
Parallel Computation of Skyline Queries

Adan Cosgaya-Lozano
Faculty of Computer Science

Dalhousie University
Halifax, NS Canada
acosgaya@cs.dal.ca

Andrew Rau-Chaplin
Faculty of Computer Science

Dalhousie University
Halifax, NS Canada

arc@cs.dal.ca

Norbert Zeh
Faculty of Computer Science

Dalhousie University
Halifax, NS Canada

nzeh@cs.dal.ca

Abstract

Skyline queries have received considerable attention in
the database community recently. The goal is to retrieve all
records in a database that have the property that no other
record is better according to all of a given set of criteria.
While this problem has been well studied in the computa-
tional geometry literature, the solution of this problem in
the database context requires techniques designed partic-
ularly to handle large amounts of data. In this paper, we
show that parallel computing is an effective method to speed
up the answering of skyline queries on large data sets. We
also propose to preprocess the set of data points to quickly
answer subsequent skyline queries on any subset of the di-
mensions.

1. Introduction

Given a collection S of database records, every record in
S stores a collection of attributes. If an attribute is numer-
ical, we often consider a record r to be better than another
record r′ w.r.t. this attribute if r’s attribute value is less than
or greater than that of r′, depending on what this attribute
represents. If, for example, the records in S represent ho-
tels and the attribute we consider is the price of a room, we
normally prefer hotel A over hotel B if a room in hotel A is
cheaper than in hotel B. If this is the only attribute we are
interested in, any standard database system can easily return
the cheapest hotel. This hotel may be somewhere in Siberia,
while we are looking for a hotel to stay at during a confer-
ence in Cancún. So distance to the conference site should
also be taken into account. This leads to a trade-off, with
some hotels being cheaper, while others may be closer to
the conference site. The database system cannot determine
what is more important to us: distance to the conference
site or price. It can be assumed, however, that we would not
be interested in a hotel A if there is another hotel B that is
cheaper and closer to the conference site. We say that hotel
B dominates hotel A. In order to give us the full range of
choices, while not suggesting any hotels that are obviously
inferior to others, the database system should therefore re-

port all hotels in S that are not dominated by any other hotel.
These hotels form the skyline of S. See Figure 1 for an il-
lustration. In this example, every hotel is represented as a
point in two-dimensional space, the x-coordinate being its
distance from the conference site and the y-coordinate be-
ing its price. Hotels p2, p3, p6, p7, p8 are dominated by hotel
p1, while hotels p1, p4, p5 are not dominated by any other
hotels. Hence, the latter form the skyline of this collection
and constitute the set of candidates we would consider for
booking a room.

p1

p2

p3

p4

p5

p6

p7

p8

1 1.5 2 2.5 3 x

Distance to conference site (km)

40

80

120

160

200

y

Pr
ic

e
($

)

Figure 1. Skyline Example

More generally, we can consider the database records to
be a set S of points in d-dimensional space. For a point p
and all 1 ≤ i ≤ d, we denote its i’th dimension by xi(p).
We assume w.l.o.g. that all coordinates are non-negative.
Point p1 is said to dominate point p2 if xi(p1) ≤ xi(p2),
for all 1 ≤ i ≤ d, and at least one of these inequalities is
strict. A point p is a skyline point if it is not dominated by
any other point in S. The skyline of S, denoted sky(S), is
the collection of all its skyline points. Our goal in this paper
is to compute this skyline quickly.

Due to its importance in a range of application areas, in-
cluding statistics, economics, and many more, the compu-
tation of the skyline of a d-dimensional point set has re-
ceived much attention in the computational geometry com-
munity [12], where a skyline point is called a maximal el-

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

ement. A theoretically efficient divide-and-conquer algo-
rithm has been obtained by Kung et al. [10].

More recently, the database community has focused on
skyline queries, aiming at the integration of a skyline op-
erator into SQL [3] and the development of simple and
practically efficient methods for answering these queries
[5, 9, 11, 13, 14]. The proposed algorithms can be divided
into two categories: Algorithms in the first category solve
the problem without preprocessing. Algorithms in the sec-
ond category first construct an efficient indexing structure
of the point set and then use this structure to answer skyline
queries quickly.

Most of the previous work on skyline queries has fo-
cused on the development of efficient sequential algorithms.
Since, however, the data sets to be processed in real-world
applications are of considerable size, we see a need for
improved query performance, and parallel computing is a
natural choice to achieve this performance improvement.
In this paper, we focus on achieving good speed-up over
sequential algorithms using a distributed-memory cluster.
We develop a parallel algorithm for reporting the skyline
of a point set and verify experimentally that this algorithm
achieves good speed-up and scales well in practice. If the
size of the skyline exceeds a certain value k ≤ n/p to be
provided as an argument to our algorithm, we report a ran-
dom sample of k skyline points. The motivation, as in [5],
is that in most applications that use skyline queries, an ex-
ceedingly large skyline represents an overwhelming amount
of information that has no added value over a smaller repre-
sentative sample of the set of choices.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss related work. In Section 3, we present
our parallel algorithm. In Section 4, we discuss the experi-
mental results obtained using an implementation of our al-
gorithm. In Section 5, we provide a summary and discuss
directions for future research.

2. Related Work

A number of algorithms have been proposed in the litera-
ture for answering skyline queries. Borzsonyi et al. [3] pro-
pose the Block-Nested-Loops algorithm, which takes the
straightforward approach of comparing every point with ev-
ery other point in the point set and adding it to the sky-
line if it is not dominated by any other point. Kossmann et
al. [9] propose the Nearest-Neighbor algorithm, which uses
a combination of R-trees and divide-and-conquer to answer
skyline queries. Another R-tree-based algorithm, which we
discuss in more detail below, is the branch-and-bound sky-
line algorithm by Papadias et al. [11]. Chan et al. [5] and
Yuan et al. [14] extend the computation of skylines in dif-
ferent directions. The former paper proposes to report only
the k most frequent skyline points if the skyline is too big,
which is often the case in higher-dimensional space. The
motivation is that a very large skyline usually provides lit-
tle added information over a representative sample of sky-
line points. The latter paper focuses on answering skyline

queries over the whole data cube defined by a given subset
of dimensions.

Work on skyline queries in the computational geometry
community has led to an efficient sequential algorithm by
Kung et al. [10], which employs divide and conquer to solve
the problem. This algorithm is discussed in more detail be-
low. Dehne et al. [6] propose an optimal coarse-grained
parallel algorithm for computing skylines in three dimen-
sions; but their approach does not seem to lead to practical
algorithms for higher-dimensional point sets.

Our parallel algorithm uses the divide-and-conquer algo-
rithm by Kung et al. [10] and the branch-and-bound algo-
rithm by Papadias et al. [11] as building blocks. Therefore,
we discuss these two algorithms in more detail here.

2.1. Divide and Conquer (DC)

The divide-and-conquer algorithm of [10] performs a
double recursion on the number of dimensions and the size
of the point set. Given a d-dimensional point set S, the first
step is to find the median coordinate in the d’th dimension,
partition S into two sets L and R around this coordinate,
and recursively find the skylines of L and R. The points in
sky(L) are easily seen to belong to sky(S), while a point in
sky(R) belongs to sky(S) if and only if it is not dominated
by a point in sky(L). Since all points in R have a higher
xd-coordinate than any point in L, the latter depends only
on the first d − 1 dimensions, and the algorithm uses a re-
cursive filtering procedure to filter out all points in R that
are dominated by points in L in these dimensions.

The filtering procedure finds the median coordinate of
the points in L in the (d − 1)’st dimension and partitions L
and R into two sets each around this coordinate, as shown
in Figure 2. It can be observed that no point in Rb can be
dominated by a point in Lt. Hence, it suffices to recursively
filter all points in Rb against the points in Lb and to recur-
sively filter all points in Rt against the points in Lb and Lt.
For the filtering of the points in Rt against the points in Lb,
we observe that all points in Rt have higher xd−1- and xd-
coordinates than any point in Lb. Hence, this filtering step
has to take only the first d−2 dimensions into account. The
recursion in this procedure stops as soon as one of the two
involved point sets has size at most one or the number of
relevant dimensions has reduced to two, at which point a
direct approach finishes the computation in linear time.

DC has a worst-case running time of O(N logd−2 N)
and takes expected linear time on a random point set. In
practice, it works very well for small point sets.

2.2. Branch-and-Bound Skyline (BBS)

BBS [11] is an index-based algorithm that finds the sky-
line points using an R-Tree index [1, 7]. An R-tree is a
B-tree storing all objects in its leaves; every internal node
stores the smallest axis-parallel box that contains all objects
in the leaves that are descendants of this node. This box is
called the minimum bounding rectangle (MBR) of the node.

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

Lb Rb

Lt Rt

dmediand

d − 1

mediand−1

Figure 2. Recursive filtering in DC.

Note that, while the MBR’s along any root-leaf path are
properly nested, the bounding rectangles of sibling nodes
are not necessarily disjoint. This is true even if the stored
objects are points unless the subsets of points to be stored at
the leaves are carefully chosen using a recursive space par-
tition. One way to obtain such a partition is by splitting the
dimensions in a round-robin fashion. The tree obtained us-
ing this procedure, when applied to the point set in Figure 1,
is shown in Figure 3.

p1

p2

p3

p4

p5

p6
p7

p8

N1
N2

N3

N4

N5

N6
N7

1 1.5 2 2.5 3 x

40

80

120

160

200

y

(a) Bounding Boxes

p1 p2 p3 p4 p5 p6 p7 p8

N1 N2 N3 N4

N5 N6

(b) R-Tree

Figure 3. R-Tree for point set from Figure 1

BBS incrementally constructs a list L of skyline points it
has identified; initially, L = ∅. In order to find the skyline
points, it performs a traversal of the R-tree, pruning entire
subtrees if the root of such a subtree is dominated by a point
in L, where we say that a node is dominated by a point p if
the same is true for the corner of the node’s MBR that is

closest to the origin.
More precisely, the algorithm maintains a priority queue

Q of tree nodes, which is initialized to contain the root
of the R-tree. It then retrieves nodes from Q one by one
and processes them. For an internal node v, processing
v involves the following steps: First the algorithm checks
whether v is dominated by a point in L. If so, the same is
true for every point stored in v’s subtree, and the subtree
can be pruned. Otherwise, v’s children are inspected and
each child that is not dominated by a point in L is inserted
into Q. If v is a leaf, the algorithm again checks whether v
is dominated by a point in L. If not, it inspects the points
stored at v and adds each point that is not dominated by a
point in L to L.

To ensure early pruning of large subtrees, the nodes in
Q are processed by increasing mindist, which is defined to
be the L1-distance of the closest corner of the MBR of the
node from the origin.

Papadias et al. [11] show that BBS accesses every node
at most once and visits a node only if its subtree contains at
least one skyline point. They also present experimental re-
sults that demonstrate that the performance of BBS mainly
depends on the size of the computed skyline and the dimen-
sionality of the data. This last limitation is inherited from
the used index structure, that is, from the R-tree.

3. Parallel Skyline Algorithm

Our goal in this paper is to achieve better performance
than any of the algorithms discussed previously by de-
signing a parallel algorithm for answering skyline queries.
Our model is that of a distributed-memory cluster; that
is, if n is the problem size, our computational environ-
ment consists of p independent processors (workstations)
P0, P1, . . . , Pp−1, each with O(n/p) main memory, con-
nected through an interconnection network. Communica-
tion between the processors happens through the explicit
exchange of messages.

As the divide-and-conquer algorithm of [10], our algo-
rithm (see Algorithm 1) exploits that, for any decomposi-
tion of the point set S into subsets S0, S1, . . . , Sp−1, we
have sky(S) = sky(sky(S0)∪ sky(S1)∪· · ·∪ sky(Sp−1)).
Thus, we can assign a subset Si of n/p points to each pro-
cessor Pi. In the first round, each processor Pi locally com-
putes sky(Si). The second round then computes sky(S)
from the local skylines computed by the processors.

To avoid that some processor computes a big local sky-
line all of whose member points are dominated by points
assigned to some other processor, our goal is to ensure that
each set Si is a sample of S whose structure is similar to
S. To this end, we distribute the points randomly over the
processors. After this distribution step, the first round of the
algorithm is straightforward: each processor locally applies
a sequential skyline algorithm to its point set.

The second round requires more care. Let S′ be the
union of the local skylines computed by all processors. If
|S′| ≤ n/p, we use an all-to-all communication to send S′

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

Algorithm 1 PARALLEL SKYLINE

QUERY(S0, . . . , Sp−1, k)
Input: Sets S0, S1, . . . , Sp−1; set Si is stored on processor

Pi. k ≤ n/p is the desired number of skyline points.
Output: Set L of min(k, | sky(S)|) skyline points.

1: for all 0 ≤ i ≤ p − 1 do
2: Pi builds an R-tree R(Si) for Si and runs BBS on

R(Si) to compute sky(Si). Let li = | sky(Si)|.
3: end for
4: Perform an all-to-all communication to compute

l =
∑p−1

i=0 li at each processor.
5: if l < n

p then
6: Perform an all-to-all communication to collect

S′ =
⋃p−1

i=0 sky(Si) at each processor. Divide S′
into p chunks of size |S′|/p. Let S′

i be the i’th such
chunk.

7: for all 0 ≤ i ≤ p − 1 do
8: Pi identifies S′

i ∩ sky(S). This is done either
using DC or by building an R-tree R(S′) and
running BBS on R(S′) and S′

i (see text for
details).

9: end for
10: Perform an all-to-all communication to collect

sky(S) at P0.
11: return a set L ⊆ sky(S) of size min(k, | sky(S)|).
12: else
13: Let g = 0 be the current size of sky(S); each

processor stores the number gi of points it has
contributed to sky(S) so far. Let S′

i = sky(Si).
14: Build an R-tree R(sky(Si)) on sky(Si).
15: while g < k and not all sets S′

i are empty do
16: for all 0 ≤ i ≤ p − 1 do
17: Pi selects and removes a set S′′

i of li · n/p
l

points from S′
i.

18: end for
19: Perform an all-to-all communication to construct

the set S′′ =
⋃p−1

i=0 S′′
i at each processor.

20: for all 0 ≤ i ≤ p − 1 do
21: Pi runs BBS on S′′ and R(sky(Si)) to mark all

points in S′′ dominated by a point in sky(Si).
22: end for
23: Perform an all-to-all communication to send all

marked points back to their original processors.
24: for all 0 ≤ i ≤ p − 1 do
25: Pi removes the received points from S′′

i and
adds the remaining points in S′′

i to its local
portion of sky(S), increasing gi by the number
of added points.

26: end for
27: Perform an all-to-all communication to compute

g =
∑p−1

i=0 gi at each processor.
28: end while
29: Perform an all-to-all communication to collect all g

skyline points in P0.
30: return a set L ⊆ S′′ ⊆ sky(S) of size

min(k, | sky(S)|).
31: end if

to every processor. Each processor Pi then determines for a
subset S′

i ⊆ S′ of points which points in S′
i are dominated

by points in S′ and removes these points from S′
i. At the

end of this round, we perform another all-to-all communi-
cation to collect the points in sets S′

i that were not deleted in
processor P0. These points form sky(S), and processor P0

returns this set or a sample L ⊆ sky(S) of size k, whichever
is smaller.

If |S′| > n/p, we pick a set S′′ of n/p random points
from S′ and send S′′ to every processor. Each processor Pi

now determines which points in S′′ are dominated by points
in sky(Si) and marks them. The marked points are then
sent back to the processors whence they came, and every
processor declares the points it contributed to S′′ and which
are not sent back to it by any other processor to be members
of sky(S). We iterate this process until we have processed
all points in S′ or we have identified at least k members
of sky(S). The fact that we choose each sample of size
n/p uniformly at random from S′ ensures that, if we do
not output all of sky(S), the sample we output is uniformly
distributed and is representative of the points in sky(S).

This general framework in principle allows the use of
any sequential skyline algorithm to perform the local sky-
line computations in the first round, as well as the filtering
step in the second round. For the first round, we choose
BBS because only few points in each set Si belong to
sky(Si), which makes BBS’s pruning strategy highly ef-
fective. In the second round, the structure of S′ as the union
of p local skylines results in about a quarter of the points in
S′ belonging to sky(S). Hence, the pruning strategy is less
effective, and DC outperforms BBS on sets of up to 50,000
points and queries on up to 5 dimensions. Thus, we use
DC when the queries are low-dimensional and S′ is small;
otherwise, we use BBS.

4. Experimental Analysis

We evaluated the performance of our algorithm using an
extensive set of experiments, which demonstrated that our
method (1) achieves linear speed-up in most cases and (2)
scales well to large data sets beyond the reach of any single
node in our cluster.

Our experiments were performed on a 32-node Beowulf-
style cluster with 1.8GHz Intel Xeon processors. Each node
was equipped with 1 GB of RAM and two 40GB 7200 RPM
IDE disk drives. Each node was running Linux Redhat 7.2
with gcc 2.95.3 and MPI/LAM 6.5.6, as part of a ROCKS
cluster distribution. All nodes were interconnected via a
Cisco 6509 GigE switch. The implementation was done in
C++, using MPI to perform interprocessor communication.
Our implementation of BBS uses the R*-tree implementa-
tion of [8].

In our experiments, we used synthetic and real data sets
of up to 6 dimensions to evaluate the performance of our
algorithm. The coordinates were integers. For the syn-
thetic data, these coordinates are chosen uniformly at ran-
dom. The real-world data was taken from [4] and con-

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

tained geographic data that provides hydrological informa-
tion on a continental scale. For our speed-up experiments
we both used synthetic and real data sets of either 1,000,000
or 5,000,000 records. For our final scale-up experiments we
used synthetic data of 2-6 dimensions and up to 80,000,000
records.

Our timing results denote wall clock time, measured
from the start of the first process in our parallel algorithm
till the termination of the last process. These timings in-
clude the time to read the input files from disk.

Note that the part of our algorithm that addresses the case
|S′| > n/p is only required in extreme cases because, as
shown in Bentley et al. [2], the expected size of the skyline
of a random point set is O(logd−1 n), which is typically less
than n/p.

4.1. Experiments with R-Tree on Skyline
Dimensions

Our first set of experiments focused on evaluating the
overall speed-up of our algorithm. Figure 4a shows the rel-
ative speed-up with 1–16 processors on data sets of 2–6 di-
mensions; Figure 4b shows the corresponding wall clock
times. We observe that our algorithm achieves superlinear
speed-up, which we believe to be the result of cache effects.
Given more processors, each processor has to process less
data, resulting in a higher fraction of data that fits into cache.

4.2. Experiments with R-Tree on All Di-
mensions

While the speed-up results in the previous section are
promising, the corresponding wall clock times are substan-
tial (as is the case for previous sequential algorithms). It
turns out that at least 90% of the processing time are spent
on constructing the R-trees. This begs the question whether
one should build the R-tree once and subsequently use it for
multiple queries on different subsets of the dimensions. In
our next set of experiments, we therefore build an R-tree
based on all 6 dimensions in our data set and then use the
same tree to answer skyline queries on any subset of 2–6
dimensions.

Our evaluation focuses on two performance measures:
The first one is the overall running time of building the 6-
dimensional R-tree and answering one d′-dimensional sky-
line query using this tree, where 2 ≤ d′ ≤ 6. Our goal here
is to compare these running times to those achieved when
building the R-tree on only the dimensions relevant to the
answered skyline queries. The second performance mea-
sure is the query time, given the R-tree. This reflects the
idea that we are willing to pay a substantial preprocessing
time to construct the R-tree if subsequently queries are fast.
Note that, if our algorithm uses BBS in the second round,
the query procedure still has to build an R-tree on the point
set produced by the first round of our algorithm (Line 8 in
Algorithm 1). The time to build this R-tree and the commu-

nication time required to answer a query are included in the
query time.

Figures 5 and 6 show our speed-up results on hydrolog-
ical data sets of 1,000,000 and 5,000,000 points, respec-
tively. We observe in Figures 5a and 6a that our algorithm
again achieves superlinear speed-up. Comparing Figures 4a
and 5a, we observe that the speed-up for dimensions less
than 6 is greater when building the tree on all 6 dimen-
sions than when building the tree on only the dimensions
relevant to the skyline query. Figures 4b and 5b provide
an explanation for this effect: building a 6-dimensional R-
tree is significantly more expensive than building a lower-
dimensional R-tree, thus establishing a higher baseline on a
single processor with which the running times on multiple
processors are compared. When the number of dimensions
in the query increases, this effect is less pronounced because
the query cost contributes more substantially to the overall
running time. In summary, even when building the R-tree
on all dimensions in the data set, the speed-up remains su-
perlinear, and the overall running time less than doubles.

The increased construction cost of the R-tree is worth-
while if it can be amortized over a large number of queries
that can subsequently be answered using the tree. Fig-
ures 5c and 6c show our speed-up results for answering
queries, once the R-tree has been constructed, on 1,000,000
and 5,000,000 points, respectively. We observe that our al-
gorithm scales well up to 4 processors and reasonably well
up to 8 processors. After this point, the speed-up curve tails
off, particularly for higher-dimensional queries. The reason
is that the total number of local skyline points increases with
the number of processors, thus increasing the cost of the
second round of our algorithm (Lines 7–13). This effect be-
comes more pronounced with higher-dimensional queries.

Note that this increased total number of local skyline
points does not adversely affect the number local skyline
points every processor has to check for membership in the
global skyline: the number of local skyline points per pro-
cessor decreases. It does, however, increase the size of the
R-tree on S′ and, consequently, the cost of building this tree.
Since each processor builds its own copy of this tree, this
step is effectively not parallelized and constitutes the major
share of the cost of the second round.

A careful interpretation of these results leads to the con-
clusion that there is a trade-off between parallelizing the
first round and paying a penalty in the second round. Round
one gets faster with an increasing number of processors,
while the total number of points that survive after this round
increases, leading to a substantial increase in the cost of the
second round. This effect is best understood if one con-
siders the extreme case of p = n. Then the first round is
trivial because every processor has only one point; the sec-
ond round then deteriorates to constructing an R-tree on the
entire point set.

It is therefore useful to increase the number of proces-
sors only when increasingly large data sets need to be pro-
cessed. One would hope that a good parallel algorithm does
not only allow us to process a given data set faster than a se-

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(a) Relative speed-up

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(b) Wall clock time

Figure 4. Timing and speed-up results on hydrological data set (1,000,000 points), building the R-tree
on only the skyline dimensions.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(a) Total relative speed-up

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(b) Total wall clock time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(c) Query relative speed-up

Figure 5. Timing and speed-up results on hydrological data set (1,000,000 points), building the R-tree
on all six dimensions.

quential algorithm; but the increased amount of main mem-
ory and processing power should also allow the processing
of data sets beyond the reach of sequential machines. Thus,
our last experiment focuses on measuring the scale-up of
our algorithm, where the size of the processed data set in-
creases proportionally with the number of processors, and
one hopes to be able to process p times as much data using
p processors as one can process with a single processor in
the same amount of time. Figure 7 shows our experimental
results.

Overall, the scale-up results shown in Figure 7 are very
encouraging. Consistent with our speed-up results for the
total time of building the R-tree and answering a query, the
scale-up of the total time, shown in Figure 7a, is a perfect
1 for all dimensions. For the query time, the scale-up is
above 0.75 for all dimensions and numbers of processors;
see Figure 7b. For 2 dimensions the slight drop in scale-up
is likely due to an insufficient amount of work to parallelize
effectively, as the total query time never exceeds 0.2 sec-
onds. For 4 dimensions scale-up drops off early between
1 and 4 processors but then holds steady. For reasons we
cannot yet explain, processing S′ takes a relatively greater
proportion of the time for 4 dimensions leading to this early
drop in scale-up. For the other cases, including 5- and 6-
dimensional cases, which are by far the hardest to solve se-
quentially, the algorithm achieves nearly perfect scale-up.

For 5 and 6 dimensions on 16 processors and 80,000,000
records a scale-up of over .9 is achieved.

5. Summary and Future Work

Our results demon strate that parallel computing can be
used effectively to speed up the computation of skylines of
large data sets of a moderate number of dimensions, which
is what is relevant in practice [9].

Our experiments do, however, suggest several directions
for future work, aiming at speeding up the second round of
our algorithm. The most important improvement necessary
to achieve better performance is to remove the bottleneck of
sequentially building an R-tree on the local skyline points at
the beginning of the second round. We hope to be able to
parallelize this step by letting every processor build an R-
tree on 1/p of the points; once this is done, the processors
communicate their local R-trees to each other, and every
processor combines the p local R-trees it has received to
obtain an R-tree on the whole point set. This requires the
construction of a subtree of size O(p) on top of the received
local R-trees. The main challenge here is to represent the lo-
cal R-trees so that they can be communicated and combined
efficiently.

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(a) Total relative speed-up

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(b) Total wall clock time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(c) Query relative speed-up

Figure 6. Timing and speed-up results on hydrological data set (5,000,000 points), building the R-tree
on all six dimensions.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

S
ca

le
up

Processors

Linear Scaleup
2D
3D
4D
5D
6D

(a) Total scale-up

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

S
ca

le
up

Processors

Linear Scaleup
2D
3D
4D
5D
6D

(b) Query scale-up

Figure 7. Scale-up results on synthetic data set with 5,000,000 points per processor and building the
R-tree on all size dimensions.

References

[1] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schnei-
der, and Bernhard Seeger. The r*-tree: an efficient
and robust access method for points and rectangles. In
SIGMOD ’90, pages 322–331, New York, NY, USA,
1990. ACM Press.

[2] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D.
Thompson. On the average number of maxima in a set
of vectors and applications. J. ACM, 25(4):536–543,
1978.

[3] S. Borzsonyi, D. Kossmann, and K. Stocker. The sky-
line operator. In ICDE, pages 421–430, 2001.

[4] cgmLab Portal. Hydro1k el-
evation derivative database,
http://cgmlab.cs.dal.ca/downloadarea/datasets/.

[5] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, An-
thony K. H. Tung, and Zhenjie Zhang. On high di-
mensional skylines. In EDBT, pages 478–495, 2006.

[6] Frank K. H. A. Dehne, Andreas Fabri, and Andrew
Rau-Chaplin. Scalable parallel geometric algorithms
for coarse grained multicomputers. In Symposium on
Computational Geometry, pages 298–307, 1993.

[7] Antonin Guttman. R-trees: a dynamic index structure
for spatial searching. In SIGMOD ’84, pages 47–57,
New York, NY, USA, 1984. ACM Press.

[8] Marios Hadjieleftheriou. Spatial index library,
http://u-foria.org/marioh/spatialindex/index.html.

[9] Donald Kossmann, Frank Ramsak, and Steffen Rost.
Shooting stars in the sky: An online algorithm for sky-
line queries. In VLDB, 2002.

[10] H. T. Kung, Fabrizio Luccio, and Franco P. Preparata.
On finding the maxima of a set of vectors. J. ACM,
22(4):469–476, 1975.

[11] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard
Seeger. An optimal and progressive algorithm for sky-
line queries. In SIGMOD ’03, pages 467–478, New
York, NY, USA, 2003. ACM Press.

[12] Franco P. Preparata and Michael Ian Shamos. Compu-
tational Geometry: An Introduction. Springer, 1985.

[13] Yufei Tao, Xiaokui Xiao, and Jian Pei. Subsky: Effi-
cient computation of skylines in subspaces. In ICDE,
page 65, 2006.

[14] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jef-
frey Xu Yu, and Qing Zhang. Efficient computation of
the skyline cube. In VLDB, pages 241–252, 2005.

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

