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Abstract 

We present an integer programming based heterogeneous CPU-GPU cluster scheduler for the widely used SLURM resource 
manager. Our scheduler algorithm takes windows of jobs and solves an allocation problem in which free CPU cores and 
GPU cards are allocated collectively to jobs so as to maximize some objective function. We perform realistic SLURM 
emulation tests using the Effective System Performance (ESP) workloads. The test results show that our scheduler produces 
better resource utilization and shorter average job waiting times. The SLURM scheduler plug-in that implements our 
algorithm is available at http://code.google.com/p/slurm-ipsched/.  

 

1. Introduction 

SLURM [1] is an open-source resource management software distributed under the GPL license. It 
was designed with simplicity, portability and scalability in mind. It has a plug-in mechanism that can 
be used by developers to easily extend SLURM functionality by writing their own plug-ins. Older 
versions of SLURM had a simple first-come-first-served (FCFS) scheduler, but the recently 
introduced new version has advanced features such as backfilling, fair share, preemption, multi-
priority, advanced reservation. Some supercomputer centers use SLURM coupled with other 
schedulers such as MOAB [2], Maui [3] and LSF [4]. SLURM has been receiving a lot of attention 
from the supercomputer centers lately. It has been reported by main SLURM developers that about 
40% of TOP500 installations use SLURM [5].  

Recently, heterogeneous clusters and supercomputers that employ both ordinary CPUs and GPUs 
have started to appear. Currently, such systems typically have 8 or 12 CPU cores and 1-4 GPU per 
node. Jobs that utilize only CPU cores or both CPU cores and GPUs can be submitted to the system. 
Job schedulers like SLURM [1] take one job at a time from the front of the job queue; go through the 
list of nodes and best-fit the job’s resource requirements to the nodes that have available resources. In 
such systems, GPU resources can be wasted if the job scheduler assigns jobs that utilize only CPU 
cores to the nodes that have both free CPU cores and GPUs.  Table 1 illustrates this problem on a 
system with 1024 nodes with each node having 8 cores and 2 GPU’s. The example submits three 
sleep jobs each of which lasts for 1000 seconds. Suppose jobs J1, J2, J3 appear in the queue in this 
order (with J1 at the front of the queue, J2 second and J3 third). Note that SLURM will grant jobs J1 
and J2 with the requested resources immediately as follows:  
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 J1 will be best-fit on 512 nodes, hence allowing no other jobs to use the GPUs on these nodes.  

 J2 will be allocated 512 nodes using 4 cores and 2 GPUs on each node. 

This allocation, however, will cause J3 to wait 1000 seconds until J1 and J2 are finished. On the 
other hand, if we take all the jobs, J1, J2 and J3, collectively and solve an assignment problem, it is 
possible to allocate the requested resources to all the jobs and finish execution of all of jobs in 1000 
seconds rather than in 2000 seconds. This can be done by assigning 512 nodes with 4 cores and 2 
GPUs to each of jobs J2 and J3 and 1024 nodes with 4 cores to J1.  

Table 1. Example Illustrating Advantage Of Solving Collective Allocation Problem  

Job Resources Requested Slurm Command 
J1 4096 cores srun -n 4096 sleep 1000  

J2 2048 cores on 512 nodes with 2 GPUs per node srun -N 512 --gres=gpu:2 -n 2048 
sleep 1000  

J3 2048 cores on 512 nodes with 2 GPUs per node srun -N 512 --gres=gpu:2 -n 2048 
sleep 1000  

 

In this paper, we are motivated by the scenario exemplified by Table 1 to develop a scheduling 
algorithm and a plug-in for SLURM that collectively takes a number of jobs and solves an assignment 
problem among the jobs and the available resources. The assignment problem that is solved at each 
step of scheduling is formulated and solved as an integer programming problem.  

In the rest of the paper, we first present related work on job schedulers in Section II. Then, we 
present the details our integer programming based scheduler in Section III. Implementation details of 
the SLURM plug-in we developed are given in Section IV. The plug-in can be downloaded at 
http://code.google.com/p/slurm-ipsched. To test the performance of our plug-in, we preferred to carry 
out realistic direct SLURM emulation tests rather than use a simulator. The details of the benchmark 
tests and the results obtained are given in Sections V and VI respectively. We conclude the paper with 
a discussion in Section VII.      

 

2. Survey of Related Work 

Several job schedulers are currently available. An excellent and in-depth assessment of job 
schedulers was carried out by Georgiou [6] in his PhD thesis. We briefly review the most widely used 
systems on clusters and supercomputers.  

PBSpro [7] is a commercial scheduler which descended from the PBS system originally developed 
in NASA. In addition to the professional PBSpro, an unsupported original open source version called 
OpenPBS is also available. PBSPro has the usual scheduler features: FCFS, backfilling, fair share, 
preemption, multi-priority, external scheduler support, advanced reservation support and application 
licenses. Recently, GPU scheduling support has been introduced by providing two approaches: (i) 
simple approach in which only one GPU job at a time is run on any given node exclusively and (ii) 
advanced distributed approach which is needed when sharing of the nodes by multiple jobs at the 
same time is required or if individual access to GPUs by device number is required. 

MOAB [2] is a commercial job scheduler that originated from the PBS system. It supports the 
usual FCFS, backfilling, fair share, preemption, multi-priority, advanced reservation and application 
licenses. MOAB is just a scheduler and hence it needs to be coupled with a resource manager system.  
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TORQUE [8] is a resource management that is the open-source version of PBSPro. Similarly, 
MAUI [3] is a scheduler that is open-source version of the MOAB. MAUI supports FCFS, 
backfilling, fair-share, preemption, multi-priority, advanced reservation and application licenses. 
TORQUE also has some GPU support. Jobs can specify their request for the GPUs but it is left up to 
the job's owner to make sure that the job executes properly on the GPU.  

LSF [4] is a commercial scheduler which descended from the UTOPIA system. Like the other 
schedulers, it supports FCFS, backfilling, fair-share, preemption, multi-priority, advanced reservation 
and application licenses. Newer features include live cluster reconfiguration, SLA-driven scheduling, 
delegation of administrative rights and GPU-aware scheduling. LSF can also be fed with thermal data 
from inside of the servers so that it can try to balance workloads across server nodes so as to minimize 
hot areas in clusters. 

LoadLeveler [9] is a commercial product from IBM. It was initially based on the open-source 
CONDOR system [10]. It supports FCFS, backfilling, fair-share, preemption, multi-priority, advanced 
reservation and application licenses. It has a special scheduling algorithm for the Blue Gene machine 
which extends LoadLeveler's reliable performance.  

OAR [11] is a recently developed open source resource management system for high performance 
computing. It is the default resource manager for the Grid500 which is a big real-scale experimental 
platform where computer scientists can run large distributed computing experiments under real life 
conditions. OAR has been mostly implemented in Perl. In addition to the above systems, Condor [10] 
and Oracle Grid Engine [12] (formerly known as Sun Grid Engine) systems are also widely used, 
especially in grid environments. 

Since heterogeneous CPU-GPU systems have appeared very recently, we do not expect that the 
aforementioned commercial or open source job schedulers have done much for optimizing scheduling 
of such systems. For example, SLURM has introduced support for GPUs but its scheduling 
algorithms were not optimized for GPUs as we illustrated with the example in Table 1. In fact, in 
SLURM, if the number of nodes (with -N option) is not specified and just the number of cores (with -
n) are given together with the number of GPUs per node (with --gres=gpu:), then this can actually 
lead to different total number GPUs to be allocated in different runs of the same job (since the number 
of GPUs allocated depends on the number of nodes over which the requested cores are allocated).   

In this paper, we employ integer programming (IP) techniques in order to get the assignment of 
jobs to the resources. IP techniques have been used for scheduling before. For example, [13] used IP 
techniques for devising a dynamic voltage frequency scaling (DVFS) aware scheduler. [14] solved a 
relaxed IP problem to implement collective match-making heuristics for scheduling jobs in grids. In 
this paper, we contribute an IP formulation for node based CPU-GPU systems and implement a 
SLURM plug-in for it. We are not aware of any IP based scheduling plug-in that has been developed 
for SLURM.  

3. Scheduling Algorithm 

Our approach for scheduling involves taking a window of jobs from the front of the queue and 
solving an assignment problem that maps jobs to the available resources. Figure 1 depicts our 
scheduling approach. This window based assignment step is basically repeated periodically. Note that 
the assignment problem that needs to be solved here involves co-allocation, i.e. multiple CPUs and 
GPUs need to be co-allocated). Therefore, we expect this problem to be NP-hard (perhaps by a 
transformation from the subset sum problem). 
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Figure 1. Scheduling windows of jobs 

 
To formulate the assignment problem as an IP, we first make the following definitions: 

 sj: binary variable showing whether job j is selected or not, 

 pj: priority of job j, 

 cj: node packing variable for a job, 

 rj: no. of CPUs requested by job j, 

 gj: no. of GPUs requested by job j,  

 xij: no. of CPUs allocated to job j at node i, 

 Ri: available no. of CPUs at node i, 

 Gi: available no. of GPUs at node i,  

 tij: binary variable showing whether job j is allocated any resource on node i, 

 Nmin,j: minimum no. of nodes that job j requests, 

 Nmax,j: maximum no. of nodes that job j requests, 

 N: no of nodes on the system, 

 M: no. of of jobs in the window. 
 

The IP formulation is then given as follows:  

௝ݏ௝൫݌෍ݔܽ݉ െ ௝ܿ൯

 ∑ ௜௝ݔ ൑ ܴ௜
ெ
௝ 	∀݅ 

 ∑ ௜௝ݔ ൌ ௝ݏ௝ݎ
ே
௜ 	∀݆ 

 ∑ ݃௝ݐ௜௝ ൑ ௜ܩ
ெ
௝ 			∀݅ 

 ௝ܿ ൌ
∑ ௧೔ೕ
ಿ
೔

ଶே
				∀݆ 

 	ܰ௠௜௡,௝ ൑ 2ܰ ௝ܿ ൑ 	ܰ௠௔௫,௝				∀݆ 

 ௜௝ݐ ൌ ൜
1, ௜௝ݔ ൐ 0
0, ௜௝ݔ ൌ 0				∀݅, ݆ 

We can view this problem as a variation of the knapsack problem [15], where each job has its 
utilization value as its priority, and its CPU and GPU requests as its sizes. The objective is to 
maximize the sum of selected jobs’ priorities. We also want to reduce the number of nodes over 
which a selected job’s allocated resources are spread. To specify this preference, in constraint (4) we 
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compute node packing factor cj for a job which is the ratio of the number of nodes over which a 
selected job’s allocated resources are spread  to twice the total number of nodes. Note that cj is always 
less than or equal to half. We then subtract cj from sj in the objective function in order to disfavor 
solutions that spread allocated resource over large number of nodes. Constraint (1) sets the limits on 
number of processes that can be assigned to a node, (2) sets a job’s total number of allocated CPUs on 
the nodes to either 0 if the job is not selected, or to the requested rj number of CPUs if it is selected. If 
a job is allocated some CPUs on node i, it also should be allocated GPUs on that node. This is 
controlled by constraint (3). If a job requests that the number of nodes it gets is between some limits, 
these limits are enforced by (5). If these limits are not defined, Nmin,j is set to 1, and Nmax,j is set to a 
large value. Constraint (6) sets the binary variables tij which indicate whether job j is allocated any 
resource on node i. 

The number of variables and the number of constraints of the IP formulation given in terms of the 
number of jobs (M) and the number of nodes (N) are shown in Tables 2 and 3. 

Table 2. Number of Variables in the IP formulatıon 

Variable name No. of Variables 
sj M 

cj M 

xij M*N 

tij M*N 
Total 2M*(1 + N) 

 

Table 3. Number of Constraints in the IP formulatıon 

Constraint No. of Constraints 
(1) N 

(2) M 

(3) N 

(4) M 

(5) 2*N 

(6) 2*M*N 

Total 2*(M + 2*N + MN) 
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4. Development of a SLURM Plug-in 

SLURM employs a central controller daemon (slurmctld) that runs on a central or a management 
node and daemons (slurmd) that run on each compute node. Each slurmd daemon interacts with the 
controller daemon, and passes information about the job currently running on that node and the node’s 
status [1]. 

SLURM has been designed as a light-weight system. In SLURM, almost everything is handled by 
plugins. SLURM provides several plug-ins such as scheduler, resource selection, topology and 
priority plug-ins. The plug-in which we focus on is the scheduler plug-in which works on the 
controller daemon. 

SLURM’s backfill scheduler creates a priority queue, and collects the resource requirements of 
each job in the queue. The scheduler tries to start a job by taking into consideration the reservations 
made by other higher priority jobs also. If it can fit a job on the nodes with available resources, the job 
is started; otherwise, it is scheduled to be started later [16]. 

The selection of the specific resources is handled by a plug-in called resource selection. SLURM 
also provides a resource selection plug-ins called linear that allocates whole nodes to jobs and 
consumable resources that allocates individual processors and/or memory to jobs [16]. In this work, a 
plug-in called IPCONSRES was designed, which is a variation of SLURM’s own cons_res plug-in. 
IPCONSRES allows our IP based scheduler plug-in (which we named IPSCHED) to make decisions 
about the node layouts of the selected jobs.  

The priorities of the jobs are calculated by SLURM. Our plug-in does not change these values, but 
only collects them while when an assignment problem is solved. In this work, two types of test runs 
were made. In the first type of runs, priority type was selected as basic in SLURM. This corresponds 
to a first-come-first-served scheduling. SLURM takes the first submitted job’s priority to be a large 
number, and every arriving job’s priority will be one less than that of the previously arrived job. In the 
second type of runs, SLURM’s multifactor priority plug-in was used. This plug-in allows the job 
priorities to increase with increasing job size and aging. Multifactor priority is calculated using 
parameters such as the age, the job size, fair-share partition and QOS. The settings of priority factors 
used in this work are explained in Section VI, namely the Results section. 

In SLURM, GPUs are handled as generic resources. Each node has a specified number of GPUs 
(and other generic resources if defined) dedicated to that node. When a user submits a job that uses 
GPUs, he has to state the number of GPUs per node that he requests. The GPU request can be 0 if the 
job is running only on CPU. 

The IPSCHED plug-in has been designed in such a way that only one small change needs to be 
made to the common files used by SLURM. This change which is located in SLURM’s 
common/job_scheduler.c file disables the FIFO scheduler of SLURM; thus allowing each job to be 
scheduled by our IPSCHED plug-in. Even if the queue is empty and the nodes are idle, a submitted 
job will wait a certain number of seconds (named as SCHED_INTERVAL) and run when it is 
scheduled by our IPSCHED plug-in. 

IPSCHED plugin runs every SCHED_INTERVAL seconds. By default this value is 3 and can be 
changed in the SLURM configuration file. IPSCHED solves the IP problem we defined in Section III 
to decide which jobs are to be allocated resources.  

The workings of our plug-in are explained in the pseudo-code given in Figure 2. The plug-in first 
gets a window of the priority ordered jobs. The number of jobs in the window is limited by 
MAX_JOB_COUNT variable (by default this is set to 200 but can be changed using SLURM 
configuration file). The plug-in also collects the job priority, number of CPUs and GPUs requested 
and store these in the pj, rj and gj arrays. Afterwards, it obtains the “empty CPU” and “empty GPU” 
information from all the nodes and stores these values in Ri and Gi arrays. The Ri, Gi, pj and rj values 
are then used to create the integer programming problem, which is solved using CPLEX [17]. 
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Figure 2. IPSCHED scheduling steps 

 

The SCHED_INTERVAL is also used to set a time limit during the solution of the IP problem. If 
the time limit is exceeded, in that scheduling interval, none of the jobs are started, and the number of 
jobs in the window is halved for the next scheduling interval. In step 6, a layout matrix which has 
nodes as columns and selected jobs as rows is used to show mapping of jobs to the nodes. This matrix 
is used to assign and start the job on its allocated nodes.  

Note that IPSCHED can handle a job’s minimum/maximum and processor/node requests but it 
assumes that the jobs do not have explicit node requests. Such job definitions may break up the 
system, since the selection of jobs is made based only on the availability of resources on the nodes. 

Finally, we also note that our IPSCHED plug-in has been developed and tested on version 2.3.3 of 
SLURM, which is the latest stable version. 

5. Testing with ESP benchmarks 

To test the performance of our IPSCHED plug-in, we use workloads derived from ESP 
benchmarks [18] (to be more precise, derived from version 2, i.e. ESP-2). The goal of the ESP is to 
test the performance of a scheduler under heavy workloads. The (normalized) job size (no. of cores 
requested by job), count and execution time characteristics of the ESP workloads are given in Table 4. 
The sum of the completion times of the original ESP jobs is 10984 seconds (3.05 hours). ESP jobs are 
submitted randomly with inter-arrival times that have a Gaussian distribution. In the original ESP test, 
when Z-jobs (full configuration jobs) are submitted, no other jobs are allowed to run. However, we 
have removed this rule as was done by [6] and configured Z-jobs similar to the other jobs in the 
workload. 

   

IPSCHED Algorithm 

1. Generate priority ordered job window of size up to 
MAX_JOB_COUNT 

2. From each job in the window collect 
a. priority (pj)  
b. CPU request (rj) 
c. GPU request (gj)  
and store these into job_list array. 

3. From each node collect  
a. number of empty CPU’s  
b. number of empty GPU’s, 
and store these into the node_info array. 

4. Form the IP problem 
5. Solve the IP problem and get sj and xij values. 
6. For jobs with sj = 1, set job’s process layout matrix and 

start the job by: 
a. For each node i, assign processors on that node 
according to xij 
b. Start the job, no more node selection algorithm is 
necessary. 
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Table 4. ESP benchmark job characteristics  

Job Size Count Execution time (s) 
A 0.03125 75 257 
B 0.06250 9 341 
C 0.50000 3 536 
D 0.25000 3 601 
E 0.50000 3 312 
F 0.06250 9 1846 
G 0.12500 6 1321 
H 0.15820 6 1078 
I 0.03125 24 1438 
J 0.06250 24 715 
K 0.09570 15 495 
L 0.12500 36 369 
M 0.25000 15 192 
Z 1.00000 2 100 

 

In ESP, initially 50 jobs are released. Afterwards, A through M jobs are submitted with a mean 
inter-arrival time of 30 seconds, and the two Z jobs are submitted after all other jobs are submitted at 
the 80th and 240th minute.  

ESP jobs request just CPU cores. They also do not specify the number of nodes request. Since our 
work has been designed for heterogeneous CPU-GPU systems, we have modified the ESP job set. In 
our tests, we emulated a system that had 1024 nodes, each of which had 2 GPU’s and 8 cores. To 
prepare a CPU-GPU workload, we simply duplicated all the ESP jobs with the exception of Z-jobs. 
One copy requested CPU-cores only (as in the original ESP) and its corresponding copy requested 
CPU-cores as well as 2 GPUs per node. Since we have doubled all of the jobs other than the Z-jobs in 
the workload, we have also doubled the earliest time to submit Z-jobs [19]. In our modified ESP 
workload set that resulted, there were a total of 458 jobs, and the sum of completion times was 21822 
seconds (6.06 hours). 

Our ESP based CPU-GPU workloads were tested on a real SLURM system. SLURM was operated 
in emulation mode. In this mode, jobs were submitted as sleep jobs. Even though testing by actual 
SLURM emulation takes a long time and hence limits the number of tests we carry out, it has the 
advantage that, we can observe the real behavior of SLURM together with its overheads that would 
otherwise not be possible if simulations were carried out.  

Table 5 summarizes the parameters of the various tests we have performed. The objective and 
priority functions were changed for both our IPSCHED plug-in and SLURM’s backfill plug-in. In the 
multifactor priority experiments, job age factor weight and job size factor weight was taken as equal, 
and for each minute a job spends in the queue, its priority was increased by one. In this work, no fair 
share policy and QoS was used.  

Each experiment has been repeated three times and mean and standard deviation of waiting times, 
slowdown ratios and utilization metrics have been tabulated in Table 6.  
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Table 5. Tests and their characteristic 

Experiment Plugin Priority Type Objective Function 
1-SLURM Backfill Basic - 

2 IPSCHED Basic 
௝ݏ௝൫ݎ௝݌෍ݔܽ݉ െ ௝ܿ൯ 

3 IPSCHED Basic 
௝ݏ௝൫݌෍ݔܽ݉ െ ௝ܿ൯ 

4-SLURM Backfill Multifactor - 

5 IPSCHED Multifactor 
௝ݏ௝൫݌෍ݔܽ݉ െ ௝ܿ൯ 

6 IPSCHED Multifactor 
௝ݏ௝൫ݎ௝݌෍ݔܽ݉ െ ௝ܿ൯ 

 

Table 6. Results of the tests 

Experiment Waiting Time 
(mean ± std) 

Slowdown Ratio 
(mean ± std) 

Utilization  
(mean) 

1-SLURM 1.60 ± 0.836 18.11 ± 25.49 0.90 
2 0.91 ± 1.224 11.31 ± 18.97 0.93 
3 0.77 ± 1.257 9.95 ± 18.87 0.92 

4-SLURM 2.42 ± 1.758 22.75 ± 22.02 0.89 
5 0.88 ± 1.223 10.75 ± 18.20 0.94 
6 2.08 ± 1.577 22.06 ± 21.84 0.93 

 

We also note that since we have emulated 1024 nodes with 8 cores, and the smallest of the ESP 
jobs require 256 cores (8192 * 0.03125), these tests were not indicative of the IP node packing 
variable cj, which was used to enforce better packing in the IPSCHED plug-in. This is because CPU 
core requirements of all the jobs were a multiple of 8. As a result, no node was assigned more than 
one job in the tests given in Table 5. Therefore, another set of experiments were performed, where 
ESP job size characteristic were modified to be SYSTEM_SIZE * JOB_FRACTION + RAND(-4,4). 
In this way, on average, the number of resources a job requests will be roughly equal to that of the 
original ESP, but not be multiples of 8 so that the packing effectiveness can be tested. We also 
calculate a ratio called the packing factor for a job. This is the ratio of the actual number of allocated 
nodes to the minimum number of nodes that could be allocated. A packing factor value that is close to 
unity for a job, means that smaller communication cost will result.  

Experiment 7 and 8 are modified versions of experiment 4 and 6 respectively. Since ESP jobs do 
not have the concept of node request, IP constraint (5) is disabled during these tests, because, by ESP 
job set’s definition, the jobs request certain number of processors, but not nodes. We also note that we 
use modified version 6 rather than 5 in order to favor big jobs.  

Table 7. Results List With Randomly Modified ESP Job Sizes 

Experiment Waiting Time  
(mean ± std) 

Slowdown Ratio 
(mean ± std) 

Utilization 
(mean) 

Packing factor  
(mean± std)  

7-SLURM 2.50 ± 1.802 23.80 ± 22.93 0.88 1.021 ± 0.029 
8 1.09 ± 1.111 13.12 ± 16.78 0.94 1.016 ± 0.026 

 

The tests results shown in Tables 6 and 7 show that our IPSCHED produces better waiting times, 
slowdown ratios and utilizations. Figure 3, in particular, shows that shorter waiting times obtained in 
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IPSCHED are because of favoring of smaller sized jobs. SLURM seems to favor large sized jobs and 
hence on average it produces longer waiting times. Work carried out by [20] suggested that large 
sized jobs should be favored. We disagree with the suggestion in [20] because to draw such a 
conclusion requires knowing about the nature of jobs that are submitted to a system. There can be 
widely used applications that may best run on small number of processors. There can also be 
applications that may have components that run on massive number of processors as well as 
components that may require small number of processors. Such jobs can be submitted as multiple jobs 
or workflows to the system so as to use a supercomputer in an efficient way and with the expectation 
to get faster responses. We believe that the size of a job by itself cannot dictate the importance of that 
job. We also believe that it is quite natural for a user to get faster response when he requests less 
resources. Therefore, providing schedulers that deliver the expected behavior is more important 
especially if they can deliver the same or better levels of efficiency.  

Figure 3. Comparison of waiting times in different scheduling mechanisms 

7. Discussion and Conclusions 

SLURM is a popular open source resource management system. In this work, our main aim has 
been to develop a plug-in that provides integer programming based job scheduling. Depending on the 
problem, integer programming packages like CPLEX can now solve IPs with variable numbers in the 
thousands range. We have also devised an IP formulation to schedule windows of jobs. The number of 
jobs in a window was chosen in such a way that CPLEX would be able to handle the IP problem with 
thousands of variables in a reasonable time. Our scheduling interval was 4 seconds and CPLEX was 
able to solve the IP on average in 3 seconds. We also note that since integer programming solvers 
provide a general purpose optimization platform, our IPSCHED plug-in can also be used as a template 
to easily implement other integer programming based plug-ins that address other issues such as energy 
aware scheduling or simply other scheduling formulations.  

To test our IPSCHED, we have used a modified form of the popular ESP workloads. We note, 
however, that ESP workloads have been designed for a homogeneous system with CPU cores and we 
modified it in an ad-hoc manner to come up with a heterogeneous CPU-GPU workload. The results 
obtained from the SLURM emulation experiments showed that our IPSCHED outperformed SLURM 
in terms of mean waiting times, slowdown ratio and utilization. We believe that as more realistic CPU-
GPU workloads with node usage specifications are produced in the future, we expect the performances 
of IPSCHED and SLURM’s own plug-ins to have wider gaps.  

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

A I B F J K G L H D M C E Z

W
ai
ti
n
g 
ti
m
e
 (
h
r)

Job type

Exp #1 Exp #2 Exp #3 Exp #4 Exp #5 Exp #6



11 

 

As future work, we plan to do the following: Firstly, we would like to incorporate a fair share policy 
into our IP formulation. Secondly, we would like to incorporate a more advanced topology awareness 
formulation. Currently, we assumed that all the nodes are at equal distance from each other. We plan to 
design IP formulations that can take into consideration the topology of the network switches. Such IP 
formulations, however, will have excessive number of variables that will make it difficult to solve in a 
reasonable amount of time. To resolve this difficulty, relaxed versions of the IP can be solved with a 
linear programming package and integer solutions could then be attempted to obtain heuristically from 
the relaxed solution. 

Acknowledgements 

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework 
Programme (FP7/2007-2013) under grant agreement no. RI-211528 and FP7-261557. We thank Matthieu 
Hautreux from CEA, France, for discussions and his help during the implementation of our plug-in. The authors 
have used the Bogazici University Polymer Research Center's cluster to carry out the tests in the paper.. 

References 

[1] B. Yoo, M. A. Jette and M. Grondona, “SLURM: Simple Linux Utility for Resource Management”, in Job 
Scheduling Strategies for Parallel Processing, Dror G. Feitelson, Larry Rudolph, and Uwe 
Schwiegelshohn, Eds., pp. 44–60. Springer Verlag, 2003, Lect. Notes Comput. Sci. vol. 2862. 

[2] Moab Workload Manager Documentation, http://www.adaptivecomputing.com/resources/docs/ 
[3] Bode, D.M. Halstead, R. Kendall, Z. Lei, and D. Jackson, “The Portable Batch Scheduler and the Maui 

Scheduler on Linux Clusters,” in Proceedings of the 4th Annual Showcase and Conference (LINUX-00), 
Berkeley, CA, 2000, pp. 217–224, The USENIX Association.  

[4] LSF (Load Sharing Facility) Features and Documentation, http://www.platform.com/workload-
management/high-performance-computing 

[5] SLURM User Group Meeting 2010, 
http://sc10.supercomputing.org/schedule/event_detail.php?evid=bof115 

[6] Y. Georgiou, “Resource and Job Management in High Performance Computing”, PhD Thesis, Joseph 
Fourier University, France, 2010.  

[7] Nitzberg , J. M. Schopf , J. P. Jones, “PBS Pro: Grid computing and scheduling attributes, Grid resource 
management: state of the art and future trends”, Kluwer Academic Publishers, Norwell, MA, 2004 

[8] Torque Resource Manager Documentation, http://www.adaptivecomputing.com/resources/docs/ 
[9] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. F. Skovira, “Workload Management with 

LoadLeveler”. IBM, first ed., Nov 2001. ibm.com/redbooks 
[10] T. Tannenbaum, D. Wright , K. Miller , M. Livny, “Condor: a distributed job scheduler”, Beowulf cluster 

computing with Linux, MIT Press, Cambridge, MA, 2001 
[11] N. Capit, G.D. Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and O. Richard, “A batch 

scheduler with high level components,” in 5th Int. Symposium on Cluster Computing and the Grid, 
Cardiff, UK, 2005, pp. 776–783, IEEE. 

[12] W. Gentzsch, “Sun Grid Engine: Towards Creating a Compute Power Grid,” in Proc. First IEEE 
International Symposium on Cluster Computing and the Grid (1st CCGRID’01), Brisbane, Australia, May 
2001, pp. 35–39, IEEE Computer Society (Los Alamitos, CA).  

[13] M. Etinski, J. Corbalan, J. Labarta, M. Valero, "Linear programming based parallel job scheduling for 
power constrained systems," High Performance Computing and Simulation (HPCS), 2011 International 
Conference on , vol., no., pp.72-80, 4-8 July 2011. 

[14] O. Erbas, C. Ozturan, Collective Match-Making Heuristics for Grid Resource Scheduling, HiPerGRID - 
High Performance Grid Middleware , Brasov, Romania, Sep. 2007. 

[15] S. Martello, T. Paolo, “Knapsack problems: Algorithms and computer interpretations”. Wiley-
Interscience. Chichester (1990). 

[16] SLURM Documentation, http://www.schedmd.com/slurmdocs/ 
[17] Cplex Optimization, Inc, “Using the CPLEX Callable Library”. Incline Village, NV 89451-9436, 1989-

1994.  
[18] A.T. Wong, L. Oliker,W.T.C. Kramer, T.L. Kaltz, D.H. Bailey, “ESP: A System Utilization Benchmark,” 

in SC2000: High Performance Networking and Computing. Dallas Convention Center, Dallas, TX, USA, 
November 4–10, 2000, ACM, Ed., pub-ACM:adr and pub-IEEE:adr, 2000, pp. 52–52, ACM Press and 
IEEE Computer Society Press. 

[19] A.T. Wong, L. Oliker, W.T.C. Kramer, T.L. Kaltz, D.H. Bailey, “ESP: A system utilization benchmark.” 
In: IEEE/ACM Supercomputing, Dallas, TX, November 2000, pp. 52–52 (2000) 

[20] P. Andrews, P. Kovatch, V. Hazlewood, T.Baer, Scheduling a 100,000 Core Supercomputer for Maximum 
Utilization and Capability, 39th International Conference on Parallel Processing Workshops (ICPPW), 
2010.  


