
Power Consumption Analysis of Parallel Algorithms on
GPUs

Frédéric Magoulès∗ Abal-Kassim Cheik Ahamed†

Alban Desmaison, Jean-Christophe Léchenet, François Mayer, Haifa Ben Salem, Thomas Zhu‡

Abstract

Due to their highly parallel multi-cores architecture, GPUs are being increasingly used
in a wide range of computationally intensive applications. Compared to CPUs, GPUs
can achieve higher performances at accelerating the programs’ execution in an energy-
efficient way. Therefore GPGPU computing is useful for high performance computing
applications and in many scientific research fields. In order to bring further performance
improvements, GPU clusters are increasingly adopted. The energy consumed by GPUs
cannot be neglected. Therefore, an energy-efficient time scheduling of the programs
that are going to be executed by the parallel GPUs based on their deadline as well as
the assigned priorities could be deployed to face their energetic avidity. For this reason,
we present in this paper a model enabling the measure of the power consumption and
the time execution of some elementary operations running on a single GPU using a
new developed energy measurement protocol. Consequently, using our methodology,
energy needs of a program could be predicted, allowing a better task scheduling.

Keywords: Energy Measuring Device; Energy Consumption; Green Computing; Lin-
ear Algebra Operation; Prediction Algorithm; Task Scheduling Algorithm; GPU; Parallel
Computing; Gravity equations

1 Introduction
Many applications such as Computer Vision, e.g., denoising big pictures, Pattern Recogni-
tion, High Performance Computing (HPC) or the Monte Carlo methods used in Finance,
e.g., exotic path-dependent derivatives pricing using brownian bridge methods, require a
high computational density, which strongly depends on the hardware components. The
GPU (Graphics Processing Unit) as a highly parallel architecture allows the execution of
such complex programs much faster than a CPU (Central Processing Unit) [13] [17]. More-
over, the development of new graphics parallel programming platforms such as CUDA [12]
and OpenCL [29], has further urged programmers to move to GPUs, in order to take ad-
vantage of their high computing capacity [34]. Most of the top supercomputers in the world
include GPUs, as we can observe in the Top 500 list [36]. What makes graphics cards
more attractive is their energy consumption/workload ratio. For example, Piz Daint at the
Swiss National Supercomputing Centre is the 6th most performing machine in the Top 500
List [36], however it is ranked 4th in the Green 500 list of November 2013 [18], with 3,185.91
MFLOPS/W power consumption. The graphics cards remain, however, "energy-hungry"
compared to the rest of the components of the computer. For example the NVIDIA GTX
780 [10] reaches a power consumption of 250 W and therefore requires a power supply of
600W.

∗CUDA Research Center, École Centrale Paris, France (correspondence, frederic.magoules@hotmail.com).
†CUDA Research Center, École Centrale Paris, France.
‡École Centrale Paris, France.

Preprint May 12, 2014

ar
X

iv
:2

11
0.

01
41

4v
1

 [
cs

.D
C

]
 2

8
Se

p
20

21

Since they are based on CMOS transistors, GPUs power consumption essentially consists
of static and dynamic power. Static power is increasingly presenting a major concern and
is disappeared when the GPU is idle, due to the gate and sub-threshold leakages. Dynamic
power, however, is the result of the circuit function and thus depends on the program
being executed. In case of non optimal utilization of the GPU cores, performance per
watt decreases because of power dissipation on unused or idle cores [20]. To reach higher
computational density, parallel GPUs in clusters must be optimized and better organized.
The energy consumed by a cluster depends both on the architecture of hardware components
and the implementation of algorithms of executed programs. As a consequence, a prediction
of the required energy and execution time of an application is a crucial key to optimize the
resources allocation of a cluster, and thereafter find the most adequate architecture and its
corresponding tasks scheduling [21] [19].

In this work we propose an evaluation methodology of the operating mode of the GPU
during the execution of some computing applications focusing on its energy consumption
behavior, which enables to better understand the energetic specifications of GPUs. For this
purpose, we built an experimental device in order to measure the power consumed by the
graphics card uniquely.

In order to validate and consolidate the proposed protocol, we propose in this paper
to analyze and evaluate the energy efficiency of elementary operations such as addition,
product, etc. After analyzing the measures we obtained, we propose a mathematical model
able to determine the energy consumption as well as the time execution of GPU programs.
After that, we can study the variation of the power dissipation and time execution factors
depending on the chosen input parameters, in order to avoid the underutilization of the GPU
resources. We have tested our algorithms with real data arising from the gravity equations,
as described in [7] an [9].

This paper is organized as follows. The plan is divided into two main parts. In Section 2
we explain how the energy consumption is measured, and describe the necessary hardware
components required to design the experiment. We also introduce the experimental protocol
that we have designed to acquire accurate measurements of the disappeared power from a
GPU. Section 3 presents both numerical results and the model we propose.

2 Measuring Power Consumption of GPUs

2.1 Context
Commercialized since 19991, Graphics Processing Units were designed to perform always
more 3D graphics computations in order to offload massive parallelizable computations from
Central Processing Units. As a consequence, the growing rate of the computing power of
GPUs was directly related to how graphically advanced video games were at the time. On
the other hand, cores of CPUs were slowly reaching their clock rate limit2 [35]. Contrary
to CPUs before 20013, GPUs have always had a multi-cores architecture, which help them
manage the thermal dissipation coming from the Joule effect. Thus, the gap (in terms of
Floating Operations Per Second) between the computing power of GPUs and that of CPUs
was increased. With time, even though no API for GPU yet existed, the concept of GPGPU 4

emerged as the possibility of making general computations on GPUs became increasingly
interesting.

In 15 February 2007, the first nVidia GPGPU toolkit named CUDA (Compute Unified
Device Architecture) toolkit was publicly released. Based on C/C++ programming language,
the Application Programming Interface (API) provided a standard on how to write code
to be launched from CPU/GPU and executed on a GPU. Most source codes using CUDA

1world’s first GPU, the GeForce 256, was released on October 1999
2around 4 gHz as usually recorded in B2C market
3IBM commercialized Power4, the very first dual core CPU, in 2001
4General Purpose Graphics Processing Unit

2

are divided in multiple steps as follows: (i) allocation of memory on the CPU-side, (ii)
allocation of memory on the GPU-side, (iii) copying allocated values from CPU to GPU, (iv)
kernel launch5, (v) Copy results from GPU to CPU, (vi) deallocation of allocated memory.
where the copy operations use the motherboard bus to transfer data between the Central
Memory (CM) of the computer and the Global Memory inside the GPU. Programming on
GPU requires a careful manual memory management. Furthermore, writing an efficient code
requires the use of many types of memory such as shared memory ("shared" among streaming
multiprocessors), registers (local to each core) or global memory (shared by all streaming
multiprocessors). Consequently, until the release of unified memory [11] in CUDA 6.0 (on
April 15 2014), managing memories was one of the hardest parts of CUDA programming.

GPUs are interconnected to a motherboard using a standardized type of slot. Before
2004, three types of GPU slots were used: AGP, PCI and PCI-X. The need for a higher
system bus throughput at an acceptable price leads to the creation of a new serialized slot:
the PCI express [30, 32] (PCIe). In the case of GPGPU, both the GPU’s expansion slot
system bus throughput and the motherboard bus speed had a direct impact on the time
spent in steps (iii) and (v), i.e., data transfers between CPU-side and GPU-side. Compared
to the highest system bus throughput attained before 2004 (AGP maximum throughput
goes up to 2133 MB/s), PCIe x16 is approximately 15 times faster for the future v4.0 [31]
version of the standard. Some PCIe lanes are especially dedicated for power supply. More
particularly, GPUs usually drain power from the PCIe bus and, for high consuming ones,
directly from the Power Supply Unit (PSU).

Although GPUs are very energy-greedy (up to several hundreds of Watts), comparing the
power consumption of different parallelized algorithms on GPUs is seldom done. A reason
for that is the absence of on-chip captors to get the real time power consumption of GPUs.
The first step therefore was to find a way to measure that consumption.

HDD CM CPU

Motherboard

PSU GPU

•

•
SATA connector

•ATX Power connector

•
Memory slot

•
CPU Socket

•PCIe x16

•GPU Power connector
12V input

Step iii & v

Figure 1: Data transfers between CPU-side and GPU-side

2.2 Experimental Protocol
2.2.1 Building a Physical Device

All the measuring devices we encountered were not satisfying as they took into account the
consumption of the whole computer. To achieve a good precision, we needed to measure the
consumption of the GPU alone and we therefore decided to build our own measuring device.
The GPU we used had two physical connections to the computer. It received energy from a
power unit, and was also directly connected to the motherboard. Since we obviously could
not access the flow from within the circuit to measure it, we decided to use amperometric

5code launched from CPU and executed on GPU

3

clamps. An amperometric clamp is a device which measures the intensity of a current by
using the magnetic field it creates. The clamp then delivers a tension which can be measured
using an oscilloscope. From that tension, it is easy to go back to the intensity as both are
linearly related.

Accessing the power transmitted to the GPU via the power unit therefore became
straightforward. Using an amperometric clamp to measure the intensity IPU of the current
coming from the power unit, and knowing that the power unit delivered a constant voltage
of 12V , the power was PPU = 12 ∗ IPU . Measuring the second component of the power, the
one coming directly from the motherboard was however much more difficult: there were no
cables between the GPU and the motherboard, and therefore no place to clip the clamp.
We therefore had to use a PCI Express Riser 16x to connect the GPU to the motherboard,
using it as an extension cable. The riser has three connector pins through which the 12V

Figure 2: A PCI Express Riser

voltage flows, and three connector pins through which the 3.3V voltage flows [33]. Figure 2
illustrates this by showing the 12V wires (1). What’s more, according to the specifications
of the riser, the voltages delivered are constant so measuring the intensity of the current
immediately gives us the power.

We therefore used two amperometric clamps, one to measure the intensity of the current
flowing into each set of wire. However, as can see in Figure 2, there was still no way to clip
the clamps on the wires so we had to cut them, as described in Figure 3 where (1) correponds
to the riser cut and (2) the amperometric clamp around the riser. The power given by the

Figure 3: Clamp clipped around the cut riser

motherboard to the GPU was then given by the formula P = 3.3 × I3.3 + 12 × I12. The
measures showed that the variation of the intensity of the current going through the 3.3V

4

wires was very small compared to that going through the 12V wires, so we neglected that
variation and considered that the power brought through the 3.3V wires was constant and
equal to 1W. This enabled us to use one less amperometric clamp, which also simplified the
physical setting up of the device. Figure 4 gives a summary of the physical implementation
of the device.

HDD CM CPU

Motherboard

Power Supply Unit GPU

PCI x16 Riser

•PCIe x16 in

12V input

•

•

•

• •

•PCIe x16

•

LAN Oscilloscope• • •
•

Amperometric Clamp

•

•
Ethernet Cable

Figure 4: Experimental Protocol

2.2.2 Sample Code Used

We then wanted to measure the power consumption of the basic operations a GPU can
perform, which includes memory allocation, sum, product, and communication. To do so,
we created a small program which did the following. The program steps are: (i) starts,
inserting the size of the vectors it is going to work on, (ii) randomly generates a vector
of that specific size using the CPU and stores it on the RAM, (iii) asks the user for the
parameters he wants to use: number of sums, number of products, number of threads per
block and block load factor, (iv) allocates memory on the GPU RAM, (v) pauses so as
to measure the consumption of only allocating memory on the GPU without using it. To
pause, the program asks the user the number of copies he wants to do, (vi) copies the same
vector on the GPU RAM the correct number of times, (vii) does the right number of sums
and prints the time elapsed, (viii) does the right number of products and prints the time
elapsed, (ix) copies all these results back to the CPU and returns them.

3 Numerical Results and Prediction Algorithm
References [5] and [6] clearly proved that the implmentation of linear algebra opeations is
more efficient on GPU that on CPU. However, given that these operations are a set of linear
combination of elementary operations (addition, multiplication, ...), we test our protocol on
them.

3.1 Validation of the experimental protocol
Before we can apply our protocol and collect measures, a simple verification that our method
is correct is to check that different types of operations on the GPU give significantly different
voltage levels. Indeed, if whatever the calculation made on the GPU, the consumption is
the same or, more generally, if there is no correlation between the operations made on the
GPU and the consumption observed on the oscilloscope, our endeavor to build our model is
pointless. Figure 5 shows an example of the curves observed on the oscilloscope when the
program described above is executed on the GPU. In this figure, we can clearly distinguish

5

Figure 5: A curve seen on the oscilloscope when our program runs on the GPU

different parts that can be associated with a certain type of operation, which confirms our
method. More precisely, we can see six levels : (1) allocation of the memory on the GPU,
no copy made; (2) copies from the CPU to the GPU, (3) sums on the GPU, (4) products
on the GPU, (5) copies from the GPU to the CPU, and deallocation of the memory on the
GPU, (6) stand-by. After a few moments, if the GPU stays idle, it can reach an energy
saving mode. In that case, the consumption decreases yet again.

3.2 Collection of the measures
By executing the same program with different parameters, we can get multiple curves on
the oscilloscope. To manipulate the measures, we need to send them to a computer. With
our oscilloscope, we could export the curves displayed on the screen in the form of csv files.
Figure 6 is an example of a curve reconstructed from such a csv file.

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

Time(seconds)

C
on

su
m
pt
io
n(
W
at
t)

Oscilloscope Output

Figure 6: An Exported Curve

To analyze more easily these curves, which are approximations of step functions, we
wrote a script to automatically detect their different phases and compute the corresponding
step function. The result of this process on the curve in Figure 6 is shown in Figure 7.

With that treatment, we can measure for each execution of our program the duration
and the power consumption of each type of operation. We used our measures to plot the

6

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

Time(seconds)

C
on

su
m
pt
io
n(
W
at
t)

Oscilloscope Output
Fitted function

Figure 7: The step function approximating the curve

time needed to do one addition against the size of the vector used. The graph can be seen
in Figure 8.

3 3.5 4 4.5 5 5.5 6 6.5 7

0

1

2

3

4

5

6

·10−9

log size

U
ni
ta
ry

T
im

e

Computed values

Figure 8: Unitary Time (in seconds) for a sum

This graph represents the time spent on each addition (time to compute the result divided
by the size of the input vector) given an input vector size. As expected, the bigger the input
vector, the more efficient the GPU is. This is true until we reach the point where all the
streaming multiprocessors are used. The execution time is then proportional to the input
vector size, which explains the horizontal line on the graph.

Another series of graph we were able to plot showed the power spent to perform one
elemental action. Figure 9 illustrates that for the sum.

We find that from an energetic point of view too, using bigger vectors is far more efficient
than using small ones and as for the time, the unitary power decreases until the vectors as
big enough to use all the streaming multiprocessors.

3.3 Regression: Generalized Least Squares (GLS) Method
We then did regressions on our data to obtain a model which can be used to predict the
time and energy consumption of an algorithm knowing its number of elementary operations.

Given (x, y) = (xi, yi)i∈J1,nK we are looking for a function f such as for all i ∈ J1, nK:
yi = f(xi) + εi where ε = (εi)i∈J1,nK is a sequence of centered, independant, identically

7

3 3.5 4 4.5 5 5.5 6 6.5 7

0

1

2

3

4

·10−7

log size

U
ni
ta
ry

C
on

su
m
pt
io
n(
W
at
t)

Computed values

Figure 9: Unitary Consumption (in Watt) for a sum

distributed variables with variance σ. Furthermore ε corresponds to the intrinsic errors of
measure coming from the sensors used, So we can6 suppose that ε is independant of x. In
our case, x corresponds to the logarithm of the size of a vector while y depends on the
measures (unitary time or unitary consumption). Looking at the shape of Figures 8 and 9,
we see that we are actually looking for a decreasing kind of regression function. Hence, we
used a linear combination of the most usual decreasing functions, i.e., x 7→ 1/xk:

f : x 7→
N∑
k=1

ak
xk

+ a∞

Lets denote X the matrix such as (i.e. "featuring" step of our regression):

X =

1/x11 · · · 1/xN1 1
... · · ·

...
...

1/x1n · · · 1/xNn 1

Thus, the regression parameters, for a given N (which corresponds to a fitting degree of
complexity) are a = (a1, · · · , an, a∞). The general penalized regression [16] problem is of
the form7

â = argmin
a

(||y −X ∗ a||1 + λPen(a))

Furthermore, ||y −X ∗ a||1 corresponds to a Goodness-Of-Fit while ||.||2 is the penalization
function. The ||.||1 is freely choosen depending on the regression type while Pen depends on
what kind of result we are expecting, e.g., taking Pen = a 7→

∑N
k=1 |ak|+ |a∞| will induce

sparsity of â) and λ the weight of the penalization in the regression.
For the sake of simplicity, we chose λ = 0 and ||.||1 the standard Euclidian norm. This

corresponds to the Generalized Least Squares Method where explicit solutions exist8

â = (X ′X)−1X ′y

More particularly, Xâ is the Euclidian projection of y in the subspace generated by the
columns of X. This gives us the L2(Ω,F ,P)-Pythagoras relation9

||y − ȳ||21 = ||y −Xâ||21 + ||â− ȳ||21
6This is not always right for quantum physics
7We equivalently have f̂N : x 7→

∑N
k=1

âk
xk

+ â∞
8We will sometimes write â instead of â(n) in order to make it easier to read
9"Total dispersion" = "The dispersion around the regression" + "The dispersion caused by the regression"

8

Then the proportion of variance explained is

R2 = ||y −Xâ||21/||y − ȳ||21
The R2 will be our regression "precision" measure (the higher the R2 is the better). About
the convergence of the estimator of a, the theory of GLS says that â is an unbiased, consis-
tent, efficient, asymptotically normal estimator and that:

√
n(â(n) − a)

L−→
n→+∞

NN+1(0, (X ′ΣX)−1)

with Σ := (Cov(εi, εj))1≤i,j≤n = σIn. As (X ′X)−1 is symetric definite positive, there exist
(Cholesky decomposition) a lower triangular matrix L and a diagonal matrix D (without
zeros in his diagonal) such as (X ′X)−1 = LDL′ = L

√
D(L
√
D)′ with

√
D the matrix with

squared diagonal (element by element). ThenNN+1(0, (X ′ΣX)−1)
L
= L

√
D/σNN+1(0, IN+1).

Thus, by denoting B∞N+1(0, 1) the open unit N+1−ball, i.e., open unit ball in dimension
N + 1, associated to the sup norm and taking the following opened convex neighbourhood10

of â(n)

D̃n(0, rα) := â(n) + L
√
D/(nσ̂(n))B∞N+1 (0, rα)

we deduce that D̃n(0, rα) is an asymptotic confidence domain of level 1−α = (2φ(rα)−1)N+1

(where φ is the cumulated distribution of N (0, 1) with σ̂(n) an empirical estimator of the
variance of ε1. Thus,

D̃(0, q
((1−α)1/(N+1)+1)/2
N (0,1)︸ ︷︷ ︸

rα

)

is a confidence domain for a of level 1 − α. However, the computation of (L and D) the
confidence domain is left over for readers.

On the other hand, for a given z := log(sizez) ∈ R, we will be able to predict the time
spent on a given operation, i.e., it will be fN (z) = fN (log(sizez))).

3.3.1 Unitary Time Regression

Figure 10 collects the different regressions of unitary time obtained for different fitting
degrees of complexity. As we can see in Figure 10, the regression accuracy is suitable for

3 3.5 4 4.5 5 5.5 6 6.5 7
0

2

4

6
·10−9

log size

U
ni
ta
ry

T
im

e

Computed values
Fitted N = 1, R2 = 0.6915586

Fitted N = 2, R2 = 0.9604319

Fitted N = 3, R2 = 0.9974816

Fitted N = 5, R2 = 0.9999581

Figure 10: Time in seconds for a sum: Regression

N = 5. As a result, the parameters of the selected regression, i.e., N = 5, are given in the
following. â1 = 0.0000003 â2 = −0.0000027

â3 = 0.0000138 â4 = −0.0000362
â5 = 0.0000393 â∞ = −9.67× 10−9

10as a the image of the open unit ball by the homeomorphism u 7→ â(n) + L
√
D/(nσ̂(n))u

9

3.3.2 Unitary Power Regression

The different regressions of unitary power for different fitting degrees of complexity are
drawn in Figure 11. Figure 11 shows that the regression precision is correct for N = 5. The

3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

·10−7

log size

U
ni
ta
ry

C
on

su
m
pt
io
n

Computed values
Fitted N = 1, R2 = 0.7017766

Fitted N = 2, R2 = 0.9637507

Fitted N = 3, R2 = 0.9970168

Fitted N = 5, R2 = 0.9998981

Figure 11: Power consumption (in Watt) for a sum: Regression

coefficients of the selected regression, i.e., N = 5, are described in the following. â1 = 0.0000453 â2 = −0.0004421
â3 = 0.0021315 â4 = −0.0051157
â5 = 0.0049735 â∞ = −0.0000018

3.4 Model and Prediction
One of our main objectives was to be able to predict, with some approximations, the total
energy consumption of a program running on a GPU.

To achieve this goal, we first need to split the initial program in a set of elemental
operations. This decomposition enables us to get the total number of each operation the
program will order the GPU to do. The basic inputs that we considered in our very simplified
model were the size of the data that needs to be copied to the GPU, the size of memory
used on the GPU, and the number of total additions and multiplications performed by the
program. With all these data, we tried to predict the time needed for the program to execute
and the total energy consumed during the program execution.

To get this model, we used few simple equations that allowed us to get the time, the
energy consumption of the calculation and the energy consumption of other status of the
GPU:

Ttotal = TCPU

+ f̂ time,copyN (log(n)) ∗ n
+ f̂ time,sumN (log(n)) ∗ n
+ f̂ time,productN (log(n)) ∗ n

where n is the size of the vectors, f̂ time,copyN the unitary transfer computing time function,
f̂ time,sumN the unitary running time of the addition of vectors function and f̂ time,productN the
unitary time of the term-to-term product function, like a dot product without the addition
of all the results.

10

Etotal = Pidle ∗ Tidle
+ Pactive ∗ Tactive
+ Ppause ∗ Tpause
+ Ppower ∗ Tpower
+ f̂power,copyN (log(n)) ∗ f̂ time,copyN (log(n)) ∗ n2

+ f̂power,sumN (log(n)) ∗ f̂ time,sumN (log(n)) ∗ n2

+ f̂power,productN (log(n)) ∗ f̂ time,productN (log(n)) ∗ n2

where:

• idle is the phase during which the program runs without using the graphic card

• active is the phase during which the memory of the GPU is allocated but not used

• pause is the phase during which the GPU is not used between two computations

• end is the phase during which the GPU is not used at the end of the execution

• n is the size of the vectors

• f̂ time,copyN and f̂power,copyN are the unitary transfer computing time and power function

• f̂ time,sumN and f̂power,sumN are the unitary running time and power of the addition of
vectors function

• f̂ time,productN and f̂power,productN are the unitary time and power of the product function

With these equations, when you develop an algorithm, you are able to have an idea of
the energy consumption of this algorithm if you execute it on a specific hardware.

Using our experimental protocol and the data that we measured, we computed these
equations for our test bench equipped with an Nvidia GTX275 GPU. For example for the
product, with n being its size:

f̂ time,product5 = z 7→
5∑
k=1

âk
zk

+ â∞

with â1 = 0.0000003 â2 = −0.0000027
â3 = 0.0000138 â4 = −0.0000362
â5 = 0.0000393 â∞ = −9.67× 10−9

and for the sum:

f̂power,sum5 = z 7→
5∑
k=1

âk
zk

+ â∞

with â1 = 0.0000453 â2 = −0.0004421
â3 = 0.0021315 â4 = −0.0051157
â5 = 0.0049735 â∞ = −0.0000018

11

3.5 Application to gravity equations
In this section, we report numerical results where execution times are in seconds, power in
Watts, and corresponding energy consumption in Joule. We apply the experimental protocol
we developed to linear algebra operations such as addition of vectors, element-wise product or
element by element product, dot product and sparse matrix-vector multiplication (SpMV).
SpMV is known to be the most consuming operation in terms of computing time [5] [1].
After finding the execution time and energy consumption of these operations, we analyze
and evaluate the solution of large size linear systems on GPU with the Conjugate Gradient
(CG) algorithm, which is an iterative Krylov method, and is well suited for this type of
problem with symmetric positive-definite matrices as demonstrated in [7] [3] [4].

The matrices used in these experiments arises from the finite element discretization of the
gravity equations [9], [8], and are stored in Compressed-Sparse Row, and The performance
of SpMV strongly depends on the structure of non-zero values and also on the memory
management as shown in [15] [14]. In this experiment, we use Alinea, our research group
library, which implements most of linear algebra operations on CUDA, using an auto-tuning
technique of threading distribution [5]. We also compare Alinea library with Cusp library [2]
for double precision number arithmetics. In Figure 12, we report respectively the execution

0 1 2 3 4 5

·106

0

1

2

3

4

5

6

·10−2

size

data transfers time(s)
DAXPY time(s)
DAXMY time(s)

0 1 2 3 4 5

·106

0

0.1

0.2

0.3

0.4

0.5

size

DAXPY power(W)
DAXMY power(W)

Figure 12: Time (s) and Power (in Watt) for double precision data transfer

time in seconds and the power consumption in Watt (W) for data transferring from CPU
to GPU, the addition of vectors (DAXPY) and the element-wise (DAXMY) operations.
Figure 13 and Figure 14 respectively give the execution time in seconds and the energy
consumption in Joule (J) for the dot product operation and the SpMV operation.

The results of linear algebra operations clearly show the effectiveness of Alinea compared
to Cusp library for double precision number arithmetics in terms of computing time and
energy consumption.

The execution time in seconds and the energy consumption in Joule (J) of the conjugate
gradient algorithm are presented in Figure 15. We carry out the CG algorithm with a
residual threshold equal to 10−6. As we can see in Figure 15, Alinea with CSR format is
better than Cusp in terms of computing time exept for a range of small size matrices. In
terms of energy consumption, Alinea is always better than Cusp, even for small matrices.

Previously no preconditionning techniques have been used for the CG algorithm, but
additional preconditioners based on domain decomposition methods [28, 23] can be used. For
this purpose, special tuned interface conditions between the subdomains are usually defined
like in the Schwarz method with homogeneous coefficients [27, 26] or with heterogeneous
coefficients [25, 24, 22]. The associated problem, with the Lagrange multipliers, condensed
on the interface between the subdomains, is then solved with an interative algorithm on the
CPU. At each iteration, each subproblem defined in each subdomain is solved with the CG
method on the GPU [9], [8].

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·106

0

5 · 10−2

0.1

0.15

0.2

size

Alinea
Cusp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·106

0

2

4

6

8

10

size

Alinea
Cusp

Figure 13: Double precision dot product, [top-left: time in seconds (s), top-right: energy in
Joule (J)]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·106

0

0.5

1

1.5

2

·10−2

size

Alinea
Cusp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·106

0

0.5

1

1.5

2

2.5

3

size

Alinea
Cusp

Figure 14: Double precision sparse matrix-vector multiplication (CSR format), [top-left:
time in seconds (s), top-right: energy in Joule (J)]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0

200

400

600

800

1,000

1,200

size

Alinea
Cusp

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

100

110

120

130

140

150

size

Alinea
Cusp

Figure 15: Double precision Conjugate Gradient (CSR format), [top-left: time in seconds
(s), top-right: energy in Joule (J)]

4 Conclusion
Using graphics card for GPU Computing clearly proved its efficiency of performance in
terms of computing time. However, the energy consumed during calculations is far from

13

being negligible. GPUs are increasingly used in large scale clusters. Because of the high
power consumption of these clusters, it is very important to study their energetic aspects,
which first of all requires a better understanding of the GPU energetic behavior. Existing
devices measures the energy consumption of the whole computing machine, and not only
that of the GPU.

In this paper, we therefore proposed an experimental protocol to measure accurately
the power of GPU during computations, and then determine the energy consumed. The
presented tests have been performed on a workstation containing two GTX275 GPU cards.
We have considered elementary operations, which are the basis of any operations such as
classical linear algebra operations, to test and validate our experimental protocol. The
evaluation and analysis of the achieved results have enables us to better understand the
requirements of the workstation. Through a good analysis of the energy consumed by a GPU
as well as the executed program by determining its number of elementary operations and its
execution time, an energy-efficient hardware architecture of the cluster can be consequently
identified to find the most efficient HW/SW codesign, paving the path for an optimal task
scheduling algorithm.

Finally, we applied the proposed process to solve real problems arising from gravity
models using our implementation Alinea, and we compared it to Cusp library. The results
we obtained outline the robustness, performance and efficiency of our implementation for
double precision computation in terms of energy consumption.

References
[1] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on

throughput-oriented processors. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC’09), pages 1–11, New York, NY,
USA, 2009. ACM.

[2] N. Bell and M. Garland. Library cusp website, 2010. Available on line at: http:
//cusplibrary.github.io/ (accessed on October 5, 2021).

[3] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers on the gpu:
conjugate gradients and multigrid. In ACM SIGGRAPH 2005 Courses, SIGGRAPH
’05, New York, NY, USA, 2005. ACM.

[4] A. F. Camargos, V. C. Silva, J.-M. Guichon, and G. Meunier. Iterative solution on
gpu of linear systems arising from the a-v edge-fea of time-harmonic electromagnetic
phenomena. In Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd
Euromicro International Conference on, pages 365–371, Feb 2014.

[5] A.-K. Cheik Ahamed and F. Magoulès. Fast sparse matrix-vector multiplication on
graphics processing unit for finite element analysis. In High Performance Comput-
ing and Communication 2012 IEEE 9th International Conference on Embedded Soft-
ware and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on, pages
1307–1314. IEEE Computer Society, 2012.

[6] A.-K. Cheik Ahamed and F. Magoulès. Iterative methods for sparse linear systems
on graphics processing unit. In High Performance Computing and Communication
2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on, pages 836–842. IEEE Computer
Society, june 2012.

[7] A.-K. Cheik Ahamed and F. Magoulès. Iterative krylov methods for gravity problems
on graphics processing unit. In Distributed Computing and Applications to Business,
Engineering Science (DCABES), 2013 12th International Symposium on, pages 16–20.
IEEE Computer Society, 2013.

14

http://cusplibrary.github.io/
http://cusplibrary.github.io/

[8] A.-K. Cheik Ahamed and F. Magoulès. Schwarz method with two-sided transmis-
sion conditions for the gravity equations on graphics processing unit. In Distributed
Computing and Applications to Business, Engineering Science (DCABES), 2013 12th
International Symposium on, pages 105–109. IEEE Computer Society, 2013.

[9] A.-K. Cheik Ahamed and F. Magoulès. A stochastic-based optimized Schwarz method
for the gravimetry equations on gpu clusters. In Domain Decomposition Methods in
Science and Engineering XXI. Springer, 2014.

[10] N. Corporation. Geforce gtx 780 specifications. Available on line at: http://
www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications (ac-
cessed on October 5, 2021).

[11] N. Corporation. Unified memory in cuda 6, November 2013. Available on line
at: https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
(accessed on October 5, 2021).

[12] N. Corporation. NVIDIA CUDA C Programming Guide, version 6.0 2014. Available on
line at: http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (ac-
cessed on October 5, 2021).

[13] M. Creel and M. Zubair. High performance implementation of an econometrics and
financial application on GPUs. In High Performance Computing, Networking, Storage
and Analysis (SCC), 2012 SC Companion:, pages 1147–1153, Nov. 2012.

[14] L. Djinevski, S. Arsenovski, S. Ristov, and M. Gusev. Optimal configuration of gpu
cache memory to maximize the performance. In ICT Innovations 2013 Web Proceedings,
2013.

[15] L. Djinevski, S. Arsenovski, S. Ristov, and M. Gusev. Performance drawbacks for matrix
multiplication using set associative cache in gpu devices. In Information & Commu-
nication Technology Electronics & Microelectronics (MIPRO), 2013 36th International
Convention on, pages 193–198. IEEE, 2013.

[16] S. Gaïfas. Machine Learning, High dimension and Big Data, 2014. Available on line
at: http://www.cmap.polytechnique.fr/~gaiffas/gaiffas/files/m2_big_data/
slides1.pdf (accessed on October 5, 2021).

[17] A. Gaikwad and I. Toke. Parallel iterative linear solvers on GPU: a financial engineering
case. In 2010 18th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pages 607–614, Feb. 2010.

[18] Green500. The green500 list - november 2013, 2013. Available on line at: http:
//www.green500.org/lists/green201311 (accessed on October 5, 2021).

[19] H. Huo, C. Sheng, X. Hu, and B. Wu. An energy efficient task scheduling scheme
for heterogeneous gpu-enhanced clusters. In Systems and Informatics (ICSAI), 2012
International Conference on, pages 623 – 627, May 2012.

[20] C. Juan M., G. Gines D., and G. Jose M. Energy efficiency analysis of gpus. In Parallel
and Distributed Processing Symposium Workshops and PhD Forum (IPDPSW), 2012
IEEE 26th International, pages 1014 – 1022, May 2012.

[21] W. Liu, Z. Du, Y. Hiao, B. David A., and C. Xu. A waterfall model to achieve energy
efficient tasks mapping for large scale gpu clusters. In Parallel and Distributed Process-
ing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,
pages 82 – 92, May 2011.

15

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.cmap.polytechnique.fr/~gaiffas/gaiffas/files/m2_big_data/slides1.pdf
http://www.cmap.polytechnique.fr/~gaiffas/gaiffas/files/m2_big_data/slides1.pdf
http://www.green500.org/lists/green201311
http://www.green500.org/lists/green201311

[22] Y. Maday and F. Magoulès. Non-overlapping additive Schwarz methods tuned to highly
heterogeneous media. Comptes Rendus à l’Académie des Sciences, 341(11):701–705,
2005.

[23] Y. Maday and F. Magoulès. Absorbing interface conditions for domain decomposi-
tion methods: a general presentation. Computer Methods in Applied Mechanics and
Engineering, 195(29–32):3880–3900, 2006.

[24] Y. Maday and F. Magoulès. Improved ad hoc interface conditions for Schwarz solu-
tion procedure tuned to highly heterogeneous media. Applied Mathematical Modelling,
30(8):731–743, 2006.

[25] Y. Maday and F. Magoulès. Optimized Schwarz methods without overlap for highly
heterogeneous media. Computer Methods in Applied Mechanics and Engineering,
196(8):1541–1553, 2007.

[26] F. Magoulès, P. Iványi, and B. Topping. Convergence analysis of Schwarz methods
without overlap for the Helmholtz equation. Computers and Structures, 82(22):1835–
1847, 2004.

[27] F. Magoulès, P. Iványi, and B. Topping. Non-overlapping Schwarz methods with op-
timized transmission conditions for the Helmholtz equation. Computer Methods in
Applied Mechanics and Engineering, 193(45–47):4797–4818, 2004.

[28] F. Magoulès and F.-X. Roux. Lagrangian formulation of domain decomposition meth-
ods: a unified theory. Applied Mathematical Modelling, 30(7):593–615, 2006.

[29] OpenCL, 2010. Available on line at: http://www.khronos.org/opencl/ (accessed on
October 5, 2021).

[30] PCI-SIG. Pci express 3.0 frequently asked questions pci-sig. Available on
line at: http://www.pcisig.com/news_room/faqs/pcie3.0_faq/PCI-SIG_PCIe_3_
0_FAQ_Final_07102012.pdf/ (accessed on October 5, 2021).

[31] PCI-SIG. Pci express 4.0 specification frequently asked questions pci-sig. Available on
line at: http://www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/ (accessed
on October 5, 2021).

[32] PCI-SIG. Pci express architecture frequently asked questions. Available on line at:
http://www.pcisig.com/news_room/faqs/faq_express/pciexpress_faq.pdf/ (ac-
cessed on October 5, 2021).

[33] PINOUTS.RU. Pci express 1x, 4x, 8x, 16x bus pinout, 2014. Available on line at: http:
//pinouts.ru/Slots/pci_express_pinout.shtml (accessed on October 5, 2021).

[34] K. Stephan W., D. William J., B. Khailany, M. Garland, and D. Glasco. Gpus and
the future of parallel computing. In Micro, IEEE (Volume: 31, Issue: 5), pages 7–17,
Sept. - Oct. 2011.

[35] H. Sutter. The concurrency revolution. C/C++ Users Journal, February 2005.

[36] Top500. Top500 list - november 2013, 2013. Available on line at: http://www.top500.
org/list/2013/11/ (accessed on October 5, 2021).

16

http://www.khronos.org/opencl/
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/PCI-SIG_PCIe_3_0_FAQ_Final_07102012.pdf/
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/PCI-SIG_PCIe_3_0_FAQ_Final_07102012.pdf/
http://www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/
http://www.pcisig.com/news_room/faqs/faq_express/pciexpress_faq.pdf/
http://pinouts.ru/Slots/pci_express_pinout.shtml
http://pinouts.ru/Slots/pci_express_pinout.shtml
http://www.top500.org/list/2013/11/
http://www.top500.org/list/2013/11/

	1 Introduction
	2 Measuring Power Consumption of GPUs
	2.1 Context
	2.2 Experimental Protocol
	2.2.1 Building a Physical Device
	2.2.2 Sample Code Used

	3 Numerical Results and Prediction Algorithm
	3.1 Validation of the experimental protocol
	3.2 Collection of the measures
	3.3 Regression: Generalized Least Squares (GLS) Method
	3.3.1 Unitary Time Regression
	3.3.2 Unitary Power Regression

	3.4 Model and Prediction
	3.5 Application to gravity equations

	4 Conclusion

