights into parallel
B&B algorithms for solving permutation-based combinatorial
optimization problems such as FSP on multiple GPU accel-
erators. The contributions consist in proposing an adaptative
GPU-based parallel B&B algorithms and in exploiting larger
degrees of parallelism by utilizing multiple GPUs. The Flow-
Shop scheduling problem has been considered as a case
study. The proposed approaches have been experimented on
well-known FSP benchmarks using an Nvidia Tesla S1070
Computing System equipped with two Tesla T10 GPUs.

In our proposed auto-tuned GPU-based approach, the de-
composition and pruning of the sub-problems is performed
on CPU and the evaluation of their lower bounds (bounding
operation) is executed on the GPU device. Pools of sub-
problems are off-loaded from CPU to GPU to be evaluated
by blocks of threads. After evaluation, the lower bounds are
returned to the CPU. In order to dynamically tune the size of
the pool to be submitted to the GPU, we propose an heuristic
for parameters auto-tuning at runtime. The main idea of this
heuristic is to send the pending sub-problems using different-
sized “waves” to the GPU device during the first iterations of
the B&B algorithm. Regularly, the efficiency of the used pool
is computed and the size of the pool to off-load to the GPU is
doubled. After a fixed number of trials, the best efficiency
over all selected configurations is used for the remaining
iterations of the algorithm. The experimental results showthat
accelerations up to×78 can be obtained especially for large
problem instances and large pools of sub-problems and that
the best speedups are obtained using the pool sizes returned
by the heuristic.

Another challenge of this work was to exploit larger degrees
of parallelism by utilizing the combined computational power
of multiple graphical cards. Our concern towards a multi-GPU
implementation of our parallel B&B was to define a workload
distribution between the used GPUs in order to make all the
available devices compute the same work in parallel without
need of synchronization. Experimental results demonstrate that
using two GPUs is beneficial and improvement up to 23% is
reached compared to an execution with a single GPU. Thus,
our proposed adaptative multi-GPU based Branch and Bound
enables to achieve speedups of×105 over a CPU version.

We are currently investigating the combination of the two
parallel models Type 1 and Type 2 (see Section II-A) for the
design and implementation of a GPU-accelerated multi-core
B&B algorithm. In the near future, we plan to extend this work
to a cluster of GPU-accelerated multi-core processors. From
application point of view, the objective is to solve to optimality
challenging and unsolved Flow-Shop instances as we did it for
one50×20 problem instance with grid computing [3]. Finally,
we plan to investigate other lower bound functions to deal with
other combinatorial optimization problems.

REFERENCES

[1] M. J. Quinn. Analysis and implementation of branch-and-bound algo-
rithms on a hypercube multicomputer. IEEE transactions on computers,

(No. of jobs× No. of machines) 4096 6144 8192 12288 16384 32768 65536

200×20 40,49 57,60 62,64 69,76 73,90 75,48 78,14
100×20 42,79 54,83 61,96 65,81 69,93 71,57 73,27
50×20 40,74 51,40 57,31 60,89 62,15 59,19 58,94
20×20 33,38 40,26 43,60 45,51 44,16 39,75 38,36

200×10 19,34 21,91 23,03 22,71 22,11 21,68 21,09
100×10 19,15 20,76 22,09 21,72 21,56 21,30 20,40
50×10 18,21 20,01 20,42 19,93 19,55 18,77 18,25
20×10 13,60 14,81 15,03 14,58 13,92 12,28 11,52

TABLE I
PARALLEL SPEEDUP MESURED FOR DIFFERENT PROBLEM INSTANCES AND POOL SIZES WITHOUT USING THE AUTO-TUNING HEURISTIC.

Vol. 39, No3, pp. 384-387, 1990.
[2] J.K. Lenstra, B.J. Lenstra, and A.H.G.R. Kan. A general bounding scheme

for the permutation flow-shop problem.Operations Research, 26(1):53–
67, 1978.

[3] M. Mezmaz, N. Melab and E-G. Talbi. A Grid-enabled Branchand
Bound Algorithm for Solving Challenging Combinatorial Optimization
Problems. In Proc. of 21th IEEE Intl. Parallel and Distributed Processing
Symp. (IPDPS), Long Beach, California, March 26th-30th, 2007.

[4] R. Allen, L. Cinque, S. Tanimoto, L. Shapiro and D. Yasuda. A parallel
algorithm for graph matching and its MasPar implementation. IEEE
Transactions on Parallel and Distributed Systems, Vol. 8, No. 5, 1997.

[5] L.G. Casadoa, J.A. Martneza, I. Garcaa and E.M.T. Hendrixb. Branch-
and-Bound interval global optimization on shared memory multiproces-
sors. Optimization Methods and Software, Vol. 23, No.5, pp.689-701,
2008.

[6] CUDA C Best Practices Guide. http://developer.nvidia.com/nvidia-gpu-
computing-documentation.

[7] M. Djamai, B. Derbel and N. Melab. Distributed B&B: A PurePeer-
to-Peer Approach. In Proc. of IEEE IPDPS’2011, Woks. on Large-Scale
Parallel Processing (LSPP), May 16-20, Anchorage (Alaska), 2011.

[8] T-V. Luong, N. Melab and E-G. Talbi. GPU Computing for Parallel Local
Search Metaheuristic Algorithms. IEEE Transactions on Computers,
http://doi.ieeecomputersociety.org/10.1109/TC.2011.206, 2012.

[9] A.Boukedjar, M.Lalami, D.El Baz. Parallel branch and bound on a CPU-
GPU system. Euromicro International Conference on Parallel Distributed
and Network-based Processing (PDP 2012), Garching (Allemagne), 15-17
Fvrier 2012, pp.392-398 Rapport LAAS N11471

[10] B. Gendron and T.G. Crainic. Parallel Branch-and-Bound Algorithms:
Survey and Synthesis.Operations Research, 42(06):1042–1066, 1994.

[11] I. Chakroun, A. Bendjoudi and N. Melab. Reducing ThreadDivergence
in GPU-based B&B applied to the Flow-Shop Problem. In LNCS Proc. of
9th Intl. Conf. on Parallel Processing and Applied Mathematics (PPAM),
2011.

[12] Jakub Kurzak, David A. Bader, and Jack Dongarra (eds.).Scientific
Computing with Multicore and Accelerators, Chapman & Hall /CRC
Press, 2010.

[13] S. Tschoke, R. Lubling and B. Monien. Solving the traveling sales-
man problem with a distributed branch-and-bound algorithmon a 1024
processor network. In Proc. of9th Intl. Parallel Processing Symposium
(IPPS), pp. 182 - 189, 1995.

[14] E. Taillard. Taillard’s FSP benchmarks.
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html.

http://doi.ieeecomputersociety.org/10.1109/TC.2011.206
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

	I Introduction
	II B&B for the Permutation Flow-shop Scheduling problem
	II-A B&B algorithms
	II-B The permutation Flow-shop Scheduling problem

	III Our Adaptative GPU-based B&B algorithm
	IV Reshaping the GPU-based B&B algorithm for Multi-GPU architecture
	V Experiments
	V-A Flow-shop instances
	V-B Hardware and software platforms
	V-C Experimental protocol: speedup computation
	V-D Performance impact of GPU-based parallelism
	V-E Performance impact of MultiGPU-based parallelism

	VI Conclusion and Future Work
	References

