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Abstract—In this paper we would like to share our experience for 

transforming a parallel code for a Computational Fluid 

Dynamics (CFD) problem into a parallel version for the RedisDG 

workflow engine. This system is able to capture heterogeneous 

and highly dynamic environments, thanks to opportunistic 

scheduling strategies. We show how to move to the field of “HPC 

as a Service” in order to use heterogeneous platforms. We mainly 

explain, through the CFD use case, how to transform the parallel 

code and we exhibit challenges to ’unfold’ the task graph 

dynamically in order to improve the overall performance (in a 

broad sense) of the workflow engine. We discuss in particular of 

the impact on the workflow engine of such dynamic feature. This 

paper states that new models for High Performance Computing 

are possible, under the condition we revisit our mind in the 

direction of the potential of new paradigms such as cloud, edge 

computing… 

Keywords-component; HPC as a Service, Workflow, Scientific 

computing, Collaborative systems, Heterogeneous and highly 

dynamic environments. 

I.  INTRODUCTION  

In the field of High Performance Computing on clusters, 
researchers and programmers still continue to implement their 
applications through standards such as MPI or OpenMP. There 
also exists very good kernels in each scientific domains that 
are used as libraries in more general parallel frameworks. In 
this paper we address the following problem. Given a parallel 
code that uses kernels, how to transform it into a scientific 
workflow at a minimal cost? We do not want to explain and to 
teach to the programmers a new programming language but 
we rather prefer to teach them some kind of graphical 
language i.e. a task graph that represents the parallel code and, 
in the future the application to be developed. Then, 
automatically and after this translation, the task graph is 
executed by a workflow engine. This process opens new 
challenging questions from the workflow engine point of 
view, among them, how to combine different execution 
models for the tasks and what is the impact of such feature on 
the architecture of the workflow engine? 

Our research focuses on the design of Systems for 
heterogeneous and highly dynamic environments, notably 
clouds, desktop grids and volunteer computing projects. The 

overall objective is to execute computational codes in such 
environments…and progressively moving from a traditional 
view for High Performance Computing (HPC) to Service 
oriented and workflow oriented views. A hard question, that 
the dynamicity causes here, is that given a workflow to 
schedule, we do not have any A-priori knowledge on the 
resources that are available. To address it, we proposed in [1] 
to implement a Publish-Subscribe [2] based mechanism for 
resource discovery and allocation. Recall that the Publish-
Subscribe paradigm is an asynchronous mode for 
communicating between entities [2]. Some users, namely the 
subscribers or clients or consumers, express and record their 
interests under the form of subscriptions, and are notified later 
by another event produced by other users, namely the 
producers. 

Indeed, we support the thesis that for building Systems for 
heterogeneous and highly dynamic environments we need to 
be compliant with: 

1. a publish-subscribe layer for the orchestration of the 
components of the system; 

2. a set of opportunistic strategies for allocating work/tasks 
that are also based on the publish-subscribe layer; 

3. a small number of software dependencies for the system 
and the ability to deploy the system and its applications on 
demand. This point is of particular interest in this paper and 
we promote the ’easy to use’, and systems that can be 
deployed without a system administrator. 

In this paper we examine the challenges and issues of 
coupling different execution models into the RedisDG 
workflow engine that has been developed according to the 
previous thesis. In other words, RedisDG is a concrete 
instance of the previous principles. We discuss of the impact 
on the thesis of such new features, and for that we consider a 
CFD problem. We execute our CFD solution, obtained after 
transforming a parallel code into a workflow, on top of the 
RedisDG system. 

The organization of the paper is as follows. In section I we 
introduce the numerical problem we are faced to. We also 
summarize some related works. Section II introduces a parallel 
solution of the problem in the spirit of MPI programming. 



 

 

Section III explains how to provide with a workflow oriented 
view for solving the numerical problem. Section IV explains 
the challenges we are faced to when we deal with multiple 
runtime systems for executing the nodes of the workflow. This 
analysis is the contribution of the paper. Section V concludes 
the paper. 

II. NUMERICAL PROBLEM 

ADAPT [3] is an object oriented platform for running 
numerical simulations with a dynamic mesh adaptation 
strategy and coupling between finite elements and finite 
volumes methods. ADAPT, as a CFD (Computational Fluid 
Dynamics) software package, has been developed for realizing 
numerical simulation on an unstructured and adaptive mesh 
for large scale CFD applications. The ADAPT project is 
concerned with skills from numerical analysis, computer 
science and physics, and treats many physical phenomena 
such as combustion, plasma discharge, wave propagation, etc. 
The object oriented ADAPT platform is able to do coupling 
between finite volumes and finite elements methods. Yet 
another advantage of ADAPT is to focus in streamers which 
can be used in many applications (treatment of contaminated 
media, etching and deposition of thin films…). The key 
equation we solve is the evolution equation coupled with that 
Poisson equation:  

 

 

 

 

where F is discretized using the finite volume method on an 
unstructured mesh. The time-integration of the transport 
equation is performed using an explicit scheme. The 
discretized form of the Poisson equation leads to a linear 
system to be solved. Before our work, the existing ADAPT 
implementation was a sequential C++ code for each 
phenomenon, and the code requires a huge CPU time for 
executing a 3D simulation. For example, the 3D streamer code 
may run up to 30 days before returning results. The 
methodology we used for parallelization is based on the 
SPMD (single program, multiple data) paradigm. SPMD is the 
most common style of parallel programming and usually refers 
to message passing programming on distributed memory 
computer architectures. 

III. A PARALLEL SOLUTION 

The pseudo code 1 shows how the parallelization is done 
for the streamer code according to the coupling of evolution 
equation with Poisson equation. We can see that most parts of 
the code are parallel ones (line 19, line 9 to 11 and line 22 to 
26) except reading and splitting mesh in the beginning and 
between lines 14 and 15. Indeed, at this step, we construct the 
matrix that will be used to solve the linear system in line 19: 
the matrix is computed one time because it depends only on 
the mesh. We also put information about the overlapping 
between the communication and computation steps that are 
source for performance. 

IV. A WORKFLOW SOLUTION 

A. A brief introduction to scientifique workflows 

Applications in e-Science are becoming increasingly large-
scale and complex. These applications are often in the form of 
workflows [4] such as MONTAGE, Blast [5], CyberShake [6] 
 with a large number of software components and 
modules. Workflow and scheduling policies have been studied 
for one decade or two. In the reminder of this section we 
consider many categories of strategies. At a high level of 
abstraction, we focus first on the works that seek to optimize 
the execution time and/or QoS constraints of the workflows 
running in grid environments, and second works anchored in 
the Map-Reduce framework (data aware scheduling). 
Workflow management systems related works are presented in 
the synthesis from Valduriez [7] or in the work of Carole 
Goble [8]. These two papers are more related to cloud 
computing and data intensive scientific workflows in putting 
an emphasis on data management. The context of these works 
is not adapted to our context because they do not take into 
account a dynamic view of the system in reacting to events 
when they arrive. Static information are supposed to be 
available (task graph, date of the events, task duration and 
costs…).prepared text file. You are now ready to style your 
paper; use the scroll down window on the left of the MS Word 
Formatting toolbar. 



 

 

B. Transformation of the parallel code into a workflow 

From a methodological point of view, we have realized a 
conversion of the parallel ADAPT algorithm described with 
algorithm 1, page 2 into a Direct Acyclic Graph (DAG). The 
ADAPT graph that we schedule has the shape depicted on  

Fig. 1. The ADAPT workflow 

Figure 1. As a first approximate, each node of the DAG 
corresponds to a line in the algorithm 1, page 2. For instance, 
the node labeled METIS corresponds to line 4, the line 9 
corresponds to the nodes INIT{0..7}, the node label-led 
MUMPS corresponds to line 19, the lines 21 to 27 correspond 
to the nodes ITER{0..number of iteration}_{0..7}. The DAG 
describes parallel execution, for instance nodes INIT{0..7} 
may run in parallel if we have enough processors. The DAG 
also describes dependencies e.g. precedence relations, between 
nodes: nodes INIT{0..7} may be executed only after the 
completion of METIS. 

The key idea is to decompose the solution according to 
services (METIS, MUMPS…) and let them being scheduled 
by the RedisDG workflow engine. The key idea is no more 
with the design of tightly coupled parallel codes, as with MPI, 
but rather, to adopt a higher view in terms of general services. 
As with the design of computer programs, the process of 
converting a parallel or sequential program into a scientific 
workflow is not a formal process and it is deeply anchored 

into the experience of the programmer in term of idioms and 
best practices. 

V. CHALLENGE IN USING MULTIPLE EXECUTION MODELS 

A. The RedisDG workflow engine 

We first introduce our workflow engine, its key 
components. Second, we analyze the problems of coupling 
multiple execution models, motivated by the will to deploy 
them on demand, because our target environments are 
heterogeneous and highly dynamic. The key idea is to adopt 
an opportunistic point of view for executing tasks: when a 
request for executing a task happens, we examine the situation 
and the knowledge at our disposal, and then we take a 
decision. 

A scientific workflow system is a specialized form of a 
workflow management system designed specifically to 
compose and execute a series of computational or data 
manipulation steps, or workflow, in a scientific application. In 
this thesis ’workflow’ and ’scientific workflow’ are 
considered equivalent for sake of simplicity. The simplest 
computerized scientific workflows are scripts that call in data, 
programs, and other inputs and produce outputs that might 
include visualizations and analytic results. These may be 
implemented in programs such as R or MATLAB, or using a 
scripting language such as Python or Perl with a command-
line interface. By focusing on the scientists, the focus of 
designing scientific workflow system shifts away from the 
workflow scheduling activities, typically considered by grid 
computing environments in the past and now by cloud 
computing environments for optimizing the execution of 
complex computations on predefined resources, to a domain-
specific view of what data types, tools and distributed 
resources should be made available to the scientists and how 
can one make them easily accessible and with specific Quality 
of Service (QoS) requirements. 

RedisDG protocol: in Figure 2, we present the RedisDG 
architecture and we now introduce the steps of an application 
execution. In RedisDG, a task may have five states: 
WaitingTasks, TasksToDo, TasksInProgress, TasksToCheck 
and FinishedTasks. These states are managed by five actors: a 
broker, a coordinator, a worker, a monitor and a checker. 
Taken separately, the behavior of each component in the 
system may appear simple, but we are rather interested in the 
coordination of these components, which makes the problem 
more difficult to solve. The key idea is to allow the connection 
of dedicated components (coordinator, checker,…) in a 
general coordination mechanism in order to avoid building a 
monolithic system. The behavior of our system as shown in 
Figure 2 is as follows: 

1. Tasks batches submission. Each batch is a series-parallel 
graph of tasks to execute. 

2. The Broker retrieves tasks and publishes them on the 
channel called WaitingTasks. 

3. The Coordinator is listening on the channel WaitingTasks. 

4. The Coordinator begins publishing independent tasks on the 
channel TasksToDo. 



 

 

Fig. 2. Interactions between components of the RedisDG system 

5. Workers announce their volunteering on the channel 
VolunteerWorkers. 

6. The coordinator selects Workers according to SLA criteria. 

7. The Workers, listening beforehand on the channel 
TasksToDo start executing the published tasks. The event 
’execution in progress’ is published on the channel 
TasksInProgress. 

8. During the execution, each task is under the supervision of 
the Monitor whose role is to ensure the correct execution by 
checking if the node is alive. Otherwise the Monitor 
publishes again, tasks that do not arrive at the end of their 
execution. It publishes, on the channel TasksToDo, in order 
to make the execution of the task done by other Workers. 

9. Once the execution is completed, the Worker publishes the 
task on channel TasksToCheck. 

10. The Checker verifies the result returned and publishes 
the corresponding task on the channel FinishedTasks. 

11. The Coordinator checks dependencies between 
completed tasks and those waiting, and restarts the process 
in step (4). 

12. Once the application is completed (no more tasks), the 
Coordinator publishes a message on the channel Emergency 
to notify all the components by the end of the process. 

B. Motivations for using multiple execution models 

As big experiments manage large amounts of computation 
and data, it becomes critical to execute them in high-
performance computing environments, such as clusters, grids, 
and clouds. However, few workflow systems provide parallel 
support and they usually need labor-intensive work, with 
limited gain, through primitives to optimize workflow 
execution. The needs are to specify and to enable the 
optimization of parallel execution of scientific workflows. 

One important issue is to describe a collaborative system 
able to execute the tasks graph (DAG), more precisely a 
hierarchical DAG because a node needs to be unfolded into 
different forms of execution runtime. In this vein, we can 
imagine to unfold a node, dynamically, if we have enough 

resource, or we could request, on demand, new resources. At 
an abstract level, such systems are usually modeled with 
centralized and state-based formalisms like automata, Petri 
nets or state-charts. They can also directly be specified with 
dedicated notations like BPEL [9] or BPMN [10]. In this 
context we will surely also need the contributions from the 
fields of lazy evaluation, abstract grammar and context-free 
languages as well as from software engineering in a broad 
sense. We now analyze some relevant works in this context. 

1) OpenAlea 
The OpenAlea system [11], [12] is a workflow system 

based on λ-dataflow which is able to uniformly deal with 
classical data analysis, visualization, modeling and simulation 
tasks. λ-dataflow means that the system uses higher-order 
constructs in the context of dataflows theory and thus allows 
to represent control flow using algebraic operators (e.g., 
conditionals, map/reduce…). An actor in OpenAlea is an 
elementary brick (a.k.a. component or activity) that has a 
name, a function object (a functor, a program, a web service, a 
micro service or a composite actor), and explicitly defined 
input and output ports. A semantic type is associated to each 
port (with a corresponding color). A workflow is represented 
as a directed multi-graph where nodes are actors, and directed 
edges are data links between output and input ports. A 
workflow can become a (composite) actor in another 
workflow to allow composition. In another word, one of the 
main originality of OpenAleat is to introduce higher-order 
dataflows as a means to uniformly combine classical data 
analysis with modeling and simulation. 

Another major originality of OpenAlea lies in the way 
iteration is handled by introducing a specific kind of actor, 
called dataflow variable X. It allows to specify that, at a given 
port, an actor receives an unbound variable rather than a value. 
Connecting an X to an actor transforms a workflow into a 
lambda function, and allows to express higher-order 
programming providing control flow behavior using a set of 
algebraic operators. The three iteration types can be expressed 
as (1) counting loops without dependencies (map operator), 
(2) counting loops with dependencies (reduce and for 
operators) and (3) conditional loops (while operator). As we 
can observe, the orientation of the framework is clearly 
towards data-intensive jobs since we recognize some 
operations of the popular MapReduce framework. 

2) Chiron 
Chiron [13] is a workflow execution engine designed to 

run workflows in parallel in HPC environments. Chiron uses 
the message passage interface (MPI) so that the engine is 
executed along the computing nodes of the environment. Each 
computing node runs an instance of Chiron, which also gathers 
provenance data (start time, end time, execution status, logs, 
errors). This last point is a strong feature. Provenance is a key 
element to assess the correctness of the experiment and its 
reproducibility. Through provenance, scientists can follow the 
experiment execution and verify, for example, which 
parameter values produced the best results. 

Chiron addresses the issue of optimizing parallel workflow 
execution, according to a specific algebra for scientific 
workflows. This algebra is inspired by the relational algebra 



 

 

for databases and provides a uniform data model that 
expresses all experiment data as relations. For Chiron, a 
scientific workflow is then a set of algebraic expressions. 
Basically, an operator applies on an activity which is a 
program or an expression (plus an input relation schema as 
well as an output relation schema), and produces a relation in 
the sense of relational database. 

The proposed scientific workflow algebra of Chiron 
considers six different operators. There are for instance four 
algebraic operators that invoke computer programs. They 
differ basically in the way tuples are consumed and produced. 
For instance, the Map operator rules activities that, for each 
input tuple, produce a single output tuple. This is typically the 
most general case because most computer programs consume 
a set of input parameter values to produce a set of output 
parameter values. Another example is the SplitMap operator 
which is related to fragmentation and decomposition methods 
which, based on a single tuple, may produce several output 
tuples. 

Each node has an instance of Chiron, and each instance has 
a thread to schedule activations to the available activation 
“processors threads” in the instance. In node 0, there is a 
thread called “workflow processor”, which orchestrates the 
workflow execution deciding what is ready to be consumed. 
The “activation schedulers” use MPI to communicate with the 
“workflow processor” thread. This communication is used for 
reporting completed activations and obtaining new activations 
to be consumed. Whenever a given activation runs in blocking 
mode, the workflow processor answers a request with a “wait” 
message instead of answering with an “activation ready” to be 
consumed. 

3) A component model for HPC applications 
In [14] authors study the feasibility of efficiently 

combining both a software component model and a task-based 
model. Task based models are known to enable efficient 
executions on recent HPC computing nodes while component 
models ease the separation of concerns of application and thus 
improve their modularity and adaptability. This paper is a 
Software Engineering effort for capturing maintainability of 
HPC codes. Authors notice that HPC task-based scheduling 
runtime systems have been designed to ease reaching high 
performance on complex hardware as well as performance 
portability. They keep the option that task granularity should 
be small enough such that the runtime scheduling algorithm 
can leverage the flexibility to make the efficient choices for 
the available hardware. In others words they assume that 
overlapping or combining small computational chunks is 
better for performance. 

Then authors introduce the COMET programming model 
is based on the L

2
C model, a minimal HPC-oriented 

component model [15]. The COMET runtime distinguishes 
three types of components: a) components written by the user 
in the programming model, b) components generated during 
the compilation phase, and c) components written by experts 
that make the runtime easily extensible to support potential 
new concepts in the programming model. The task 
implementation is provided by a use of a port of the “meta-
task” that is connected to a component instance outside any 

dataflow section. Hence, meta-tasks do not contain user- level 
code; they only enable the implicit description of task sets; the 
actual implementation is delegated to components. The 
expression of task parallelism is achieved thanks to the 
composition of meta-tasks of dataflow sections, while data 
parallelism is expressed inside meta-task using data 
partitioning and alignment expressions. 

C. Challenges and possible adaptation of RedisDG 

Summarizing the previous subsection, we can say that 
three directions have been explored, all of them put an 
emphasis on the notion of a task graph, but for objectives that 
are quite different but important nowadays: performance 
(OpenAlea), reproducibility and provenance (Chiron), 
maintainability (COMET). We propose to keep some features 
for the RedisDG workflow engine and we assume that only the 
workflow description (currently implemented as an XML file) 
can be enriched. We do not want to count on “external” tools 
or techniques; we mean for instance the introduction of a new 
programming model. The programming model is the DAG, 
that’s it! 

We now introduce an example to explain how we plan to 
go through “data life cycle” (DLC) and interoperability with 
other execution models (EM). Data life cycle is the description 
of operational stages through which data pass when we enter 
to a system and until we leave the system. We have in mind 
the Active Data

1
 and the StarPU

2
 frameworks and we attempt 

to offer some kind of unified view. The challenges are to 
expose an high level view for DLC and EM across distributed 
systems and architectures and also to expose interactions 
between the infrastructure and DLC/EM. For instance we need 
to react when a failure occurs in data transmission or we need 
to configure an execution model when we detect its presence. 
Regarding the data transmission problem, the system should 
drop the whole dataset (for instance the input files of a file), 
remove any associated file and metadata, re-acquire the 
dataset using the same parameters. Regarding the execution 
model, the system should interact with the physical node to 
detect if the environment variable for the number of logical 
GPU devices is lower than the number of physical devices. 
The system should also check the default scheduling policy 
and the availability of a performance model and changes them 
according to the data that will be computed on the node. 

For the modeling, we propose a collaborative system 
which is centered on the notion of user’s workspace. We 
assume that the workspace of a user is given by a map. It is a 
tree used to visualize and organize tasks in which the user is 
involved together with information used for the resolution of 
the tasks. The workspace of a given user may, in fact, consist 
of several maps where each map is associated with a particular 
service offered by the user. To simplify, one can assume that a 
user offers a unique service so that any workspace can be 
identified with its graphical representation as a map. Each map 
is associated with a node of the DAG and it specifies the  

1. http://graal.ens-lyon.fr/˜gfedak/pmwiki-test/pmwiki.php/Main/ActiveData 

2. http://starpu.gforge.inria.fr/doc/html/index.html 

resolution of the task regarding DLC/EM. The following map 
might represent the workspace of a task regarding our toy 
example: 



 

 

Task_i --- DLC --- ?transmission --- drop -- remove -- reload 
             | 
             |- EM  --- ?GPU -- fix_number_devices 
                         | 
                         |- ?Scheduling --- data_aware --- choose_data_aware 
                                                  | 
                                                  |- in_memory  --- choose_in_memory 

 

We interpret a task as a problem to be solved, that can be 
completed by refining it into sub-tasks using some kind of 
business rules. In a first approximation a business rule can be 

modeled as a production rule P : s0→s1→⋯→sn stating that 

task s0 can be reduced to subtasks s1 to sn. We argue that the 
Guarded Attribute Grammar Syntax, as in , is a good formal 
model to continue into this direction. 

However, to become concrete, the modeling implies that 
we revisit also the RedisDG protocol. At least two new 
communication channels (one for capturing DLC interactions, 
and one for capturing EM interactions) needs to be added. 
These channels connect the coordinator, the worker actors but 
could also impact the broker since in some cases we may need 
to re-publish a task (see Figure 2). Future work needs to be 
done to decide on the modifications. 

VI. CONCLUSION   

In this paper we introduced our methodology, through an 
example, for designing and solving computational problem 
inside the ADAPT framework according to a Service oriented 
view, i.e. according to requirements we found for clouds, with 
the objective to exploit heterogeneous platforms and highly 
dynamic environments. The basic idea is to admit that 
excellent, in terms of performance, numerical libraries are now 
available because they have been optimized for many 
hardware architectures. The problem is not so much to try 
again to improve performance but rather, in our opinion, to 
exploit all the resources in terms of computing, networking, 
storing, available on the planet and/or in major cloud providers 
and for everyone. 

One opportunity we analyzed in this paper is the following. 
In our past work, we have assumed, implicitly, that each node 
corresponds to a sequential task. The parallelism is depicted 
by parallel edges of the workflow and started from the same 
node. We could imagine that a node corresponds to a parallel 
execution, for instance a parallel version of METIS or 
MUMPS for instance. The related work for capturing such 
feature exhibits many possibilities but, none of them are good 
enough to capture heterogeneous and highly dynamic 
environments as with our RedisDG system. We isolated the 
key challenges to address in order to adapt the RedisDG 
system for capturing Data Life Cycle (DLC) and Execution 
Model (EM) requirements. 
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