
ar
X

iv
:0

90
3.

43
92

v1
 [

cs
.D

C
]

25
 M

ar
 2

00
9

Towards a Decentralized Algorithm for Mapping Network and Computational
Resources for Distributed Data-Flow Computations

Shah AsaduzzamanandMuthucumaru Maheswaran
Advanced Networking Research Lab

School of Computer Science
McGill University

Montreal, QC H3A 2A7, Canada
{asad,maheswar}@cs.mcgill.ca

Abstract

Several high-throughput distributed data-processing ap-
plications require multi-hop processing of streams of data.
These applications include continual processing on data
streams originating from a network of sensors, composing
a multimedia stream through embedding several compo-
nent streams originating from different locations, etc. These
data-flow computing applications require multiple process-
ing nodes interconnected according to the data-flow topol-
ogy of the application, for on-stream processing of the data.
Since the applications usually sustain for a long period, it
is important to optimally map the component computations
and communications on the nodes and links in the network,
fulfilling the capacity constraints and optimizing some qual-
ity metric such as end-to-end latency. The mapping problem
is unfortunately NP-complete and heuristics have been pre-
viously proposed to compute the approximate solution in a
centralized way. However, because of the dynamicity of the
network, it is practically impossible to aggregate the correct
state of the whole network in a single node. In this paper,
we present a distributed algorithm for optimal mapping of
the components of the data flow applications. We propose
several heuristics to minimize the message complexity of the
algorithm while maintaining the quality of the solution.

1. Introduction

Real-time processing of continuous data streams are be-
coming an important component of data-flow intensive dis-
tributed applications. In general these applications consist
of a few cascades of computational operations on several
streams of data originating from one or more sources and
presenting a view of the processed data at one or more
sink nodes. Applications such as continual query [4] on
the stream of information sent by a network of sensors,

composing a multimedia stream through several stages of
encoding, decoding and embedding [3, 9], scientific work-
flow [6], etc. belong to this category. These applications
require several computational resources along the path the
data streams travel from the source to destination. In ad-
dition, as each of these computations generate new data
streams that are to processed by other computations or to be
delivered to the destination. Sufficient network link band-
width must be provided to carry these data streams among
source, destination and computational nodes, so that the
computations can proceed seamlessly. In this paper, we deal
with the problem of optimally allocating computational and
network resources for these distributed applications.

Usually the distributed computation operates for a long
time after being set up with all the necessary resources. So,
it is important to optimally acquire the resources before the
operation starts. When resources are requested for a dis-
tributed job, the topology that interconnect the component
nodes of the flow, i.e. the data sources, the processing nodes
and the destination, is known. In very general terms, the in-
terconnection topology can be an acyclic graph. However,
in most common cases the flow is a linear path or tree or
a series-parallel graph. We show in Section 2.3 that even
for a linear path-like flow, finding a mapping that computa-
tions on processing nodes and data transmissions on net-
work paths, satisfying the processing capacity and band-
width constraint, is an NP-complete problem. In this paper,
we develop a scheme to solve the problem of mapping lin-
ear path-like computation on an arbitrary resource network.

The problem of establishing a path between a source and
a destination node in an arbitrary network, subject to some
end-to-end quality constraints, has been a topic for active
research for a long time. If such path is to be established
to satisfy one additive quality requirement such as delay or
hop-count, the problem can easily be solved by Dijkstra’s
shortest path algorithm. Even if some end-to-end min-max

http://arxiv.org/abs/0903.4392v1

constraint such as bandwidth need to be satisfied, still the
problem can be solved easily using Wang and Crowcroft’s
shortest-widest path algorithm [10]. However, it is well
known that establishing a path satisfying more than one ad-
ditive quality constraints is an NP-hard problem [1, 8]. It
is important to note that the problem of finding a mapping
for a data-flow computation requires more than end-to-end
constraints, because computational capacity of each of the
nodes need to be individually satisfied.

Due to the inherent complexity of the optimization prob-
lem, several workable heuristic solutions have been pro-
posed in different contexts. A recursive mapping on a hi-
erarchy of node-groups in the resource networks is applied
in [4]. In [9] and [3], mapping is performed after prun-
ing the whole resource network into a subset of compatible
resources. The solution by Liang and Nahrstedt [5] is clos-
est to ours. One of the assumptions made by Liang and
Nahrstedt was that the optimization algorithm was executed
in a single node and complete state of the resource network
is available to that node before execution. In a large scale
dynamic network this assumption is hard to realize. If we
assume that each node in the resource network is aware of
the state of its immediate neighborhood only, we need to
compute the solution using a distributed algorithm. In this
paper we present a distributed algorithm to solve the prob-
lem, which is a dynamic programming based extension of
the distributed Bellman-Ford algorithm.

The rest of the paper is organized as follows. In Sec-
tion 2 of this paper we formally define the resource allo-
cation problem as a constrained graph mapping problem.
The Bandwidth Constrained Path Mapping (BCPM) prob-
lem that covers most of the practical applications, is then
defined as a special case of the general graph mapping prob-
lem. We provide a formal proof of NP-completeness of the
BCPM problem in the same section. In Section 3, central-
ized and decentralized algorithms to solve the BCPM prob-
lem are developed. A guideline for designing cost-effective
heuristics to obtain approximate solutions to the problem is
provided at the end of the same section. The discussion is
then summarized with directions for possible future exten-
sions in Section 4.

2. Problem Formulation

In this section we formally define the problem of capac-
ity constrained mapping of dataflow computations on arbi-
trary networks. Any distributed dataflow computation can
be defined using three types of nodes and interconnection
between them.Source nodesare the data sources originat-
ing the data streams.Computing nodesare places where
some computational operation on one or more incoming
data-stream is performed continually, and an output stream
is generated.Sink nodesare the places where the resulting
flow from the computation is presented. In a very general

case, a dataflow computation consists of one or more source
nodes, one or more sink nodes and zero or more computing
nodes. The topology of data-flow among these nodes is a
directed acyclic graph (DAG). Although, theoretically it is
possible to have dataflow computations that have loops or
cycles, there will be finite number of iterations of the data
through the cycles and these iterations can be expanded into
finite acyclic graphs. In most common cases however, the
dataflow topology is a simple path consisting of a series of
computing nodes, or a tree where data-streams from multi-
ple sources merged through several steps and presented at a
single sink.

The network of computing and data-forwarding re-
sources where the distributed dataflow computation is to be
instantiated can be represented by an arbitrary graph. We
denote this graph as resource graph. Each node of the re-
source graph has a certain computational capacity and each
edge (link) of the resource graph has certain data transmis-
sion capacity or bandwidth. In addition, each link may have
one or more additive quality metric, such as latency, jitter,
etc.

2.1. Capacity Constrained Graph Mapping
Problem

In order to launch the distributed application on the net-
work of computers, we need to map the dataflow-DAG onto
the resource graph such that the computational and trans-
mission requirements are fulfilled. If there is more than one
such feasible mapping, one would like to choose the map-
ping that has minimum end-to-end delay on the resource
network.

More formally, we need to map a dataflow-DAGGJ =
(VJ , EJ) on to a resource graphGR = (VR, ER). For
each vertexvR ∈ VR, an available computational capac-
ity Cav(vR) is given. For each edgeeR ∈ ER, an avail-
able bandwidthBav(eR) is given. In addition, each edge
eR ∈ ER has an additive weight. For each vertexvJ ∈ VJ ,
a computational requirementCreq(vJ), and for each edge
eJ ∈ EJ , a bandwidth requirementBreq(eJ) is defined.
There is a set of designated source nodesSJ ⊂ VJ =
{s1J , s2J , ..., smJ} and a set of sink nodesTJ ⊂ VJ =
{t1J , t2J , ...tnJ}, such thatSJ ∩ TJ = φ.

The bandwidth constrained DAG-mapping problem
(BCDM) is to find a mappingM : VJ → VR. For
each source nodesiJ , M(siJ) = siR and for each sink
nodetiJ , M(tiJ) = tiR are already given. It is impor-
tant to note that multiple nodes of the dataflow-DAG can
map onto single node of the resource graph and a single
edge in the dataflow-DAG can span along a multi-hop path
in the resource graph. So, defining theVJ → VR map-
ping is not sufficient to define the mapping of complete
dataflow-DAG. In addition to vertex mapping, another map-
pingMe : EJ → PR is needed, wherePR is the set of all

possible paths in the resource graphs, including zero length
paths. Zero length paths are(v, v) edges with infinite band-
width and zero latency. Again, it is possible that for two dif-
ferent edges,e1, e2 ∈ EJ , the mapped pathsp1 = Me(e1)
andp2 = Me(e2) may have some common edges.

The mapping should fulfill the following constraints –

∀vR ∈ M(VJ)
∑

{vJ |vJ∈VJ ,M(vJ)=vR}

Creq(vJ) ≤ Cav(vR)

∀eJ = (u, v) ∈ EJ ,

B(eJ) ≤ min[B(er), er ∈ Me(eJ)]

We call this problem as Bandwidth Constrained DAG Map-
ping problem (BCDM).

When each edgeer ∈ Er in the resource graph has an
additive metricD(vr), such as delay, cost, jitter, etc., we
would like to find the feasible mapping that minimizes the
total cost

D =
∑

u,v∈Vj

20

20

20

20

20

50

20

100

A

B

C

D F

E

G

H

b=10
d=2

b=20
d=1

b=10
d=3

b=20
d=1

b=10
d=2

b=20
d=1 b=10

d=3

b=10
d=1

b=10
d=2

b=10
d=1

b=10
d=2b=10

d=1

Figure 1. An example resource network

Figure 1 shows an example resource network of eight in-
terconnected computing nodes. Computational capacity of
each node is represented by a number inside the node. The
link bandwidth and latency are mentioned on each edge.
Figure 2 shows a dataflow-DAG containing2 source nodes
s1 ands2, 2 computing nodesx1 andx2, and one sink node
t. s1, s2, andt must be mapped on resource nodeA, B, and
F , respectively. Each node in the dataflow-DAG has some
processing capacity requirement which is mentioned inside
the node. Each link is also annotated with a bandwidth re-
quirement. A feasible mapping of this dataflow-DAG on the
resource graph is –

5

0

10

50

10

s1=A

s2=B

t=F
x1

x2b=5

b=10

b=5

b=5
b=t

Figure 2. An example data-flow computation
with a DAG topology

M(s1) = A

M(s2) = B

M(x1) = E

M(x2) = G

M(t) = H

Me(s1, x1) = (A,C,E)

Me(s2, x1) = (B,D,E)

Me(x1, x2) = (E,G)

Me(s1, x2) = (A,C,G)

Me(x2, t) = (G,H, F)

2.2. Constrained Path Mapping Problem

Although in very general terms the dataflow computa-
tion resembles a DAG topology, in most practical cases the
topology is a simple path. Given that the mapping of a DAG
efficiently on the resource network with all the constraints
satisfied is hard to solve, it is useful to to tackle the sim-
pler problem of bandwidth constrained path mapping prob-
lem (BCPM) first. In BCPM, the topology of the data flow
computation is restricted to a directed loop-free path, with
a single source and a single sink.

Precisely, we are given a dataflow pathPJ = (VJ , EJ),
VJ = v0 = s, v1, v2, ..., vm = t and EJ = {ei =
(vi, vi+1)|0 ≤ i < m} to map on the resource graph
GR = (VR, ER) defined in the previous section. Each
node vi, 0 ≤ i ≤ m of the program path has a com-
putational capacity requirementCreq(vi), and each edge
ei = (vi, vi+1), 0 ≤ i < m has a bandwidth requirement
Breq(ei). We need to find the mappingsM : VJ → VR and
Me : EJ → ER that satisfies the constraints. Mapping ofs

andt is already given.

An example dataflow path with one sources, one sinkt
and three computational nodesx1, x2, x3 is shown in Fig-
ure 3, with the node capacity and bandwidth requirements.
s andt must be mapped onB andF , respectively. There
can be many feasible mappings of this dataflow computa-
tion on the resource graph in Figure 1. One of them is –

10 5 5

15 10

b=15 b=5

b=5

b=10

s=B

t=F

x1 x2

x3

Figure 3. An example data-flow computation
with a path topology

M(s) = B

M(x1) = B

M(x2) = B

M(x3) = D

M(t) = F

Me(s, x1) = (B,B)

Me(x1, x2) = (B,B)

Me(x2, x3) = (B,D)

Me(x3, t) = (D,F)

which is also optimal in terms of total end-to-end latency
of the resource nodesM(s) andM(t).

2.3. Computational Complexity of the
Problem

We will now prove that BCPM problem is NP-complete.
Since, BCPM is a special case of BCDM, NP-completeness
of BCPM iplies that BCDM is an NP-hard problem. The
NP-completeness proof of the BCPM problem is con-
structed by transformation of the Longest Path problem [2].
Definition of the decision version of the Longest Path prob-
lem is as follows -

Instance: A graphG = (V,E), a length functionl :
E → Z+, specified verticess, t ∈ V and a positive integer
K. Question: Is there an(s t) simple pathP ⊆ G such
that

∑

e∈P l(e) ≥ K ?
It is known that Longest Path problem is NP-complete,

even for a special case, where∀e∈El(e) = 1 [2]. We will
show that any instance of this special Longest Path problem
can be polynomially transformed into an instance of BCPM.

2.3.1. Longest Path ∝ BCPM

We construct an instance of BCPM as follows -
We takeGR(VR, ER) = G(V,E), ∀v∈VR

Cav(v) = 1,
∀e∈ER

Bav(e) = 1. Take a simple pathPJ = (VJ , EJ) such
that|VJ | = K, ∀v∈VJ

Creq(v) = 1 and∀e∈EJ
Breq(e) = 1.

Now, if there is a simple(s t) path of length≥ K in
G, then that path must have K hops, since∀e∈El(e) = 1.
Therefore, we can mapPJ along the corresponding path
PJ ′ in GR. If |PJ ′| > K, then we can map firstK − 1
nodes ofPJ onPJ ′ and map the remaining edgeuK−1, uK

on thev t subpath ofPJ ′, whereuK−1 is mapped onv.

Given a mapping of the pathPJ on a pathPJ ′ ⊆ GR

that satisfies the capacity and bandwidth requirement con-
straints,|PJ ′| must be>= K, because no two vertices of
PJ can be mapped on a single vertex of|PJ ′| given the
abovementioned capacity constraints.

2.3.2. BCPM ∈ NP
Given an arbitrary mappingM : VJ → VR one can polyno-
mially verify -

• WhetherCreq(v) ≤ Cav(M(v)), for all v ∈ VJ .

• For each edge(u, v) ∈ PJ , whether there is a
(M(u) M(v)) path inGR that satisfies the band-
width constraint of(u, v) (Similar to bandwidth con-
strained shortest path problem [10]).

This completes the proof thatBCPM ∈ NP -C.

3. Algorithm for path mapping problem

To solve the BCPM problem, we developed an algo-
rithm using the the Bellman-Ford relaxation scheme. First,
we present the centralized version of the algorithm, where
the whole mapping is computed by a single node that has
knowledge of the state of the whole network of nodes.
Later, we explain the development of the distributed algo-
rithm based on this centralized one.

This algorithm works by relaxing along each edge of the
resource graphN−1 times, whereN = |VR|, the number of
nodes in the resource graph. For each nodeu of the resource
graph, a set of feasible mappings of different length prefixes
of the dataflow-path on any resource path from the source
nodes to the current node, is maintained. In each relaxation
along an(u, v) edge, any new feasible map on(s u) is
extended in all possible ways, to complete the list of fea-
sible maps of dataflow path-prefixes on the resource path
(s u, v) and these new partial mappings are added to the
set maintained for nodev. After N − 1 iterations of relax-
ation of all edges, the map set maintained for terminal node
t contains all the feasible mappings of the dataflow-path on
any (s t) resource path. The algorithm is presented in
Algorithm 1, 2 and 3. A formal proof of the correctness
of the algorithm is presented in the following sub-section.
Lines10-12 of the subroutine Relax is added to terminate
the algorithm as soon as one feasible(s t) mapping is
found. These lines should be omitted when optimal map-
ping is sought.

We have computed the computational complexity of the
algorithm in Section 3.2. The complexity is bounded by
polynomial of the size of the partial map setS, although the
set size is exponential. The problem being NP-hard, it is im-
possible to have a polynomially bounded optimal algorithm.
However, heuristics may be applied to produce sub-optimal
solutions within a tractable amount of complexity. A good

way of designing such heuristics is to restrict the size of the
map-set in some way. In Section 3.4 we have discussed sev-
eral possible heuristics to solve the BCPM problem. Note
that because the set of partial map is stored in each node, the
memory complexity of the algorithm becomes exponential
too. This can be avoided by omitting the storage of partial
maps. Each partial map need to be stored for one iteration of
relaxation only. If partial maps are deleted after relaxation,
the set size never grows beyondO(dp), where,d is the av-
erage indegree of a node in resource graph andp = |PJ | is
the number of nodes in the dataflow path.

Algorithm 1 Pathmap(PJ , GR)

1: for x = 0 to |PJ | − 1 do
2: if

∑

0≤k≤x Creq(k) ≤ Cav(s) then
3: M(s, x) = {m|m maps initialx nodes ofPJ on

s}
4: else
5: break
6: end if
7: end for
8: for each vertexv ∈ VR − s do
9: for i = 0 to |PJ | do

10: M(v, i) = φ

11: end for
12: end for
13: for i = 1 to |VR| − 1 do
14: for each edgee = (u, v) ∈ ER do
15: Relax(u,v)
16: end for
17: end for

3.1. Correctness of BCPM algorithm

In this section we give a formal proof that when BCPM
algorithm terminates,M(t, |PJ |) always contains a feasible
mapping ofPJ onGR if and only if such a feasible mapping
exists.

Lemma 3.1. If M(u) =
⋃

∀j M(u, j) contains all feasible
mappings of different length prefixes ofPJ on an path(s
u) ∈ GR, then after computingRelax(u, v), M(v) includes
all feasible mappings of different length prefixes ofPJ on
the path(s u, v) ∈ GR.

Proof. By the construction of theRelax(u, v) subroutine,
each mappingm ∈ M(u, j), of a j-length prefix ofPJ on
a (s u) path, is extended over the(u, v) edge exactly
once. Any possible mapping of ak-length prefix ofPJ on
the (s u, v) path can be divided into 2 sub-mappings:
a mapping ofj-length prefix(j ≤ k) of PJ on (s u)
path and a mapping of the followingk − j vertices of the
k-length prefix onv. Since all feasible sub-mappings of the
first kind is included inM(u) and all the extensions of the

Algorithm 2 subroutine Relax(u,v)

1: for j = 0 to |PJ | do
2: Mtmp(j) = null

3: end for
4: for j = 0 to |PJ | − 1 do
5: if Breq(j, j + 1) ≤ Bav(u, v) then
6: for each new mappingm ∈ M(u, j) in the last

iterationdo
7: if v == t then
8: mx = Extend(m, j, |PJ | − j, v)
9: M(v, |PJ |) = M(v, |PJ |) ∪mx

10: if M(v, |PJ |) 6= φ then
11: terminate the algorithm withM(v, |P |) as

result
12: end if
13: else
14: for x = 0 to |PJ | − j − 1 do
15: mx = Extend(m, j, x, v)
16: if mx 6= null then
17: M(v, j + x) = M(v, j + x) ∪mx

18: else
19: break
20: end if
21: end for
22: end if
23: markm as old
24: end for
25: end if
26: end for

second kind is considered in lines8 to 14 and15 to 22 of
Relax(u, v), M(v) contains all feasible mappings of any
prefix ofPJ on (s u, v) paths.

Lemma 3.2. For any nodev ∈ VR if there is as v path
(v0 = s, v1, v2, ..., vk = v) of lengthk, after kth iteration
of the outer for loop in line7 of thePathMap algorithm,
all feasible mappings of different length prefixes ofPJ on
the(v0 vk) path has been recorded inM(v).

Proof. We will prove by induction onk. Whenk = 0, i.e.
after the initialization phase,M(v0, i) or M(s, i), 0 ≤ i ≤
|PJ | contains the feasiblei-length prefix with firsti vertices
of P mapped ons. So the basis is true.

Now let us assume that afteri − 1 iterations,0 < i ≤ k,
M(vi−1) contains all feasible mappings of different lengths
on the(s vi−1) portion of the(s vk) path. Since
each edge inER is considered once in each iteration,
Relax(vi−1, vi) must be called in theith iteration too. So,
by Lemma 3.1, we can conclude that all feasible prefix map-
pings ofPJ on the(s vi) path is included inM(vi).

Theorem 3.3. After |VR| − 1 iterations of the outer loop in
line 7 algorithmPathmap, for each nodev ∈ VR, M(v)

Algorithm 3 subroutine Extend(m, j, x, v)

1: if
∑

1≤k≤x Creq(j + k) ≤ Cav(v) then
2: extend m by putting computations{j + 1, j +

2, ..., j + x} in nodev
3: let mx be the extended mapping
4: else
5: mx = null

6: end if
7: return mx

contains all feasible mappings of different length prefixesof
PJ on all possibles v paths.

Proof. Since there is no simple path longer than|VR| − 1,
according to Lemma 3.2, all such paths will be covered by
theRelax procedure after|VR| − 1 iterations.

The fact that after termination ofPathmap, M(t) con-
tains all the feasible maps ofPJ on possible(s t) paths,
follows directly from Theorem 3.3 with inclusion of lines7
to 12 in theRelaxprocedure.

3.2. Complexity of the algorithm

The problem size parameters are|VR| ≡ n, |ER| ≡ e

and|PJ | ≡ p. The outer loop ofPathmapis iteratedn− 1
times and each iteration considers each of thee edges ex-
actly once. So, theRelaxprocedure is calledne times. In
each relaxation over an edge(u, v), each of thep prefix
mappings fromM(u) is tried for relaxation into some of
the p mappings inM(v). A j length prefix inM(u, j) is
tried for relaxation intop− j of theM(u, i), j ≤ i ≤ p, and
each trial requires(i − j) computations of constant com-
plexity for the extension. LetS be the maximum number of
entries in the set of mappingsM(u, j), u ∈ VR, 0 ≤ j ≤ p.
Note that only the new entries are relaxed in each iteration.
However, the upper bound on the number of entries relaxed
perM(u, j) will be S. So, the complexity ofRelax(u,v)is
–

S

p−1
∑

j=0

(

p−j−1
∑

x=1

x+ 1

)

= S

(

5

12
p3 +

1

4
p2 +

2

3
p

)

= O

(

5

12
p3S

)

So, the overall time complexity of the algorithm becomes
O(nep3S). We see that the setsM(u, j) are creating the
major load on both time and memory complexity of the al-
gorithm. Therefore, restricting the growth ofS within poly-
nomial limit would possibly result in a polynomial time ap-
proximation algorithm.

3.3. Distributed version of the algorithm

The centralized algorithm can be easily extended to a
distributed version, where each nodeu in the resource net-
workGR will maintain the data structureM(u) of partially
computed mappings. Also, nodeu will be responsible for
computing the relaxation to each of its neighborsv in GR.
The extended mappings are then transmitted tov. The re-
laxation procedure is invoked by a nodeu when any new
mapping arrives from any of its incoming neighbors. The
algorithm is formally laid out in Algorithm 4. Upon ar-
rival of a map messagem, a nodeu process the message
using the algorithmProcessMap(u, m). It follows from the
correctness of the centralized algorithm that the distributed
mapping completes after at mostN − 1 ProcessMapinvo-
cation by each node in the graph. The distributed mapping
algorithm can be terminated by force as soon as the terminal
nodes receives a complete mapping. Otherwise, the algo-
rithm terminates after all the outstandingProcessMaphave
been completed. Since cycles are avoided during extension,
an initial mapping may be extended at mostN − 1 times.
Thus there will be a finite number ofProcessMapinvoca-
tion and the algorithm will terminate after a finite amount
of time.

Algorithm 4 ProcessMap(u, m)
1: Map message contains the mapping of computation

nodes0,1,2, ... , j on resource nodes. The first mes-
sage to a node contains the requirement definition of
the computation too

2: j = |m|
3: if u == t then
4: mx = Extend(m, j, |PJ | − j, u)
5: if mx 6= null then
6: terminate the algorithm withmx as result
7: end if
8: else
9: for x = 0 to |PJ | − j − 1 do

10: mx = Extend(m, j, x, u)
11: if mx 6= null then
12: for each neighborv of u that is not already inm

do
13: if Breq(j + x, j + x+ 1) ≤ Bav(u, v) then
14: extendmx to mxx by appending a map of

0 computations on nodev
15: send mxx to v

16: end if
17: end for
18: end if
19: end for
20: end if

3.4. Heuristic Approaches to Reduce Com-
plexity

Computational complexity of both the centralized and
the distributed path mapping algorithm grows exponentially
with the problem size. Therefore, for practical deployment,
we need some heuristic that produces good approximation
to the optimal result. Here we discuss three possible heuris-
tics that modifies the original algorithm to reduce computa-
tional, messaging and memory complexity.

3.4.1. LeastCostMap

One major source of growth in complexity of the algorithm
is the exponential growth of the set of partial maps main-
tained for each node. In theLeastCostMapheuristic, only
one partial map of each prefix-length is maintained for each
node. If a new map is generated, the cost of the new map
in terms of the additive quality metric is compared with that
of the already stored one, and the map with higher cost is
discarded. This policy reduces the complexity toO(p3).

Similar policy can be applied to the distributed version
of the algorithm. However, in the distributed case, a map
message is expanded to its neighbors as soon as the message
is received. So, if a higher cost map message is arrived
before a lower cost one, the processing of the higher cost
message cannot be pruned. However, in most cases, higher
cost messages arrive later, so they are pruned.

We have implemented both the centralized and dis-
tributed version of the original algorithm and also the Least-
CostMap heuristic. The algorithms are then applied on ran-
dom topologies generated by the BRITE Internet topology
generator [7] and randomly generated dataflow paths. Due
to the huge computational complexity of the exact algo-
rithm, it was not possible to run it for networks larger than
50 nodes. For these networks, the heuristic is able to find the
optimal solution in99% of the cases, with100 to 1000 fold
reduction in the size of the set of partial maps. For similar
topologies, the distributed version of the heuristic produced
optimal result in more than99% cases and total number of
message exchange was reduced approximately100 fold.

3.4.2. AnnealedLeastCostMap

One way of trading off between optimality and complexity
of the LeastCostMapheuristic is to apply a simulated an-
nealing approach to decide whether to discard a higher cost
partial map from the set in presence of a lower cost map.
As the temperature of the process anneals, i.e. at the later
iterations, the probability of keeping a non-minimal partial
solution will decrease. Definitely this approach increases
the computation and message complexity. However, this al-
lows some of the non-minimal partial solutions to grow and
possibly lead to a better complete solution.

3.4.3. RandomNeighbor
Another way of restricting the message complexity is to
extend any partial map to a randomly chosen subset ofk

neighbors instead of expanding to all of them. Higher val-
ues ofk increases the chance of getting the optimal solution.
TheRandomNeighborheuristic withk = 1 did not produce
results as good as LeastCostMap, although number of mes-
sages were reduced dramatically. Further investigation need
to be done to determine a suitable value ofk.

4. Conclusion

In this paper we have developed and explained a decen-
tralized algorithm to compute the optimal mapping of com-
putational capacity and network bandwidth requirement of
a data-flow computation. Many high-throughput scientific
research platforms need to support applications that resem-
ble data-flow computation. The discussion presented in this
paper provides in-depth understanding of the resource allo-
cation problem for such computations and demonstrates the
way to develop cost-effective solutions. At this point, the
algorithm supports computations with path-topology only.
Several interesting applications such as complex contin-
ual queries on data stream originating from multiple sites,
resemble a tree topology. A possible extension of this
work is to modify the algorithm such that mapping of flow-
computations with different topologies can be obtained.

References

[1] S. Chen and K. Nahrstedt. On finding multi-constrained
paths. InProc. IEEE ICC, pages 874–879, Jun. 1998.

[2] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W H Free-
man Co., NY, USA, 1979.

[3] X. Gu and K. Nahrstedt. Distributed multimedia service
composition with statistical QoS assurances.IEEE Trans.
Multimedia, 8(1):141–151, 2006.

[4] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and
K. Schwan. Resource aware distributed stream management
using dynamic overlays. InProc. 25th IEEE ICDCS, pages
783–792, Jun. 2005.

[5] J. Liang and K. Nahrstedt. Service composition for generic
service graphs.Multimedia Systems, 11(6):568–581, 2006.

[6] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific work-
flow management and the kepler system.Concurrency
and Computations: Practice and Experience, 18(10):1039–
1065, 2006.

[7] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE:
an approach to universal topology generation. InProc.
9th Intl. Symp. on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pages 346–353,
Aug. 2001.

[8] M. Song and S. Sahni. Approximation algorithms for mul-
ticonstrained quality-of-service routing.IEEE Trans. Com-
puters, 55(5):603–617, 2006.

[9] M. Wang, B. Li, and Z. Li. sFlow: Towards resource-
efficient and agile service federation in service overlay net-
works. In Proc. 24th IEEE ICDCS, pages 628–635, Mar.
2004.

[10] Z. Wang and J. Crowcroft. Quality of service routing for
supporting multimedia applications.IEEE J. Selected Areas
in Communications, 14(7):1228–1234, 1996.

	. Introduction
	. Problem Formulation
	. Capacity Constrained Graph Mapping Problem
	. Constrained Path Mapping Problem
	. Computational Complexity of the Problem
	. Longest Path BCPM
	. BCPM NP

	. Algorithm for path mapping problem
	. Correctness of BCPM algorithm
	. Complexity of the algorithm
	. Distributed version of the algorithm
	. Heuristic Approaches to Reduce Complexity
	. LeastCostMap
	. AnnealedLeastCostMap
	. RandomNeighbor

	. Conclusion

