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Abstract

In this work, we present the analytic treatment of the
large order Bessel functions that arise in the Fourier
Transform (FT) of the Gravitational Wave (GW) signal
from a pulsar.We outline several strategies which employ
asymptotic expansions in evaluation of such Bessel func-
tions which also happen to have large argument. Large
order Bessel functions also arise in the Peters-Mathews
model of binary inspiralling stars emitting GW and sev-
eral problems in potential scattering theory. Other ap-
plications also arise in a variety of problems in Ap-
plied Mathematics as well as in the Natural Sciences
and present a challenge for High Performance Comput-
ing(HPC).

1. Introduction

The detection of gravitational waves (GW) from as-
trophysical sources is one of the most outstanding prob-
lems in experimental gravitation today. Large laser
interferometric gravitational wave detectors like the
LIGO, VIRGO, LISA, TAMA 300, GEO 600 and AIGO
are potentially opening a new window for the study of
a vast and rich variety of nonlinear curvature phenom-
ena.

In recent works [1] we have analyzed the Fourier
transform (FT) of the Doppler shifted GW signal from
a pulsar with the use of the Plane Wave Expansion
in Spherical Harmonics (PWESH). Spherical-harmonic
multipole expansions are used throughout theoretical
physics. The expansion of a plane wave in spherical har-
monics has a variety of applications not only in quan-
tum mechanics and electromagnetic theory [2], but also

in many other areas. A number of researchers have used
spherical-harmonic expansions for a variety of problems
in general relativity, including problems where nonlin-
earity shows up[3]. The basis states in the PWESH
expansion form a complete set and facilitate such a
study. It also turns out that the consequent analysis of
the Fourier Transform (FT) of the GW signal from a
pulsar has a very interesting and convenient develop-
ment in terms of the resulting spherical Bessel, gener-
alized hypergeometric function, the Gamma functions
and the Legendre functions. Both rotational and or-
bital motions of the Earth and spindown of the pul-
sar can be considered in this analysis which happens
to have a nice analytic representation for the GW sig-
nal in terms of the above special functions. The signal
can then be studied as a function of a variety of dif-
ferent parameters associated with both the GW pulsar
signal as well as the orbital and rotational parameters.
The numerical analysis of this analytical expression for
the signal offers a challenge for fast and high perfor-
mance parallel computation. The plane wave expansion
approach was also used by Bruce Allen and Adrian C.
Ottewill [4] in their study of the correlation of GW sig-
nals from ground-based GW detectors. They use the
correlation to search for anisotropies from stochastic
background in terms of the l,m multipole moments.
Our PWESH formalism enables a similar study. Re-
cent studies of the Cosmic Microwave Background Ex-
plorer have raised the interesting question of the study
of very large multipole moments with angular momen-
tum l and its projection m going up to very large val-
ues of l ∼ 1000. Such problems warrant an intensive
analytic study supplemented by numerical and paral-
lel computation.

Since our FT depends on the Bessel function, a com-
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putational issue arises due to large values of the in-
dex or order n of the function. In the GW form of the
pulsar, the Doppler shifted orbiting motion gives rise
to Bessel functions Jn(

2πf0A sin θ
c ), where 2πf0A sin θ

c is
large for non-negligible angle θ as is shown in the fol-
lowing section. Even for sin θ ∼ 1

1000 , the argument is
large necessitating the consideration of large values of
n. The motivation of this work, is to extend the anal-
ysis in Watson [5] for large index, argument and over-
lapping situations. Meissel [6] has made derivations for
large order Bessel functions both when the argument
is smaller than the order and vice versa. The asymp-
totics of these large order Bessel functions are tricky in
the sense that one runs into so-called “transition” re-
gions where such expansions fail. These regions are val-
ues of the function when the argument is close to the
given order. As an application, we will address the phe-
nomenological situation of GW signal analysis of large
order n (which does arise with combinations of l and
m) and supplement the related computations with the
presently derived results in a forthcoming paper.

Captures of stellar-mass compact objects (CO) by
massive black holes are important capture sources for
the Laser Interferometer Space Antenna (LISA), the
space based GW detector due to be launched in about
a decade[7]. Higher Harmonics of the orbital frequency
of the COs arise in the post Newtonian (PN) capture
GW model forms and contribute considerably to the
total signal to noise (S/N) ratio of the waveform. The
GW form can be decomposed into gravitational multi-
pole moments which are treated in the Fourier analy-
sis of Keplerian eccentric orbits. The radiation depends
strongly on the orbital eccentricity e, and Bessel func-
tions Jn(ne) are a natural consequence of the analy-
sis.

The calculation of partial derivatives of the poten-
tial scattering phase shifts which often contain Bessel
and Legendre functions of large order angular momen-
tum l, with respect to angular momentum arise in a va-
riety of scattering problems in atomic, molecular and
nuclear physics. In particular, large values of l can arise
in rainbow, glory and orbit scattering. The analysis in
our paper should help provide suitable approximations
for large order and/or argument for the Bessel func-
tions that arise in such problems.

2. Fourier Transform of the GW signal

The FT for the GW Doppler shifted pulsar signal
[1] is given as follows:

h̃(f) = Snlm(ω0, ωorb, TrE, n, l,m,A,R, k, α, θ, φ) =

∞∑

n=−∞

∞∑

l=0

l∑

m=−l

ψ0ψ1ψ2ψ3ψ4 (1)

where

ψ0(n, l,m, α, θ, φ) = 4πilYlm(θ, φ)NlmP
m
l (cosα) (2)

ψ1(n, θ, φ, TrE , f0, A) = TrE

√
π

2
e−i

2πf0A

c
sin θ cosφine−inφ

× Jn

(
2πf0A sin θ

c

)
(3)

ψ2(l, ωorb, ωr, n,m,R) =

{
1− eiπ(l−Borb)R

1− eiπ(l−Borb)

}
e−iBorb

π
2

22l

(4)

ψ3(k, l,m, n, ωorb, ωr) = kl+
1

2

×
Γ (l+ 1)

Γ
(
l + 3

2

)
Γ
(
l+Borb+2

2

)
Γ
(
l−Borb+2

2

) (5)

ψ4(k, l,m, n, ωorb, ωr) =1 F3(l + 1; l +
3

2
,

l +Borb + 2

2
,
l−Borb + 2

2
;
−k2

16
) (6)

The angle α is the co-latitude detector angle and an-
gles θ, φ are associated with the pulsar source. Here
ω0 = 2πf0, ωorb = 2π

Torb
(Torb = 365 days, TrE = 1

day), Borb = 2
(

ω−ω0

ωr
+ m

2 + nωorb

ωrot

)
, k = 4πf0RE sin(α)

c

(RE is the radius of Earth, c is the velocity of light)
and A = 1.5× 1011 meters is the sun-earth distance.

3. Extensions of Meissel’s and Steepest

Descent Expansions

The Bessel function, of the type, Jν(x) obeys the fol-
lowing differential equation [5],

z2
d2Jν(νz)

dz2
+ z

dJν(νz)

dz
+ ν2(1− z2)Jν(νz) = 0 (7)

where the argument x is parameterized by νz. If a func-
tion u(z) is introduced such that

Jν(νz) =
νν

Γ(ν + 1)
exp

{∫ z

u(z)dz

}
(8)



where u(z) is a series in descending powers of ν,

u(z) = νu0 + u1 +
u2

ν
+
u3

ν2
+
u4

ν3
+
u5

ν4
+
u6

ν5
+
u7

ν6

+
u8

ν7
+
u9

ν8
+ ... (9)

Substitution of this series and equation (8) in the dif-
ferential equation (7) yields the following expressions
for ui(z), i = 0...5,

u0 =

√
1− z2

z
, u1 =

z

2(1− z2)
, u2 = −

4z + z2

8(1− z2)5/2

u3 =
4z + 10z3 + z5

8(1− z2)4
, u4 = −

64z + 560z3 + 456z5 + 25z7

128(1− z2)11/2

u5 =
16z + 368z3 + 924z5 + 347z7 + 13z9

32(1− z2)7

Hence, by integrating ui, and substituting in Equation
(8) we arrive at Meissel’s First expansion [6], which is
valid for the case when the argument is less than the
order ν. We do not list u6, u7, u8 and u9 as one can ob-
tain these straightforwardly from their respective inte-
grals shown below. These results are expressed as,

Jν(νz) =
(νz)ν exp(ν

√
1− z2) exp(−Vν)

eνΓ(ν + 1)(1− z2)1/4[1 +
√
1− z2]ν

(10)

where,

Vν = V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + ... (11)

and,

V1 =
1

24ν

(
2 + 3z2

(1− z2)3/2
− 2

)
, V2 = −

4z2 + z4

16ν2(1− z2)3

V3 = −
1

5760ν3

(
16− 1512z2 − 3654z4 − 375z6

(1 − z2)9/2
− 16

)

V4 = −
32z2 + 288z4 + 232z6 + 13z8

128ν4(1− z2)6

V5 = −
1

322560ν5(1− z2)15/2
(67599 z10 + 1914210 z8

+4744640 z6+ 1891200 z4 + 78720 z2 + 256) +
1

1260ν5

V6 =
z2

192(1− z2)9ν6
(48 + 2580z2 + 14884z4

+17493z6 + 4242z8 + 103z10)

V7 = −
(1− z2)−21/2

3440640ν7
(881664z2 + 99783936z4

+ 1135145088z6+ 2884531440z8+ 1965889800z10

+318291750z12+ 5635995z14 − 2048)−
1

1680ν7

V8 =
z2

4096(1− z2)12ν8
(1024 + 248320z2 + 5095936z4

+24059968z6+ 34280896z8 + 15252048z10

+1765936z12 + 23797z14)

Hence we have actually increased Meissel’s analysis by
two orders. Using symbolic packages these orders were
computed and higher terms should pose no problem if
the application requires higher accuracy.

For the case when the argument is larger than the
index, Meissel used the parametrization z = secβ [6],
and we shall term it as his Second expansion. Hence,

Jν(ν sec β) =

√
2 cotβ

νπ
e−Pν cos

(
Qν −

1

4
π

)
(12)

where Pν is given as,

Pν = P1 + P2 + P3 + P4 + ... (13)

where

P1 =
cot6 β

16ν2
(
4 sec2 β + sec4 β

)

P2 = −
cot12 β

128ν4
(32 sec2 β + 288 sec4 β + 232 sec6 β

+13 sec8 β)

P3 =
cot18 β

192ν6
(48 sec2 β + 2580 sec4 β + 14884 sec6 β

+17493 sec8 β + 4242 sec10 β + 103 sec12 β)

P4 =
cot24 β sec2 β

4096ν8
(1024 + 248320 sec2 β + 5095936 sec4 β

+ 24059968 sec6 β + 34280896 sec8 β + 15252048 sec10 β

+1765936 sec12 β + 23797 sec14 β)

and Qν is given as,

Qν = Q1 +Q2 +Q3 +Q4 + ... (14)



and,

Q1 = ν(tan β − β)−
cot3 β

24ν

(
2 + 3 sec2 β

)

Q2 = −
cot9 β

5760ν3
(16− 1512 sec2 β − 3654 sec4 β

−375 sec6 β)

Q3 = −
cot15 β

322560ν5
(256 + 78720 sec2 β + 1891200 sec4 β

+4744640 sec6 β + 1914210 sec8 β + 67599 sec10 β)

Q4 = −
cot21 β

3440640ν7
(881664 sec2 β + 99783936 sec4 β

+ 1135145088 sec6 β + 2884531440 sec8 β + 1965889800 sec10 β

+318291750 sec12 β + 5635995 sec14 β − 2048)

It should be remarked that we disagree with Meissel’s
result for P3 in the last four terms. However, we ob-
tain perfect agreement with the rest of his results [6].
We have improved on his result by using V7, V8 to ob-
tain P4 and Q4. Hence, we have increased the accuracy
of this expansion by at least one order from Meissel’s
earlier result. Again, higher order results are easily ob-
tainable and are available if needed.

In Figures 1 and 2 we have plotted these expan-
sions in the regions they are expected to fail. These
are the so called “transition” regions, where each ex-
pansion approaches a singularity (as the order equals
the argument). For the computationally motivated (we
can compute exact values of Bessel functions with ease)
case of the ν = 300, we note the following. Fig.1 indi-
cates the onset of breakdown in the First expansion
for argument values around and larger than 290. Sim-
ilarly, Figure 2, indicates a similar breakdown starting
around the values 300 and persisting till 310. Hence,
the values outside these regions of breakdown or tran-
sition regions are well covered by Meissel’s expansions.
However, the issue as to deal with these regions need to
be addressed via separate methods, which will be ad-
dressed in more detail in Section IV. The CPU time
for these approximations was less than 0.01 seconds
per value on a 2.4 GHz Pentium IV processor running
MAPLE version 9. The “exact” MAPLE solver took
somewhere between 0.03 to 0.08 seconds to compute
each value. Clearly, there is a lot more computational
speed in using a few terms present in these expansions.
As an application, it should be noted that values of
this order are applicable to the Peters-Mathews model
of gravitational radiation from binary inspiralling stars
[7].
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Figure 1: Meissel’s First expansion and actual Bessel
function graphed for argument x and order ν = 300
near the transition region. Solid line indicates actual
Bessel function values and circles indicate values given
by the expansion.

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

310 320 330 340 350

x

Figure 2: Meissel’s Second expansion and actual Bessel
function graphed for argument x and order ν = 300
near the transition region. Solid line indicates actual
Bessel function values and circles indicate values given
by the expansion.



For the case when the argument equals the index,
we extend Meissel’s Third expansion [6] by two orders
as follows:

Jn(n) ∼
1

π

∞∑

m=0

λmΓ

(
2m

3
+

4

3

)(
6

n

) 2

3
m+ 1

3

cosπ(
m

3
+
1

6
)

(15)
where the terms, λm (m = 0, 1, 2, ..7), are given by,

λ0 = 1, λ1 =
1

60
, λ2 =

1

1400
, λ3 =

1

25200
,

λ4 =
43

17248000
, λ5 =

1213

7207200000
, λ6 =

681563

5721073600000
,

λ7 =
63319

726485760000000
(16)

We observe that inclusion of the higher order terms
leads to 10 decimal accuracy compared to actual val-
ues of large order Bessel functions.

The method of steepest descents was employed by
Debye in [8]. For the case when the argument is less
than the order, he obtained,

Jν(νsech(α)) ∼
eν(tanhα−α)

√
2πν tanhα

∞∑

m=0

Γ(m+ 1
2 )

Γ(12 )

Am

(12ν tanhα)
m

(17)
where,

A0 = 1, A1 =
1

8
−

5

24
coth2 α

A2 =
3

128
−

77

576
coth2 α+

385

3456
coth4 α

A3 =
5

1024
−

1521

25600
coth2 α+

17017

138240
coth4 α

−
17017

248832
coth6 α

A4 =
11513

92897280
−

21023

9953280
coth2 α+

138919

19906560
coth4 α

−
49049

5971968
coth6 α+

230945

71663616
coth8 α

Following this method, we have computed two higher
orders A3 and A4, using symbolic computation.

For the case when the argument is larger than the
order, Debye obtains the following expansion:

Jν(ν sec β) ∼

√
2

πν tanβ
[cos

(
ν tanβ − νβ −

1

4
β

)

×

∞∑

m=0

(−1)m
Γ(m+ 1

2 )

Γ(12 )

A2m

(12ν tanhα)
2m

+ sin(ν tanβ

− νβ −
1

4
β)

∞∑

m=0

(−1)m
Γ(2m+ 3

2 )

Γ(12 )

A2m+1

(12ν tanhα)
2m+1

] (18)

where,

A0 = 1, A1 =
1

8
+

5

24
cot2 β

A2 =
3

128
+

77

576
cot2 β +

385

3456
cot4 β

A3 =
5

1024
+

1521

25600
cot2 β +

17017

138240
cot4 β

+
17017

248832
cot6 β

A4 =
11513

92897280
+

21023

9953280
cot2 β +

138919

19906560
cot4 β

+
49049

5971968
cot6 β +

230945

71663616
cot8 β

Again, we have extended Debye’s result by two
higher orders by obtaining A3 and A4. However, due to
the nature of this method we could not obtain reliable
results that spanned in a generally predictable direc-
tion. Accuracy was limited to the region of the station-
ary phase as expected and hence, we recommend Meis-
sel’s expansions to be more reliable (except of course
in the “transition” region) than the method of steep-
est descent.

4. Transitional regions: Contour Inte-

gration and extension of ǫ expansion

To address the issues related to computation for
large order Bessel functions in the transition regions
we present two methods that are geared to work in
such domains. Firstly, we present the results by Wat-
son, [5]. For the case of the argument being less than
the order, he obtained via use of contour integration,

Jν(νsech(α)) =
tanhα

π
√
3

exp

[
ν

(
tanhα+

1

3
tanh3 α− α

)]

×K 1

3

(
1

3
ν tanh3 α

)

+ 3θ1ν
−1 exp[ν(tanhα− α)] (19)

where θ1 < 1. Similarly, for the case when the argu-
ment is greater than the order, he derived the follow-
ing:

Jν(ν secβ) =
1

3
tanβ cos

[
ν

(
tanβ −

1

3
tan3 β − β

)]
×



(
J− 1

3

+ J 1

3

)
+ 3−

1

2 tanβ sin

[
ν

(
tanβ −

1

3
tan3 β − β

)]
×

(
J− 1

3

− J 1

3

)

+ 24θ2ν
−1 (20)

where θ2 < 1 and the argument for the Bessel func-
tions J± 1

3

is 1
3 tan

3 β. The great advantage of these for-
mulae is that they have error bounds given. However,
these extensions are not trivial as this involves solv-
ing extensions to Airy-type integrals, for which we do
not presently have closed form answers. The other is-
sue with these formulae is that they are themselves
given in fractional Bessel function form which would
pose computational problems once the arguments in-
volved are large.

On the other hand, Debye [8], introduced, what we
will term as “ǫ expansion”. The idea is motivated by
introducing a small parameter ǫ, such that ν = z(1 −
ǫ), where ν denotes the order and z is the argument of
the Bessel function.

Jν(z) ∼
1

3π

∞∑

m=0

Bm(ǫz) sin
1

3
(m+ 1)π ·

Γ(13m+ 1
3 )

(16z)
1

3
(m+1)

(21)
We have extended this analysis by 5 orders and the

terms Bm(ǫz),m = 0, 1, 2, ..15, are given as,

B0(ǫz) = 1, B1(ǫz) = ǫz, B3(ǫz) =
1

6
ǫ3z3 −

1

15
ǫz

B4(ǫz) =
1

24
ǫ4z4 −

1

24
ǫ2z2 +

1

280

B6(ǫz) =
1

720
z6ǫ6 −

7

1440
z4ǫ4 +

1

288
z2ǫ2 −

1

3600
(22)

B7(ǫz) =
1

5040
z7ǫ7 −

1

900
z5ǫ5 +

19

12600
z3ǫ3 −

13

31500
zǫ

B9(ǫz) =
1

362880
z9ǫ9 −

1

30240
z7ǫ7 +

71

604800
z5ǫ5

−
121

907200
z3ǫ3 +

7939

232848000
zǫ

B10(ǫz) =
1

3628800
z10ǫ10 −

11

2419200
z8ǫ8 +

143

6048000
z6ǫ6

−
803

18144000
z4ǫ4 +

43

1728000
z2ǫ2 −

1213

655200000

B12(ǫz) =
1

479001600
z12ǫ12 −

13

217728000
z10ǫ10 +

299

508032000
z8ǫ8 −

377

155520000
z6ǫ6 +

337207

83825280000
z4ǫ4

−
59503

27941760000
z2ǫ2 +

151439

977961600000

B13(ǫz) =
1

6227020800
z13ǫ13 −

1

171072000
z11ǫ11 +

11

145152000
z9ǫ9 −

47

108864000
z7ǫ7 +

25853

23950080000
z5ǫ5

−
266303

259459200000
z3ǫ3 +

169039

698544000000
zǫ

B15(ǫz) =
1

1307674368000
z15ǫ15 −

1

23351328000
z13ǫ13

+
113

125737920000
z11ǫ11 −

17

1905120000
z9ǫ9

+
76841

1760330880000
z7ǫ7 −

37021

371498400000
z5ǫ5

+
5141933

57210753600000
z3ǫ3 −

16720141

810485676000000
zǫ

Terms B3m−1, m = 1, 2... do not contribute in eqn.
(21) due to the periodicity of the sine function. With
symbolic computation, we are able to generate higher
orders if needed.

To illustrate the applicability and issues of both
these methods to the transition region, we present Fig-
ures 3 and 4, which are plotted for the problematic re-
gions (when the order is ν = 300) in Figures 1 and 2.
Both methods show remarkable ability in capturing the
functions in the domains of interest. In Figure 3, the
ǫ expansion starts working at values at 286 and Wat-
son’s formula works to even a larger domain. Similarly,
in Figure 4, both the methods indicate success in re-
gions where Meissel’s expansions fail. This starts at val-
ues of the argument, and works up to x = 316 for the ǫ
expansion whereas, again, the domain of Watson’s for-
mula is much greater. The reasons for lesser range of
the ǫ expansion can be attributed to the fact that it
is a power series compared to Watson’s formula which
actually depends on fractional Bessel functions them-
selves. Further, the ǫ expansion depends crucially on
the size of the parameter, which is connected with the
order one is working with. However, the reason why we
will persist with this method is that it will be more ap-
plicable when the argument of the Bessel function is
quite large.

To illustrate the type of values a GW pulsar FT
would require, we present Figures 5 and 6. Here, we
choose a very large order (yet realistic phenomeno-
logically) for the Bessel function, which is 1 million.
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Figure 3: Comparison of ǫ expansion and Watson’s for-
mulae for argument x < 300 and order ν = 300.Solid
line indicates exact Bessel function values, diamonds
represent ǫ expansion and circles indicate values given
by Watson’s formula.
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Figure 4: Comparison of ǫ expansion and Watson’s for-
mula in the transition region for argument x > 300 and
order ν = 300. Solid line indicates exact Bessel func-
tion values, diamonds represent ǫ expansion and circles
indicate values given by Watson’s formula.

Also, in such a scenario, we would be looking at values
greater than one million, hence Meissel’s second expan-
sion along with the appropriate Watson’s formula (eq.
20) will be put to use. We were not able to make exact
comparison, obviously due to massive computer times
required. In this regard, the problem of “exact” Bessel
functions presents a genuine challenge to SHARCNET
(Shared Hierarchical Academic Research Cluster Net-
work) and HPC in general. In Figure 5, we observe
strong evidence that the proposed asymptotic expan-
sions are appropriate for GW signal analysis. Here, we
note the transition region starting at values of the ar-
gument at 1,000,000 and going up to 1,000,200. In this
region, both the ǫ expansion and Watson’s formula al-
most coincide with each other. As usual, the ǫ expan-
sion breaks down earlier, however, all three methods co-
incide in a certain region indicating that we have con-
sistent methods that work for values relevant to GW
analysis. Meissel’s expansion is fairly easy to imple-
ment computationally and indicates good stability for
rather large values of the argument. This is illustrated
in Figure 6, where we plot this expansion for values
ranging from 1,000,200 to 32,500,000, which are rele-
vant for GW phenomenology. This appears as a black
band and is a continuous function which indicates oscil-
lations tightly bunched together. It is noteworthy that
the method is stable and shows consistent behaviour
over an extreme range of values for the argument. The
CPU time consumed by each of the points, on the aver-
age took less than 0.01 seconds on MAPLE. The Bessel
utility in MAPLE crashed repeatedly after 15-30 min-
utes on the same system described above. It should be
remarked that Watson’s formula lacks in this capac-
ity as it depends on fractional Bessel functions itself,
which will provide computational challenge for such
values. A detailed analysis regarding computational ad-
vantage over exact computation will be addressed in a
later work. It is aimed to not only address the ques-
tion of GW analysis but will deal with general compu-
tational issues regarding large order Bessel functions.

5. Conclusion

In this present work, we have given an extended
asymptotic analysis for the large order and argument
Bessel functions. This analytically improves the earlier
pioneering works of Meissel, Airey, Debye and Watson.
These extensions should be of possible use not only
in GW signal analysis, but also in a variety of prob-
lems in Engineering and the Sciences where the ubiq-
uitous Bessel functions are encountered.
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Figure 5: Comparison of Meissel’s Second expansion,
ǫ expansion and Watson’s formulae for argument x >
1, 000, 000 and order ν = 1, 000, 000. Solid line indi-
cates Meissel’s Second expansion values, diamonds rep-
resent ǫ expansion and circles indicate values given by
Watson’s formula.
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Figure 6: Plot of Meissel’s Second expansion for argu-
ment, x ranging from 1,000,200 to 32,500,000 for order
1,000,000.
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