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Abstract

In this paper, the authors propose an analysis of the frequency response function in a
car compartment, subject to some fluctuating pressure distribution along the open cav-
ity of the sun-roof at the top of a car. Coupling of a computational fluid dynamics and
of a computational acoustics code is considered to simulate the acoustic fluid-structure
interaction problem. Iterative Krylov methods and domain decomposition methods,
tuned on Graphic Processing Unit (GPU), are considered to solve the acoustic prob-
lem with complex number arithmetics with double precision. Numerical simulations
illustrate the efficiency, robustness and accuracy of the proposed approaches.
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position method; computational fluid dynamics; acoustics

1 Introduction

The rapid advance of computational power in recent years allows the use of large eddy
simulations (LES) in many high Reynolds number applications. The main advantage of
LES over those computationally less expensive methods such as Reynolds-averaged Navier-
Stokes equations (RANS) is the increased level of detail it can deliver. While RANS methods
provide “averaged” flow fields and over-damp high frequency fluctuations, LES is able to
predict instantaneous flow characteristics and capture energy-containing eddies (i.e large
turbulent scales), which are the principal contributors to sound generation in many problems.
Thus, for flows involving flow separation or acoustic prediction, LES offers significantly more
accurate results over RANS approaches. LES is also used to unravel the physics of turbulence
and to compute flows of industrial relevance, when Reynolds-averaged models perform poorly
or direct numerical simulation (DNS) techniques are prohibitively expensive.

In the current study, a hypothetical car configuration with an open sun-roof and a
compartment forming a cavity is examined. The car, travelling at a fixed cruising speed,
experiences induced flow fluctuations due to the open sun-roof. The pressure perturbation
along the sun-roof is computed by solving the unsteady compressible Navier-Stokes equa-
tions. For this purpose, the finite volume CFD package, PHOENICS [11] is used. Then
these pressure fluctuations, due to the sun-roof, are extracted and analysed. Various high
order numerical schemes are compared to identify the advantages and disadvantages of each
one for this application. Furthermore, the acoustic response inside the car compartment is
studied by solving the Helmholtz equation for the acoustic pressure with the ACOUFEM |[3]
library. The solution of the acoustic problem is obtained with a Krylov method, then a
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domain decomposition approach [34, 33] which has shown strong robustness for solving
acoustic problems arising from the automotive industry [35]. These methods are optimized
for complex number arithmetics with double precision on GPU architecture. The interesting
speed-up obtained with these methods allows a fast and accurate analysis of the acoustic
phenomena within the car compartment, in an extremely short time scale.

2 Computational fluid dynamics

2.1 Unsteady Navier-Stokes equations resolution

Previous experience of an open cavity with a lip shows induced oscillatory pressure fluc-
tuations [50] caused by shear layer separation at the upstream end. This leads to further
interests in related problems such as a hypothetical car with an open sun-roof as depicted
in Fig. 1. The length of the sun-roof is equal to 0.6 m and the effective depth of the opening
lip (thickness of the sun-roof) is equal to 0.05 m. The free stream velocity is equal to 25
ms~! (~ 90 kmh~1). To get a stronger pressure fluctuation response on top of the sun-roof,
the flow is excited by an artificial sinusoidal vertical-velocity disturbance used to represent
a single vortex generated by a vehicle travelling upstream of this car. The vortex strength
is given by the formula W = Wjsin(2rat), where Wy = —1.2ms™! and a is a constant
parameter independent of the time. Different frequencies of this upstream vertical-velocity
disturbance are applied to generate different acoustic responses on the top of the sun-roof.
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Figure 1: A hypothetical car with open sun-roof

In this paper, a finite volume based software package, PHOENICS [44], is used to com-
pute time-accurate unsteady flow fields. The package may be used in the computations of
compressible or incompressible flows. It uses a structured, regular Cartesian mesh and a
grid refinement scheme which refines the grid size in each direction equally, as represented
Fig. 2.

Figure 2: Fine grid applied to the airflow around the car configuration and finer grid specif-
ically focused on the top of the sun-roof opening.



When a strong vortex hits the pressure outlet, it causes backflows and because of not
well-converged time step solution (limited by the maximum number of iterations), it affects
the vortex shedding. That is why it is necessary to extend the domain downstream. In the
present simulation, the computational domain is taken as 17.6 m by 8.8 m. Four levels of
grid resolution are used with a minimum grid size of 0.025 m. To satisfy both the mass
and momentum conservation laws, the velocity and pressure fields are solved iteratively by
using the SIMPLE pressure-correction algorithm proposed by Patankar and Spalding [43].
In PHOENICS, standard boundary conditions are used for inflow, solid wall, and far-field
boundaries. Five different discretisation schemes have been tested in this study to provide a
better understanding of their advantages and disadvantages for the present case. In order to
resolve the acoustic disturbances correctly a minimum of 20 temporal integration steps were
chosen to represent each oscillation cycle at the highest frequency of interest. The time step
length, 6¢, chosen for the temporal integration is 1072 s resulting in a maximum resolved
frequency of 50 Hz.

2.2 Extraction of pressure fluctuations

Two factors contributed to the pressure fluctuations above the sun-roof: the incoming flow
over the vehicle’s body and the artificial disturbance introduced upstream of the configu-
ration. This artificial disturbance requires a time equal to 528 Jt to reach the sun-roof’s
downstream for the present study. The pressure obtained from the computational fluid
dynamics (CFD) calculation is used to examine the frequency response inside the car com-
partment. The pressure fluctuation along the upper surface of the car configuration and at
the sun-roof opening is given by

Ps(x,t) = P(z,t) — P(x,t)

where P is the instantaneous pressure distribution along the upper surface obtained by the
CFD calculation and P is the background pressure distribution along the upper surface due
to the upstream velocity and the car configuration.

2.3 Numerical schemes

In all cell centered finite volume methods, as illustrated in Fig. 3, values of the variable ¢
are known at the cell centres W, P and E; but the values of ¢ at face w are not known and
may be calculated by using a number of numerical schemes.
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Figure 3: Centered finite volume method

The numerical scheme influences the balance equations for both cell W and cell P. To
obtain a fairly good solution one can choose ¢,, = ¢y when the flow goes from W to P or
¢w = ¢p when the flow travels from P to W. This kind of scheme is used as the default
numerical scheme, together with other schemes, in PHOENICS. In this paper, five different
numerical schemes, three linear and two non-linear schemes, as listed below, are used. Each
of them has a different approach to calculate the cell face value ¢, .



Upwind-differencing scheme (UDS):

¢w:¢W

Central-differencing scheme (CDS):
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Quadratic upwind scheme (QUICK):
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Harmonic QUICK (HQUICK):
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and ¢y is the cell-centred value of ¢ at the cell upstream the cell W.
Fig. 4 shows nine observation points marked with their node numbers, along the line
y = 1.6 m, i.e. just one-cell above the sun-roof on the same streamline where the upstream
artificial disturbance is introduced. The time history of the pressure fluctuations at these

7 points along sun-roof

Figure 4: Nine observation points in the computational domain. On top: seven points along
the sun-roof

observation points are shown in column 1 of Table 1. A zoom-in to the neighbourhood
of the sun-roof using seven other observation points for pressure fluctuations are shown in
column 2 of Table 1. It can easily be seen that first order accurate Hybrid/Upwind scheme
and third order accurate HQUICK scheme are too dissipative and therefore are not suitable
for this type of example. As a result, the magnitude of pressure fluctuations observed on
top of the sun-roof is very small. CDS even failed to converge because the cell Peclet
number is not guaranteed to be less than two. However, SMART and QUICK scheme show
more interesting results. The pressure fluctuations on top of the sun-roof gradually grow in
magnitude in a sinusoidal form. The fluctuations obtained by using QUICK scheme lead to
a more stable and regular sinusoidal shape.



Table 1: Comparison of pressure fluctuations using different numerical schemes
to bottom Hybrid Upwind, HQUICK, SMART, and QUICK schemes.

Pressure fluctuation Pressure fluctuation
at nine at seven points
observation points on top of sun-roof
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On Fig. 5 a snapshot of vertical velocity disturbance is shown. It points out that the
amplitude of aerodynamic disturbances becomes weaker and weaker because of the numer-
ical scheme dissipation. However, a clear vortex shearing on top the sun-roof can still be
observed. At this stage, QUICK seems to be the best high order scheme to be applied for
this application.

Figure 5: A snapshot of z component velocity disturbance at ¢ = 5s. At the bottom: the
zoom-in image on top of the sun-roof

3 Acoustic analysis

3.1 Frequency response function

Frequency components of the pressure fluctuations are then examined by computing the
acoustic power spectrum for the temporal signals monitored at all seven points on the sun-
roof via a 512-point Fast Fourier Transform (FFT). The spectrum, reproduced on Fig. 6,
shows that the dominant frequency at all observation points on the sun-roof roughly occurs
at 13 Hz. The validity of the results for the dominant frequency is checked using a Helmholtz
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Figure 6: Power spectrum density of the time history via a 512-point FFT

resonator with a geometrically similar cavity. The resonant frequency for a typical Helmholtz
resonator can be approximated by the formula,

c A

"o\ LV

where lefr = | + loor + n7 denotes the effective length of the air at the opening, [ is the
geometric neck length (i.e., 0.05 m, on Fig. 1). I, is the end correction on the neck length,



which can be expressed by a product of r, the radius of the neck, and 7, an empirical
coefficient which significantly depends on the geometrical configuration. A is the cross
sectional area of the neck and V' represents the volume of the inside cavity. Although it
is an idealized formula that completely neglects the shear layer, it gives an approximate
indication for the oscillation frequency of the cavity. An approximate value of the dominant
resonant frequency with n = 16.9 is around 10.5 Hz. It must be pointed out that this is
not a strict comparison as the coefficient 7 is currently unavailable for the cavity formed
by the considered car compartment. However, even so, this crude comparison shows that
the dominant frequency value obtained through the unsteady computation is a physically
acceptable approximation.

To study the acoustic response along the sun-roof, different frequencies of the upstream
disturbance are applied. Numerical tests as a function of input disturbance are performed
to verify the hypothesis that the lower the frequency of disturbance, the lower the frequency
of acoustic response obtained. In this study, 25 Hz and 10 Hz disturbance frequencies are
compared with the maximum resolvable frequency of 50 Hz and are reported in Table 3. The
power spectra shows that for an incoming disturbance at a frequency higher than 25 Hz the
dominant mode of the generated noise due to the sun-roof roughly occurs at 13 Hz which is
the resonant frequency. On the other hand a lower frequency incoming disturbance, say at
10 Hz, seems to excite a half harmonic at around 6 Hz while maintaining the fondamental
harmonic (13 Hz) at a weaker strength.

Table 2: Comparison of peak frequencies obtained via a 512-point FFT due to different
incoming disturbances. From top to bottom at 50, 25 and 10 Hz
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3.2 Wave equation inside the car compartment

In Lighthill’s acoustic analogy [24], Lighthill essentially recasts the exact equations of fluid
motion (Navier Stokes equations and continuity equation) in the form of an inhomogeneous
wave equation suitable to be applied in the far-field acoustics, therefore making an acoustic
analogy with fluid mechanics. The conservative form of the continuity equation (1) and
momentum equation (2) for a compressible fluid in a Cartesian coordinate system, without
body forces are

dp | pu;
— = 0 1
o =0 1)
Apus) | puiuj+ pij
p— 2
ot ay, 0 @

where p;; = pd;; — 7;;. p is the density, d;; is the Kronecker symbol (i.e., §;; = if ¢ = j and
d;; = 0 otherwise), u;, u; are the velocity components, p;; is the stress tensor and p is the
static pressure. If external sources are ignored, the famous Lighthill’s wave equation can be
written as
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where p’ is density perturbation (defined as the deviation from the quiescent reference den-
sity) and co is the speed of sound in the fluid at rest. The Lighthill stress tensor, T;; is
defined as ) )

Tyj = puiuj —7i + (p = cip )dij, (4)

where p/ is the pressure perturbation and 7;; is the viscous stress term. Each of these acoustic
source terms may play a significant role in noise generation depending on the considered
flow conditions. It is however generally accepted, that the term 7;; has a lower impact, by
several orders of magnitude, on noise generation than the other terms and can consequently
be neglected in most situations. Note that the perturbations (p/,p/) are defined as the
deviations between the total flow variables (p,p) and the quiescent reference state (po,p0)
during the derivation of equation (3), i.e.,

p = p—Dpo ()

’

p= pP=po (6)

The source term on the right hand side of equation (3) consists in a detailed flow motion
around the acoustic source region (near-field). In this particular case, as the ratio between
the width of the opening of the cavity (i.e. sun-roof, in this case) and the depth of the cavity
(i.e. height inside car compartment) is relatively high, the aerodynamic motion inside the
car compartment can be effectively neglected. In other words, Lighthill’s equation can be
rewritten as a homogeneous wave equation expressed as

82p/ 2«2 !

—— —cV°p =0, 7
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where p/ is pressure fluctuation. In order to transform the wave equation from time domain
to frequency domain, we need to integrate equation (7) with respect to time by using a fast

Fourier transform (FFT),
o 82])/ 9 ° 9 7
/_DOTQt—c/_OOVp:O7 (8)

and one can get in a simplified form the Helmholtz equation (9),
—w2¢—13V%ﬁ:(Lwhaew::/‘ p et (9)

It is assumed that the flow inside the car compartment is negligible, thus the acoustic prop-
agation can be described by the Helmholtz equation. The analysis of the sound distribution
in the car compartment for the dominant frequency (f = 13 Hz) due to an incoming dis-
turbance of 50 Hz is carried out. The power spectrum density along the sun-roof is used
as a Dirichlet boundary condition for the Helmholtz equation, which outputs the acoustic
pressure distribution inside the car compartment. A unstructured mesh is considered for the
car compartement and stabilized finite elements are considered for the discretization [21].

Fig. 7 represents the acoustic pressure distribution along several horizontal and vertical
lines inside the car compartment. It shows that the highest acoustic pressure is experienced
at 7.1 m in the z direction. On the other hand along the horizontal line just below the
sun-roof the pressure shows an oscillatory behaviour resulting from the pressure fluctuation
above the sun-roof. This oscillatory behaviour is gradually weakened as one moves deeper
into the car compartment. The acoustic pressure distribution along all vertical lines seems to
show that oscillatory effects disappear deep inside the car compartment. These observations
show that the obtained solution is reliable. The acoustic pressure tends to be more stable
at the bottom of the car compartment.



0

a0

-
2

2UNSSAL SN0
"

g

5
-
L4
e
e
e
in
ficaid
i
.
H
F L - [
-

03 04 a6 0f 1 12 14 1
T direction

Figure 7: Acoustic pressure inside the car component along several horizontal and vertical
lines

4 GPU computations

With the apparition of Graphics Processing Unit (GPU) in 2000s, parallel computations
have been greatly enhanced. Indeed, performances of Central Processing Unit (CPU) and
GPUs are significanlty different, due to inherently different architectures. GPU architecture
exploits parallelism by having many floating points processors exploiting large amount of
data in parallel. In order to perform fast computations, special memory hierarchy allowing
each processor to optimally access the requiered data is mandatory. The memory is thus
a key feature of GPU architecture [16] [51]. In summary, a CPU is constantly accessing
the random-access memory (RAM), implying a low latency at the detriment of its raw
throughput [15]. Opposite, a GPU has four main types of memory: (i) the global memory
that ensures the interaction with the host (CPU)—this is the slowest memory; (ii) the constant
memory that provides interaction with the host—this memory is generally cached for fast
access; (iii) the shared memory that is accessible by any thread® of the block? from which
it was created—this memory is much faster than the global memory; (iv) the local memory
that is specific to each compute unit.

Here, the major problem related to the implementation on GPU is that the acoustic
problem involves complex number arithmetics. Indeed, GPU have initially been developped
for integer artihmetics, and using floating point operations with real number reduce sig-
nificantly their performance. This is even more problematic when using double precision
floating point operations which imply a drop in performance. Since the acoustic problem
involves complex number artihmetics with double precision floating point operations, the
expected performance are extremely low.

LA thread is the smallest sequence of programmed instructions that can be managed independently by
an operating system.

2Threads are grouped into blocks and executed in parallel simultaneously. Threads are grouped into
blocks and blocks are grouped together in a grid.



In addition, the acoustic problem to solve reduces to the solution of a large size sparse
linear system. Iterative Krylov methods are well suited for this type of problem; such
methods require linear algebra operations such as sparse matrix-vector product which is
definitely the most time consuming operation. In this study, the acoustic matrix is stored in
compressed sparse row (CSR) format in order to optimize the memory storage and to make
advantage of sparse structure for memory access within the GPU. In order to program the
GPU, we use the CUDA language.

As mentionned earlier, CUDA was initially devoted for real numbers arithmetics. How-
ever, given that a complex number is a set of two real numbers (real part, imaginary part),
implementation is possible by defining a structure containing two real numbers. The library
provided by Nvidia proposes a structure called cuComplex, but for performance issues, we
define our own complex class template structure complex<T>, which redefines all the opera-
tions given by std: :complex. In order to take the best advantage of GPU architecture, the
basic linear operation kernel need also to be rewritten [23], [10], [9]. Former analysis [4] per-
formed on real number artihmetics with double precision allowed to obtain, with a suitable
rewritting of the CUDA kernel, excellent speed-up performance for basic linear operations
and for Krylov methods [5, (]. As a consequence, we decide to extend this analysis, to the
present acoustic problem, i.e., to develop efficient iterative Krylov methods for solving lin-
ear systems with complex number arithmetics. We have thus developped a preconditionned
bi-conjugate gradient stabilized method (P-Bi-CGSTAB), a preconditionned P-BiCGSTAB
parametered (1) and a preconditionned transpose-free quasi-minimal residual method (P-
tfQMR) [17], all of them with optimized CUDA kernel and with dynamic auto-tuning on
GPU. As indicated in [6] for real number arithmetics, our template implementation outper-
forms Cusp [2], CUBLAS [1]|, CUSPARSE [41], but behavior for complex number arithmetics
with double precission is still a challenge.

Table 3 shows the speed-up obtained with our GPU implementation compared to the
CPU implementation: the first column presents the size of the mesh, the second column gives
the number of iterations, the third and the fourth columns represents respectively the CPU
and GPU time in seconds, and the last column collects the speed-up. The residual threshold
is fixed to 107°. When we refine the mesh, i.e, that the size of the problem increases, the

Table 3: Speed-up of the acoustic solver (complex number arithmetics with double precision)

size (h)  #iter CPU time (s) GPU time (s) speed-up

P-BiCGSTAB

0.133425 21 0.01 0.030 0.33
0.066604 53 0.24 0.106 2.26
0.033289 94 4.01 0.703 5.71
0.016643 183 85.70 9.209 9.31
P-BiCGSTAB(S)

0.133425 6 0.03 0.110 0.27
0.066604 12 0.52 0.286 1.82
0.033289 31 12.47 2.162 5.77
0.016643 70 266.26 30.100 8.85
P-QMR

0.133425 24 0.02 0.040 0.50
0.066604 52 0.27 0.113 2.40
0.033289 99 471 0.755 6.24
0.016643 214 102.17 10.786 9.47

results become more accurate since more details in the car compartment are taken into
account. As we can see in Table 3, for all our implementations the speed-up increases when
the size of the problem increases. Nevertheless, when the size of the problem becomes too
large for GPU memory, which is often very limited on most GPUs, other methods must be
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considered. Domain decomposition methods [48], [45], [49], [30] based on iterative algorithms
are an alternative. Such methods have encountered strong success for the solution of coercive
elliptic problems [17], [11] and are easy to implement on parallel computers. Using absorbing
boundary transmission conditions on the interface between the subdomains [29] is a key point
to obtain a fast convergence of the domain decomposition algorithm, such as the Schwarz

algorithm [25], [26], [27]. First works presented in references [13], [141], [22] consider Robin
type absorbing boundary transmission conditions on the interface, which have then been
optimized with a continuous approach in [12], [20], [31], [32], [30], [28]. Further works have

considered a discrete optimization of the interface conditions as first introduced in [46], and
then in [ 10], [30], [33], [37], [19]

GPU implementation of domain decomposition method consists to allocate each subdo-
main to one single processor (CPU) and to solve the linear system on GPU at each iteration,
as first proposed for the FETI method in [12] and for the optimized Schwarz method in [7].
Here the same methodology is considered, but for complex number arithmetics with double
precision, and the optimized Schwarz method with two sided interface conditions is con-
sidered [18]. The acoustic problem solved with the optimized Schwarz method with two
sided interface conditions gives a speed-up of 7.03 on the problem with a mesh size equal to
0.008321; which is an excelent result according to the Amdahl’s Law [8] applied to domain
decomposition method.

5 Conclusion

Sound distribution inside a car compartment due to incoming disturbance over the sun-
roof is here studied through a coupled acoustic fluid-structure analysis. Input disturbance
has a strong influence on the particular harmonic excited. The car compartment responds
at a particular frequency of oscillation of 13 Hz, and lower frequency input excites a half
harmonic at roughly 6 Hz. Higher order schemes are necessary to extract such pressure
fluctuations.

Due to the size of the acoustic problem, iterative Krylov methods and a domain decom-
position method are considered. Implementation on graphic processing unit with CUDA
language, leads to excelent speed-up as soon as the CUDA kernel are rewritten and opti-
mized for complex number arithmetics with double precision.
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