arxiv:1206.4973v1 [cs.DC] 21 Jun 2012

An Adaptative Multi-GPU based
Branch-and-Bound. A Case Study: the Flow-Shop
Scheduling Problem

I. Chakroun, N. Melab
Université Lille 1, LIFL/UMR CNRS 8022 - INRIA Lille Nord Erope
59655 - Villeneuve d’Ascq cedex - France
Email: {imen.chakroun, nouredine.mela@Iifl.fr

Abstract—Solving exactly ~Combinatorial ~ Optimization —graphics processors was dedicated to graphics applisation
Problems (COPs) using a Branch-and-Bound (B&B) algorithm Driven by the demand for high-definition 3D graphics on
requires a huge amount of computational resources. Therefe, yargonal computers, GPUs have evolved into a highly paralle
we recently investigated designing B&B algorithms on top of ltithreaded and ’ i . t Their utilzati
graphics processing units (GPUs) using a parallel bounding multuthreaded and many-core env'ronmeln " eru 'm'
model. The proposed model assumes parallelizing the evafiian ~ has recently been extended to other application domairts suc
of the lower bounds on pools of sub-problems. The results as scientific computing [12].
demonstrated that the size of the evaluated pool has a sigraéint Most of existing parallel B&B algorithms, such as the above
impact on the performance of B&B and that it depends ,neq are based on the parallel exploration of the seareh tre

strongly on the problem instance being solved. In this paper . .
we design an adaptative parallel B&B algorithm for solving Such parallel model is not suited to GPUs because the explore

permutation-based combinatorial optimization problems sich as Search tree is highly irregular. In our wofk [11], we propose
FSP (Flow-shop Scheduling Problem) on GPU accelerators. To pioneering investigation of using a parallel bounding mdale
do so, we propose a dynamic heuristic for parameter auto-tuing designing B&B algorithms over GPUs. The proposed model
at runtime. Another challenge of this pioneering workl is to 55qmes parallelizing the evaluation of the lower bounds on

exploit larger degrees of parallelism by using the combined .
computational power of multiple GPU devices. The approach pools of sub-problems. The experimental results show that

has been applied to the permutation flow-shop problem. Significant accelerations can be obtained especially f@ela
Extensive experiments have been carried out on well-known$P problem instances and large pools of subproblems. Results
benchmarks using an Nvidia Tesla S1070 Computing System demonstrate also that the size of the evaluated pool has an
equipped with two Tesla T10 GPUs. Compared to a CPU-based jmnortant impact on the performance of the B&B and that it
execution, accelerations up tox105 are achieved for large d ds st | th bl inst bei ved. It i
problem instances. epends strongly on the problem instance being solved. It is

thus hard to fix it a priori and so has to be tuned dynamically

Index Terms—Branch-and-Bound Algorithms, Multi-GPU depending on the problem instance being tackled.

Computing, Parallel Bounding, Flow-Shop Scheduling Prokm. In this paper, we design an adaptative parallel B&B algo-
rithm for solving permutation-based combinatorial op#iei
|. INTRODUCTION tion problems such as FSP (Flow-shop Scheduling Problem)

Solving to optimality large size combinatorial optimizati on GPU accelerators. The idea is to dynamically tune the
problems (COPsfl using a Branch and Bound algorithmsize of the pool being off-loaded to the GPU taking into
(B&B) is CPU time-consuming. Although B&B allows to consideration both the characteristics of the used dewvice a
reduce considerably the exploration time using a bounditige problem instance being tackled. Another challenge isf th
mechanism, often only small or moderately-sized instanaas Work is to exploit larger degrees of parallelism by utiligin
be practically solved. Therefore, over the last decades)lph multiple GPUs. Indeed, execution on parallel GPUs is premis
computing has been revealed as an attractive way to deal with since applications that are best suited to run on GPUs
larger instances of COPs. However, while many contribstiofnherently have large amounts of parallelism. Using mletip
have been proposed for parallel B&B methods using MassivégPUs avoids also dealing with the limitations of deviceee li
Parallel Processor5][4], Networks or Clusters of Worksteti memory resources, by exploiting the combined resources of
[M and SMP machines[5], very few contributions havéultiple boards.
been proposed for designing B&B algorithms on Graphical The remainder of the paper is organized as follows: Sec-
Processing Units (GPUs) [11](1[9]. For years, the use &Pn [presents the B&B algorithm and the permutation

Flow-shop Scheduling Problem. In Sectibn 1ll, we describe
1To the best of our knowledge, our work is the first impleméotenf an our adaptative GPU-based proposed approach for B&B. In
adaptative Branch and Bound on mult-GPUs platforms. Section[IV, we describe our methodology for using multiple

An Optlmlzatlon prObIem consists in minimizing or maxinmgi a cost . .
function. Without loss of generality, in this paper the miigation case is GPUs. In Sectiofi V, we report eXper'mental results demon-
considered. strating the efficiency of our approach. Finally, some concl

http://arxiv.org/abs/1206.4973v1

sions and perspectives of this work are drawn in Se¢fidn VI. M, M_ M, M

1 2 3 4
Il. B&B FOR THEPERMUTATION FLOW-SHOP Jl 5 3 4 1
SCHEDULING PROBLEM 3, | 2 2 1 4
A. B&B algorithms J |1 3 5 2

Branch-and-Bound (B&B) algorithms are well-known exact
methods for solving to optimality combinatorial optimiizat
problems. They are based on an implicit enumeration of all
the solutions of the considered problem. The search space

Processing Times

is explored by dynamically building a tree whose root nodg

designates the original problem. The construction of thEBB&,\,,4 %\ \\k é:/
tree and its exploration are performed using four operatolrvls3

branching, bounding, selection andelimination. The algorithm 2 \\‘l&

proceeds in several iterations during which the best soiuti s m \h\ |
found so far is progressively improved. The generated and no 16
yet examined sub-problems are kept into a list initializethe
original problem. At each iteration, a sub-problem is sieléc
from this list according to some defined strategy (depth:-firgig 1. ustration of a permutation FSP with= 3 andm = 4. The table
best-first,. .), using theselection operator. Then, abranching reports the processing times of the jobs on the machinesGEimtt diagram
operator is applied on the selected sub-problem, subdividirigfows the optimal solution to the problem instance.

its solution space into two or more subspaces to be investiga

in a subsequent iteration. For each one of the generated sub-

problems, thdounding operator calculates a lower bound that i : . .
is compared to the upper-bound. Each sub-problem havigl)#hr'ﬁ'()im' Oy, being the processing of; on My, during

a greater bound than the upper-bound, the cost of the beést nterrupted processing t"@%%.' M (k= 1.’ 2’. m) .
.) . T can handle at most one job at a time. The objective is to find
solution found so far, is pruned using te@mination operator.

Thanks to the bounding operator, B&B allows to reducg Processing order on eacH;. such that the time required

considerably the computation time needed to explore t@o complete all jobs is minimized. If the problem is reseitt

e e . .
whole solution space. However, the exploration time resain.. the minimization over all permutation schec_iules, megnin
significant and parallel processing is thus required.[1n],[1 ith the same processing orde_r on each machine, the reg;u_ltm
three parallel models are identified for B&B algorithms.prObIem Is called .the permqtatlon Flow-Shop problem, which
parallel application of the operators on the generated sy _the. focus of th.|s work. Figurl 1 shows an examplg of an
problems (Type 1), parallel building and exploration of aSl.D mstancg (withh. = 3 andm = 4) and its associated
B&B tree (Type 2), and parallel (cooperative or indepen)ien(%pt'maI solution. , ,
building and exploration of several B&B trees (Type 3). We !N the B&B applied to the the FSP, the node number
have already rethinked these parallel approaches for -larf® the search tree represents the sub-problem in which job
scale computational grid§][7] using Type 2 parallel modef: IS scheduled first on all machines. The decomposmon of
Grid computing provides an impressive computing power {§iS Problem generates sons, each of them designates a
solve challenging instances in combinatorial optimiza{g]. Sub-problem. The recursive application of the decompmsiti

However, computational grids providing a huge amount Qperator on the generated sub-prqblems allows to devek)p th
resources are not easily available and accessible for ary ugear'Ch tree. The number of potential schedules (permogjtio
Recently, Graphics Processing Units (GPU accelerators hdS 7!, which is extrerr:ely large fcl’r large problem instances
emerged as a new popular support for massively paralﬁéi‘:h as200 x 20 (2OQ. schedules!) Taillard’s one$ [14]. To _
computing. GPUs are high-performance many-core processep€edup the exploration of such large search trees, twormajo
capable of very high computation and data throughput. SueAwerful ways are used. The first way consists in using an
resources are also energy-efficient and unlike grids they &fficient bounding operator. Applied to a sub-problem, such
highly available every where. In the following, we use th@Perator associates a value to its corresponding tree reiag u

Type 1 parallel model on GPU for solving Flow-Shop proba lower bound function. If this lower bound value is greater
lems. than the cost of the best schedule found so far (upper bound),

the sub-problem is not decomposed and its tree node is pruned
B. The permutation Flow-shop Scheduling problem The second way is to use massively parallel computing based
The general FSP can be formulated as follolis [2]. FSm the three parallelism types presented in the seéfiod II-A
consists in scheduling a pool ofjobs on a set ofn machines We remind that the focus of this paper is only Gype 1 i.e.
such that each of the job, J, ..., J, has to be processedthe parallel evaluation of the lower bound on a pool of sub-
on the machined/,, Mo, ..., M,, in that order. JolJ; (i= 1, Problems.
2, ..., n) consists therefore of a sequencexadperations);, In the following, we present a new auto-adaptative GPU-

Optimal Solution

based approach for the parallel evaluation of the lower Hou
in B&B algorithms.

I11. OUR ADAPTATIVE GPU-BASED B&B ALGORITHM
The proposed approach is based on the GPGPU (CUDA

OpenCL) parallel paradigm. According to this paradigm, th

programmer writes a serial program that calls parallel &stn

n

The kernel is the core code that defines the computation (6D

be performed by a large number of threads. These threads
organized in collections called blocks that can be assigoed
a single multiprocessor and which execution is time-shaked
collection of all blocks in a single execution is called adgri

, .
SO
b
PR \

Node ...

Node,

predefined selection strategy|

. \
. |
/ Y
/ R
’

LB . ..

. LB

Hierarchical Memory

In our revisited GPU-based B&B algorithm, the generationfé“é P @@
(elimination, selection and branching operations) of the-s | ~=--= e
problems to be solved is performed on CPU and the evaluation .~ .. _ -

- ~ Exploration -~ J

c
9
=
5]
<
S
g
o
S
5
a
£
<]
o
o
-

of their lower bounds (bounding operation) is executed on
the GPU device. As illustrated in Figulé 2, the pool of sullig 2. The overall architecture of our GPU-acceleratechtiizand-Bound
problems generated on CPU is off-loaded to the GPU deviagorithm. Our approach introduces two main adaptationsipeoed to a
to be evaluated by a pool of threads. Each thread applies fiqditional B&B : selection of thousand of nodes and evaduwatn parallel.
lower bound function to one sub-problem. Once the evalnatio
is completed, the lower bound values are returned back to
the CPU to be used by the elimination operator. The proceassnaining iterations of the algorithm. As explained abdke,
is iterated until the exploration is completed and the optimpool of sub-problems off-loaded to the GPU is evaluated by a
solution is found. pool of threads where each thread applies the lower bound
One of the challenging concerns that must be considerethction to one sub-problem. Consequently, the number of
to make efficient our GPU-based B&B is supplying theub-problems to evaluate in parallel strongly depends ef th
device with a large pool of subproblems. Indeed, [in] [11iptal number of threads that would be triggered on the GPU.
experiments show that the proposed parallel bounding modeitually, tunning the size of the "wave” to submit to the GPU
is efficient only when large pools (thousands of sub-proBlemnis equivalent to adjusting the number of the threads to run in
are considered whatever the size of the FSP instances begagallel.
tackled is. As a solution for the problem, we come up with a Our heuristic first identifies the characteristics of theduse
new selection strategy. Indeed, rather than selecting glesinhardware. Thanks to this property, the algorithm becomes
pending node as in traditional B&B algorithms, our approadiighly portable and could easily be run over heterogeneous
assume that a pool of pending nodes is selected from B&U architetures transparently to the user. The heuristierd
search tree (see Figuré 2). At each iteration of the algmrithmines the maximum configuration that can be used, namely the
a pool of unexplored nodes is selected from the search treaximum number of threads and blocks that can run in parallel
according to their depth. Deepest pending nodes are the foger the GPU card. Indeed, in some cases, when a thread block
selected for being branched. As explained before, that p@dlocates more registers than are available on a multigsmre
of sub-problems, corresponding to the generated tree notleskernel execution fails since too many threads are régdies
and resulting from the branching operation, is off-loadedrf During all the tuning process, the number of threads per
CPU to GPU to be evaluated by blocks of threads. blocks is set using the occupancy calculator tool providgd b
In our investigation proposed in [11], results also demomVIDIA which allows the programmer to easily calculate the
strate that the size of the pool to be off-loaded to the GPtest thread block size based on register and shared memory
has an important impact on the performance of the algorithosage of a kernel. Regarding the number of blocks per grid, ou
We have also noticed that this parameter depends stronglymimary concern when choosing this parameter was keeping
the problem instance being solved. It is thus hard to be fix¢lte entire GPU busy. Indeed, the number of blocks in a grid
a priori and so has to be tuned dynamically depending on thleould be larger than the number of multiprocessors so that
problem. For dealing with this issue, we propose an empirical multiprocessors have at least one block to execute.,Thus
heuristic for parameters auto-tuning at runtime. Algarifi we first initialize the number of blocks with the number of
gives the general template for this heuristic. The main idélae multiporcessors detected on the device. This number is
of this approach is to send the pending sub-problems usidgubled repeatdly after a certain number of iterations dfixe
different-sized “waves” to the GPU device during the firséxperimentally) and until the number of threads per blogks
iterations of the B&B algorithm. Regularly, we compute théhe number of blocks doesn’t exceed the maximum number of
efficiency of the used pool and then double the size of tlaetive threads allowed on the device.
pool to off-load to the GPU. After a fixed number of trials, the So far, our empirical search of the best efficiency is coarse-
better efficiency overall selected configurations is usedife grained. Indeed, doubling the size in every step, and stoppi

when the efficiency is no longer improved, or when the limitsiake all the available devices compute the same work in
of the GPU have been reached might founds an imprecisarallel without need of synchronization. Since our apphoa
upper bound of the performance. For this reason and in or@rsures that the decomposed sub-problems are different and
to make the tuning more thorough, we considered to alstdependent from each other and since the used lower bound
perform a binary search around the best pool size found fmction is problem-dependent, we opted for simply spigti
far. When the maximum number of active threads is reachede pool of sub-problems among the selected GPUs. Each pool
the iterative doubling proccess terminates and returnddisé is then be evaluated in parallel and independently fromrothe
found configuration parameters. The heuristic then congpufaools. However, after each GPU finishes computing the kernel
a downwards and an upwards search around the best pool sizetion, the outputs from each device have to be merged to
found so far. The better efficiency overall selected conéigurget final results. The size of the pool to submit to each GPU
tions is used for the remaining iterations of the algorithm. is calculated using the proposed heuristic (see SeLtipn Il

As explained in Sectiof I, the main CPU thread selects
a pool of unexplored nodes from the search tree according
to their depth. That pool of sub-problems is equally splitte
into as much pools as the number of the used devices. In
order to ensure complete concurrency between the bounding
computations, we create as much CPU thidass GPUs to
be utilized. We assign to each thread CPU an individual GPU
using the NVIDIA CUDA Runtime API “cudaSetDevice()”
method [6], which gives the possibility to select which aevi
to execute the kernel on. Each created thread CPU copies its
pool of sub-problems from the CPU to its affiliated GPU,

Algorithm 1 Dynamic parameter tuning heuristic
Data: nb_iterations;

Result best number of_threads

max_nb_threads = DetectsPU_Charateristics();
nb_threads = UseCuda OccupancyCalculator();
nb_blocks := GetNumber Of_Multiporcessors();

while not_empty_tree() do

while pool_size < nb_threads x nb_blocks do
| take sub problem();

end

Iteration pre-treatment on host side;
Kernel evaluation on GPU,;
Iteration post-treatment on host side;

executes the kernel, and copies the resulting bounds bélk to
CPU. The main CPU thread waits for all other CPU threads to
complete and merges results into one. The process is dtestr

if (iteration % nb_iterations = 0) and ((nb_threads x
nb_blocks) < max_nb_threads) then
if 1s_best_pool_improved() then

in figure[3.

Main CPU Thread

best numberof_threads = nbthreads x
nb_blocks ; [Generate a pool of permutations]
end
nb_blocks := nbblocks * 2 ; ‘/,/ L \
end CPU Thread 1 CPU Thread 2 CPU Thread 3 CPU Thread N
else v v v]
| ComputeBinary_SearchAround Best Pool() ; Copy_Data Copy_Data Copy_Data Copy_Data

end
iteration := iteration + 1 ;
end

GPU 1 GPU 2 GPU 3 GPU N
Compute LB| | Compute L. Compute L Compute LB

Copy_Bounds Copy_Bounds Copy_ Bounds
IV. RESHAPING THEGPU-BASED B&B ALGORITHM FOR \
MULTI-GPUARCHITECTURE {Elimination of the solution having LB > UB]

Copy_ Bounds

Nowadays, the trend in general-purpose computing on
graphics processing units is to use multiple GPUs on a given
system, much like using multiple cores on CPU-based systems
In the following, we detail the changes we have made to
our GPU-based B&B algorithm presented in secfioh Ill. Our
objective here is to consider the benefits of exploiting éarg
degrees of parallelism by running our algorithm on multiple
(parallel) GPUs.

The first step toward a multi-GPU design is to determine In the following, an experimental study is presented with th
how many GPUs will be used and how each GPU will bebjective to evaluate the performance impact of the present
exploited. In this work, our aim in using multi-GPUs isauto-tuned GPU-accelerated B&B algorithm and the effect
to speedup kernel execution rather than utilizing each GRfl exploiting larger degrees of parallelism by using mutip
differently (for example for evaluating different lower tood GPUs accelerators.
functions). Consequently, our concern here is to define a
workload distribution between the used GPUs in order to3 We used lightweight threads defined by the POSIX Threadarlbr

Main CPU Thread

Fig. 3. Parallel evaluation of bounds over multiple GPUs

V. EXPERIMENTS

A. Flow-shop instances sequential version. If we suppose the resolution of the GPU-
r% ed B&B lastT'gpu minutes, the reported speedup of our

In our experiments, we used the flow-shop instances defi) .
gonthm will be equal tdl'cpu /T gpu.

by Taillard [14]. These standard instances are often usB
in the .Iit_erf';lture to evaluate the performange of algorithms Performance impact of GPU-based parallelism

that minimize the makespan. Optimal solutions of some of

these instances are still not known. The different instarsze ~ The objective of the experimental study presented in this
designated byl x m, wheren andm represent respective|ysecti0n is to demonstrate that the use of a GPU allows
the number of jobs (betwee® and500) to be scheduled and to significantly accelerate the execution time of the B&B
the number of machine<(,10,5) to be used. In our exper- algorithm whatever is the FSP instance. The second obgectiv
iments, we used only the instances with or 20 machines is to find for each problem instance the best pool size that
since instances with machines are easy to solve. For thesgllows to take the most benefit from the use of the GPU.
instances, wittb machines, the used bounding operator gives

so good lower bounds that it is posssible to solve them in few o[sostPoot 65536 |
minutes using a sequential B&B. Therefore, these instances »f Best-Pool 65535 1
do not require the use of a GPU. We also omit instances with ol
500 jobs because they do not fit in the memory of the CPU. o0 r

Best-Pool 16384

45 Best-Pool 12288

B. Hardware and software platforms

Speedup

The approach has been implemented using C-CUDA 4.0.
The experiments have been carried out using an Intel Xeon =t e g SSSLPo0l 8192
E5520 bi-processor. This bi-processor is 64-bit, quae-cor °r N
and has a clock speed of 2.27GHz. It is coupled with an of
Nvidia Tesla S1070 Computing System which is an 1U rack-
mount system equiped with two Tesla T10 GPUs. Each GPU o
contains 240 CUDA cores, a 4GB global memory, a 16.38KB _ -
shared memory, and a warp size of 32 threads. Using tﬁ%.eg.alThe_ztspeedups and corresponding used pools obtagiegl the auto-
occupancy calculator tool provided by NVIDIA, which allows gorfhm-
the programmer to easily calculate the best thread bloek siz
based on register and shared memory usage of a kernekigure[d depicts the speedups obtained for the different
we figure out that a block size equal 256 gives the best problem instances using the approach proposed in Sécflon II
results. Therefore, we fixed the block size286 in all our For each problem instance we report the best pool returned by
experiments. Here we notice that the number of threads RgIr dynamic parameter tuning heuristic. The reported tesul
block is a multiple of the warp size which makes the kernghow that evaluating in parallel the bounds of a judiciously
avoid wasting computation on underpopulated warps. We va¥lected pool allows to significantly speedup the execution
the number of blocks in order to guarentee that the totgf the B&B. Indeed, an acceleration factor up te7@) is
number of active threads equals the size of the pool to subitained for the 200x 20 problem instances. The results
to the GPU. As explained in Sectidnllll, we first initializeshow also that the para”e] Speedup grows with the size of
the number of blocks with the number of the multiporcessofise problem instance. For a fixed number of machines, the

Best-Pool 8192

detected on the device. obtained speedup grows accordingly with the number of jobs.
) _ For instance, the speedup obtained with 200 jok3§) is
C. Experimental protocol: speedup computation higher than the one obtained with 100 jobs7@), 50 jobs

To evaluate the performance of the proposed approa€h62) and 20 jobs X44). This is due to the complexity of
we calculate the speedup obtained by comparing our GRfe computation of the lower bound which @(m?.n.logn).
B&B version to a sequential B&B version deployed on &Or large problem instances (i.e. large valuesnoénd m)
single CPU core. Since the used instances are very hitg grain size of the kernel executed by each thread is much
to solve (optimal solutions for many of these instances afégher which increases the GPU throughput.
still not known), we used the approach defined [in [3] to To validate the proposed heuristic for auto-tuning the pool
run experiments. Employing this method allows to obtain $ize, we run several experiments using different pre-fixea p
random list L of subproblems such as the resolution fof Sizes. The corresponding results are reported in Tabled. Th
lastsT'cpu minutes with a sequential B&B. To ensure that theows correspond to the problem instances defined by (Number
subproblems explored by the GPU and CPU B&B versior®d jobs x Number of machines) and the columns correspond
are exactly the same, we initialize the pool of our GPUO the size of the pool of sub-problems to be evaluated in

based B&B with the same list of subproblems used in theparallel.
Reported results clearly confirm that the best size of the
3A warp contains 32 threads in the G80 model pool depends strongly on the problem instance being solved.

For instance, the best speedups for the 0B0 instances are V1. CONCLUSION AND FUTURE WORK
obtained with a pool size of 65536. However, with thex6Q0 In this paper, we have presented new insights into parallel

instances, the best speedup is obtained with a pool of 16384g 4|gorithms for solving permutation-based combinaibri
problems. Another important result is that the best speedygpiimization problems such as FSP on multiple GPU accel-
measured when varying the sizes of the pool are obtained Wilfyiors. The contributions consist in proposing an adaptat
the same pool sizes returned by our heuristic (see figlre Aoy pased parallel B&B algorithms and in exploiting larger
For example, the best speedup for the 20Q0 instances is gegrees of parallelism by utilizing multiple GPUs. The Flow

obtained with a pool size of 65536 which is the best pool Si@nop scheduling problem has been considered as a case

our heuristic figure out for those instances. study. The proposed approaches have been experimented on
well-known FSP benchmarks using an Nvidia Tesla S1070
E. Performance impact of MultiGPU-based parallelism Computing System equipped with two Tesla T10 GPUs.

In our proposed auto-tuned GPU-based approach, the de-
In this section, we experiment the use of our parallelomposition and pruning of the sub-problems is performed
B&B algorithm with multiple GPUs. The objective here ison CPU and the evaluation of their lower bounds (bounding
to evaluate the impact of the multiGPU-based parallelispperation) is executed on the GPU device. Pools of sub-
proposed in sectio_IV. problems are off-loaded from CPU to GPU to be evaluated
by blocks of threads. After evaluation, the lower bounds are
returned to the CPU. In order to dynamically tune the size of

Using bne GPU _

195 I Using Two GrUS meen 1 the pool to be submitted to the GPU, we propose an heuristic
o { for parameters auto-tuning at runtime. The main idea of this
o | 1 heuristic is to send the pending sub-problems using difere
i 1 sized “waves” to the GPU device during the first iterations of
0} {1 the B&B algorithm. Regularly, the efficiency of the used pool
e ol 1 is computed and the size of the pool to off-load to the GPU is
g = 1 doubled. After a fixed number of trials, the best efficiency
asf {1 over all selected configurations is used for the remaining
wl 1 iterations of the algorithm. The experimental results sltioat
»r 1 accelerations up tx78 can be obtained especially for large
20 {1 problem instances and large pools of sub-problems and that
ol 1 the best speedups are obtained using the pool sizes returned
di 1 by the heuristic.

2040 S0a0 10040 200 2020 S0 10020 2000 Another challenge of this work was to exploit larger degrees
of parallelism by utilizing the combined computational pow
Fig. 5. Comparing the parallel efficiency for different plab instances Of multiple graphical cards. Our concern towards a multtGP
using a single / multiple GPUs. implementation of our parallel B&B was to define a workload
distribution between the used GPUs in order to make all the

Figure[B compares the computed speedups obtained for vailable devices compute the same work in parallel without
'gu P pu peedup : %d of synchronization. Experimental results demorestheit

different problem instances using respectiveley one aral t‘ﬁsing two GPUs is beneficial and improvement up to 23% is

GPU(s). The reported results show that evaluating boundsr'enached compared to an execution with a single GPU. Thus,

parallel over two GPUs provides further orders of speeduBsr proposed adaptative multi-GPU based Branch and Bound

compared to an execution where only a single GPU is usgﬁables to achieve speedupsxdf05 over a CPU version.
whatever the instance is. For instance, an acceleratidorfac

up to x 105 is obtained with two GPUs for the 200 20 We are currently investigating the combination of the two

problem instances while a speedup ¥8 is obtained for pargllel mod_els Type 1 a_nd Type 2 (see Sedfionlil-A) fo_r the
design and implementation of a GPU-accelerated multi-core

the same instances using only one device. In this case, &8 algorithm. In the near future, we plan to extend this work

cuting the bounding operation on parallel GPUs provides # a cluster of GPU-accelerated multi-core processoranFro

. 5 . .
improvement about 26% compared to a single GPU execu“%’b‘plication point of view, the objective is to solve to opalty

The improvement we noticed when using two GPUS Waggjlenging and unsolved Flow-Shop instances as we did it fo
somehow predictable. Indeed, exploiting the combined rgnar 90 problem instance with grid computing [3]. Finally,

sources of multiple boards is promising for applicationat th e pjan to investigate other lower bound functions to deéwi
have large amounts of parallelism. Qur preliminary ingssti ,ihar combinatorial optimization problems.
tion [11] demonstrated that computing the lower bounds for

the flow-shop permutation problem is one of those applicatio REFERENCES
since significant acceleration factors have been mesured Wiy . ;. quinn. Analysis and implementation of branch-dnmind algo-
running this function on parallel over a GPU. rithms on a hypercube multicomputer. IEEE transactions ampuiters,

[(No. of jobs x_No. of machines) | 4096 | 6144 | 8192 | 12288 | 16384 | 32768 | 65536]

200x20 40,49 57,60 62,64 69,76 73,90 75,48 78,14
100x20 42,79 54,83 61,96 65,81 69,93 71,57 73,27
50x20 40,74 51,40 57,31 60,89 62,15 59,19 58,94
20x20 33,38 40,26 43,60 45,51 44,16 39,75 38,36
200x10 19,34 21,91 23,03 22,71 22,11 21,68 21,09
100x10 19,15 20,76 22,09 21,72 21,56 21,30 20,40
50x10 18,21 20,01 20,42 19,93 19,55 18,77 18,25
20x10 13,60 14,81 15,03 14,58 13,92 12,28 11,52
TABLE |

PARALLEL SPEEDUP MESURED FOR DIFFERENT PROBLEM INSTANCES ANPOOL SIZES WITHOUT USING THE AUTGTUNING HEURISTIC.

Vol. 39, No3, pp. 384-387, 1990.

[2] J.K.Lenstra, B.J. Lenstra, and A.H.G.R. Kan. A genemlrling scheme
for the permutation flow-shop problen®perations Research, 26(1):53—
67, 1978.

[3] M. Mezmaz, N. Melab and E-G. Talbi. A Grid-enabled Branahd
Bound Algorithm for Solving Challenging Combinatorial @pization
Problems. In Proc. of 21th IEEE Intl. Parallel and DistrédmifProcessing
Symp. (IPDPS), Long Beach, California, March 26th-30th020

[4] R. Allen, L. Cinque, S. Tanimoto, L. Shapiro and D. Yasudaparallel
algorithm for graph matching and its MasPar implementatiofEEE
Transactions on Parallel and Distributed Systems, \Vol. &, B 1997.

[5] L.G. Casadoa, J.A. Martneza, |. Garcaa and E.M.T. HehdrBranch-
and-Bound interval global optimization on shared memonytiproces-
sors. Optimization Methods and Software, Vol. 23, No.5, §§9-701,
2008.

[6] CUDA C Best Practices Guide. http://developer.nvidien/nvidia-gpu-
computing-documentation.

[7] M. Djamai, B. Derbel and N. Melab. Distributed B&B: A Puieeer-
to-Peer Approach. In Proc. of IEEE IPDPS’2011, Woks. on k&8gale
Parallel Processing (LSPP), May 16-20, Anchorage (Algsk@] 1.

[8] T-V.Luong, N. Melab and E-G. Talbi. GPU Computing for Rbel Local
Search Metaheuristic Algorithms. |IEEE Transactions on Qaters,
http://doi.ieeecomputersociety.org/10.1109/TC.2004, 2012.

[9] A.Boukedjar, M.Lalami, D.El Baz. Parallel branch andubd on a CPU-
GPU system. Euromicro International Conference on Pafalkributed
and Network-based Processing (PDP 2012), Garching (Aiee)a 15-17
Fvrier 2012, pp.392-398 Rapport LAAS N11471

[10] B. Gendron and T.G. Crainic. Parallel Branch-and-Bbuxigorithms:
Survey and Synthesi€perations Research, 42(06):1042—-1066, 1994.

[11] I. Chakroun, A. Bendjoudi and N. Melab. Reducing Thr&idergence
in GPU-based B&B applied to the Flow-Shop Problem. In LNC8cPof
9th Intl. Conf. on Parallel Processing and Applied MathecsatPPAM),
2011.

[12] Jakub Kurzak, David A. Bader, and Jack Dongarra (edSgientific
Computing with Multicore and Accelerators, Chapman & HalCRC
Press, 2010.

[13] S. Tschoke, R. Lubling and B. Monien. Solving the travgl sales-
man problem with a distributed branch-and-bound algorittrma 1024
processor network. In Proc. 6F" Intl. Parallel Processing Symposium
(IPPS), pp. 182 - 189, 1995.

[14] E. Taillard. Taillard’s FSP benchmarks.
http://mistic.heig-vd.ch/taillard/problemes.dir/orthancement.dir/ordonnancement.itml.

http://doi.ieeecomputersociety.org/10.1109/TC.2011.206
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

	I Introduction
	II B&B for the Permutation Flow-shop Scheduling problem
	II-A B&B algorithms
	II-B The permutation Flow-shop Scheduling problem

	III Our Adaptative GPU-based B&B algorithm
	IV Reshaping the GPU-based B&B algorithm for Multi-GPU architecture
	V Experiments
	V-A Flow-shop instances
	V-B Hardware and software platforms
	V-C Experimental protocol: speedup computation
	V-D Performance impact of GPU-based parallelism
	V-E Performance impact of MultiGPU-based parallelism

	VI Conclusion and Future Work
	References

