

Challenges of Translating HPC codes to Workflows

for Heterogeneous and Dynamic Environments

Fayssal Benkhaldoun, Christophe Cérin, Imad Kissami

LAGA-LIPN, University of Paris 13

99, avenue Jean-Baptiste Clément

93430 Villetaneuse, France

fayssal@math.univ-paris13.fr

Email:{christophe.cerin, imad}@lipn.univ-paris13.fr

Walid Saad

LaTICE: University of Tunis

ENSIT, 5 av. Taha Hussein, B.P. 56

Bab Mnara, Tunis, Tunisia

Email: walid.saad@lipn.univ-paris13.fr

POSTER PAPER

Abstract—In this paper we would like to share our experience for

transforming a parallel code for a Computational Fluid

Dynamics (CFD) problem into a parallel version for the RedisDG

workflow engine. This system is able to capture heterogeneous

and highly dynamic environments, thanks to opportunistic

scheduling strategies. We show how to move to the field of “HPC

as a Service” in order to use heterogeneous platforms. We mainly

explain, through the CFD use case, how to transform the parallel

code and we exhibit challenges to ’unfold’ the task graph

dynamically in order to improve the overall performance (in a

broad sense) of the workflow engine. We discuss in particular of

the impact on the workflow engine of such dynamic feature. This

paper states that new models for High Performance Computing

are possible, under the condition we revisit our mind in the

direction of the potential of new paradigms such as cloud, edge

computing…

Keywords-component; HPC as a Service, Workflow, Scientific

computing, Collaborative systems, Heterogeneous and highly

dynamic environments.

I. INTRODUCTION

In the field of High Performance Computing on clusters,
researchers and programmers still continue to implement their
applications through standards such as MPI or OpenMP. There
also exists very good kernels in each scientific domains that
are used as libraries in more general parallel frameworks. In
this paper we address the following problem. Given a parallel
code that uses kernels, how to transform it into a scientific
workflow at a minimal cost? We do not want to explain and to
teach to the programmers a new programming language but
we rather prefer to teach them some kind of graphical
language i.e. a task graph that represents the parallel code and,
in the future the application to be developed. Then,
automatically and after this translation, the task graph is
executed by a workflow engine. This process opens new
challenging questions from the workflow engine point of
view, among them, how to combine different execution
models for the tasks and what is the impact of such feature on
the architecture of the workflow engine?

Our research focuses on the design of Systems for
heterogeneous and highly dynamic environments, notably
clouds, desktop grids and volunteer computing projects. The

overall objective is to execute computational codes in such
environments…and progressively moving from a traditional
view for High Performance Computing (HPC) to Service
oriented and workflow oriented views. A hard question, that
the dynamicity causes here, is that given a workflow to
schedule, we do not have any A-priori knowledge on the
resources that are available. To address it, we proposed in [1]
to implement a Publish-Subscribe [2] based mechanism for
resource discovery and allocation. Recall that the Publish-
Subscribe paradigm is an asynchronous mode for
communicating between entities [2]. Some users, namely the
subscribers or clients or consumers, express and record their
interests under the form of subscriptions, and are notified later
by another event produced by other users, namely the
producers.

Indeed, we support the thesis that for building Systems for
heterogeneous and highly dynamic environments we need to
be compliant with:

1. a publish-subscribe layer for the orchestration of the
components of the system;

2. a set of opportunistic strategies for allocating work/tasks
that are also based on the publish-subscribe layer;

3. a small number of software dependencies for the system
and the ability to deploy the system and its applications on
demand. This point is of particular interest in this paper and
we promote the ’easy to use’, and systems that can be
deployed without a system administrator.

In this paper we examine the challenges and issues of
coupling different execution models into the RedisDG
workflow engine that has been developed according to the
previous thesis. In other words, RedisDG is a concrete
instance of the previous principles. We discuss of the impact
on the thesis of such new features, and for that we consider a
CFD problem. We execute our CFD solution, obtained after
transforming a parallel code into a workflow, on top of the
RedisDG system.

The organization of the paper is as follows. In section I we
introduce the numerical problem we are faced to. We also
summarize some related works. Section II introduces a parallel
solution of the problem in the spirit of MPI programming.

Section III explains how to provide with a workflow oriented
view for solving the numerical problem. Section IV explains
the challenges we are faced to when we deal with multiple
runtime systems for executing the nodes of the workflow. This
analysis is the contribution of the paper. Section V concludes
the paper.

II. NUMERICAL PROBLEM

ADAPT [3] is an object oriented platform for running
numerical simulations with a dynamic mesh adaptation
strategy and coupling between finite elements and finite
volumes methods. ADAPT, as a CFD (Computational Fluid
Dynamics) software package, has been developed for realizing
numerical simulation on an unstructured and adaptive mesh
for large scale CFD applications. The ADAPT project is
concerned with skills from numerical analysis, computer
science and physics, and treats many physical phenomena
such as combustion, plasma discharge, wave propagation, etc.
The object oriented ADAPT platform is able to do coupling
between finite volumes and finite elements methods. Yet
another advantage of ADAPT is to focus in streamers which
can be used in many applications (treatment of contaminated
media, etching and deposition of thin films…). The key
equation we solve is the evolution equation coupled with that
Poisson equation:

where F is discretized using the finite volume method on an
unstructured mesh. The time-integration of the transport
equation is performed using an explicit scheme. The
discretized form of the Poisson equation leads to a linear
system to be solved. Before our work, the existing ADAPT
implementation was a sequential C++ code for each
phenomenon, and the code requires a huge CPU time for
executing a 3D simulation. For example, the 3D streamer code
may run up to 30 days before returning results. The
methodology we used for parallelization is based on the
SPMD (single program, multiple data) paradigm. SPMD is the
most common style of parallel programming and usually refers
to message passing programming on distributed memory
computer architectures.

III. A PARALLEL SOLUTION

The pseudo code 1 shows how the parallelization is done
for the streamer code according to the coupling of evolution
equation with Poisson equation. We can see that most parts of
the code are parallel ones (line 19, line 9 to 11 and line 22 to
26) except reading and splitting mesh in the beginning and
between lines 14 and 15. Indeed, at this step, we construct the
matrix that will be used to solve the linear system in line 19:
the matrix is computed one time because it depends only on
the mesh. We also put information about the overlapping
between the communication and computation steps that are
source for performance.

IV. A WORKFLOW SOLUTION

A. A brief introduction to scientifique workflows

Applications in e-Science are becoming increasingly large-
scale and complex. These applications are often in the form of
workflows [4] such as MONTAGE, Blast [5], CyberShake [6]
 with a large number of software components and
modules. Workflow and scheduling policies have been studied
for one decade or two. In the reminder of this section we
consider many categories of strategies. At a high level of
abstraction, we focus first on the works that seek to optimize
the execution time and/or QoS constraints of the workflows
running in grid environments, and second works anchored in
the Map-Reduce framework (data aware scheduling).
Workflow management systems related works are presented in
the synthesis from Valduriez [7] or in the work of Carole
Goble [8]. These two papers are more related to cloud
computing and data intensive scientific workflows in putting
an emphasis on data management. The context of these works
is not adapted to our context because they do not take into
account a dynamic view of the system in reacting to events
when they arrive. Static information are supposed to be
available (task graph, date of the events, task duration and
costs…).prepared text file. You are now ready to style your
paper; use the scroll down window on the left of the MS Word
Formatting toolbar.

B. Transformation of the parallel code into a workflow

From a methodological point of view, we have realized a
conversion of the parallel ADAPT algorithm described with
algorithm 1, page 2 into a Direct Acyclic Graph (DAG). The
ADAPT graph that we schedule has the shape depicted on

Fig. 1. The ADAPT workflow

Figure 1. As a first approximate, each node of the DAG
corresponds to a line in the algorithm 1, page 2. For instance,
the node labeled METIS corresponds to line 4, the line 9
corresponds to the nodes INIT{0..7}, the node label-led
MUMPS corresponds to line 19, the lines 21 to 27 correspond
to the nodes ITER{0..number of iteration}_{0..7}. The DAG
describes parallel execution, for instance nodes INIT{0..7}
may run in parallel if we have enough processors. The DAG
also describes dependencies e.g. precedence relations, between
nodes: nodes INIT{0..7} may be executed only after the
completion of METIS.

The key idea is to decompose the solution according to
services (METIS, MUMPS…) and let them being scheduled
by the RedisDG workflow engine. The key idea is no more
with the design of tightly coupled parallel codes, as with MPI,
but rather, to adopt a higher view in terms of general services.
As with the design of computer programs, the process of
converting a parallel or sequential program into a scientific
workflow is not a formal process and it is deeply anchored

into the experience of the programmer in term of idioms and
best practices.

V. CHALLENGE IN USING MULTIPLE EXECUTION MODELS

A. The RedisDG workflow engine

We first introduce our workflow engine, its key
components. Second, we analyze the problems of coupling
multiple execution models, motivated by the will to deploy
them on demand, because our target environments are
heterogeneous and highly dynamic. The key idea is to adopt
an opportunistic point of view for executing tasks: when a
request for executing a task happens, we examine the situation
and the knowledge at our disposal, and then we take a
decision.

A scientific workflow system is a specialized form of a
workflow management system designed specifically to
compose and execute a series of computational or data
manipulation steps, or workflow, in a scientific application. In
this thesis ’workflow’ and ’scientific workflow’ are
considered equivalent for sake of simplicity. The simplest
computerized scientific workflows are scripts that call in data,
programs, and other inputs and produce outputs that might
include visualizations and analytic results. These may be
implemented in programs such as R or MATLAB, or using a
scripting language such as Python or Perl with a command-
line interface. By focusing on the scientists, the focus of
designing scientific workflow system shifts away from the
workflow scheduling activities, typically considered by grid
computing environments in the past and now by cloud
computing environments for optimizing the execution of
complex computations on predefined resources, to a domain-
specific view of what data types, tools and distributed
resources should be made available to the scientists and how
can one make them easily accessible and with specific Quality
of Service (QoS) requirements.

RedisDG protocol: in Figure 2, we present the RedisDG
architecture and we now introduce the steps of an application
execution. In RedisDG, a task may have five states:
WaitingTasks, TasksToDo, TasksInProgress, TasksToCheck
and FinishedTasks. These states are managed by five actors: a
broker, a coordinator, a worker, a monitor and a checker.
Taken separately, the behavior of each component in the
system may appear simple, but we are rather interested in the
coordination of these components, which makes the problem
more difficult to solve. The key idea is to allow the connection
of dedicated components (coordinator, checker,…) in a
general coordination mechanism in order to avoid building a
monolithic system. The behavior of our system as shown in
Figure 2 is as follows:

1. Tasks batches submission. Each batch is a series-parallel
graph of tasks to execute.

2. The Broker retrieves tasks and publishes them on the
channel called WaitingTasks.

3. The Coordinator is listening on the channel WaitingTasks.

4. The Coordinator begins publishing independent tasks on the
channel TasksToDo.

Fig. 2. Interactions between components of the RedisDG system

5. Workers announce their volunteering on the channel
VolunteerWorkers.

6. The coordinator selects Workers according to SLA criteria.

7. The Workers, listening beforehand on the channel
TasksToDo start executing the published tasks. The event
’execution in progress’ is published on the channel
TasksInProgress.

8. During the execution, each task is under the supervision of
the Monitor whose role is to ensure the correct execution by
checking if the node is alive. Otherwise the Monitor
publishes again, tasks that do not arrive at the end of their
execution. It publishes, on the channel TasksToDo, in order
to make the execution of the task done by other Workers.

9. Once the execution is completed, the Worker publishes the
task on channel TasksToCheck.

10. The Checker verifies the result returned and publishes
the corresponding task on the channel FinishedTasks.

11. The Coordinator checks dependencies between
completed tasks and those waiting, and restarts the process
in step (4).

12. Once the application is completed (no more tasks), the
Coordinator publishes a message on the channel Emergency
to notify all the components by the end of the process.

B. Motivations for using multiple execution models

As big experiments manage large amounts of computation
and data, it becomes critical to execute them in high-
performance computing environments, such as clusters, grids,
and clouds. However, few workflow systems provide parallel
support and they usually need labor-intensive work, with
limited gain, through primitives to optimize workflow
execution. The needs are to specify and to enable the
optimization of parallel execution of scientific workflows.

One important issue is to describe a collaborative system
able to execute the tasks graph (DAG), more precisely a
hierarchical DAG because a node needs to be unfolded into
different forms of execution runtime. In this vein, we can
imagine to unfold a node, dynamically, if we have enough

resource, or we could request, on demand, new resources. At
an abstract level, such systems are usually modeled with
centralized and state-based formalisms like automata, Petri
nets or state-charts. They can also directly be specified with
dedicated notations like BPEL [9] or BPMN [10]. In this
context we will surely also need the contributions from the
fields of lazy evaluation, abstract grammar and context-free
languages as well as from software engineering in a broad
sense. We now analyze some relevant works in this context.

1) OpenAlea
The OpenAlea system [11], [12] is a workflow system

based on λ-dataflow which is able to uniformly deal with
classical data analysis, visualization, modeling and simulation
tasks. λ-dataflow means that the system uses higher-order
constructs in the context of dataflows theory and thus allows
to represent control flow using algebraic operators (e.g.,
conditionals, map/reduce…). An actor in OpenAlea is an
elementary brick (a.k.a. component or activity) that has a
name, a function object (a functor, a program, a web service, a
micro service or a composite actor), and explicitly defined
input and output ports. A semantic type is associated to each
port (with a corresponding color). A workflow is represented
as a directed multi-graph where nodes are actors, and directed
edges are data links between output and input ports. A
workflow can become a (composite) actor in another
workflow to allow composition. In another word, one of the
main originality of OpenAleat is to introduce higher-order
dataflows as a means to uniformly combine classical data
analysis with modeling and simulation.

Another major originality of OpenAlea lies in the way
iteration is handled by introducing a specific kind of actor,
called dataflow variable X. It allows to specify that, at a given
port, an actor receives an unbound variable rather than a value.
Connecting an X to an actor transforms a workflow into a
lambda function, and allows to express higher-order
programming providing control flow behavior using a set of
algebraic operators. The three iteration types can be expressed
as (1) counting loops without dependencies (map operator),
(2) counting loops with dependencies (reduce and for
operators) and (3) conditional loops (while operator). As we
can observe, the orientation of the framework is clearly
towards data-intensive jobs since we recognize some
operations of the popular MapReduce framework.

2) Chiron
Chiron [13] is a workflow execution engine designed to

run workflows in parallel in HPC environments. Chiron uses
the message passage interface (MPI) so that the engine is
executed along the computing nodes of the environment. Each
computing node runs an instance of Chiron, which also gathers
provenance data (start time, end time, execution status, logs,
errors). This last point is a strong feature. Provenance is a key
element to assess the correctness of the experiment and its
reproducibility. Through provenance, scientists can follow the
experiment execution and verify, for example, which
parameter values produced the best results.

Chiron addresses the issue of optimizing parallel workflow
execution, according to a specific algebra for scientific
workflows. This algebra is inspired by the relational algebra

for databases and provides a uniform data model that
expresses all experiment data as relations. For Chiron, a
scientific workflow is then a set of algebraic expressions.
Basically, an operator applies on an activity which is a
program or an expression (plus an input relation schema as
well as an output relation schema), and produces a relation in
the sense of relational database.

The proposed scientific workflow algebra of Chiron
considers six different operators. There are for instance four
algebraic operators that invoke computer programs. They
differ basically in the way tuples are consumed and produced.
For instance, the Map operator rules activities that, for each
input tuple, produce a single output tuple. This is typically the
most general case because most computer programs consume
a set of input parameter values to produce a set of output
parameter values. Another example is the SplitMap operator
which is related to fragmentation and decomposition methods
which, based on a single tuple, may produce several output
tuples.

Each node has an instance of Chiron, and each instance has
a thread to schedule activations to the available activation
“processors threads” in the instance. In node 0, there is a
thread called “workflow processor”, which orchestrates the
workflow execution deciding what is ready to be consumed.
The “activation schedulers” use MPI to communicate with the
“workflow processor” thread. This communication is used for
reporting completed activations and obtaining new activations
to be consumed. Whenever a given activation runs in blocking
mode, the workflow processor answers a request with a “wait”
message instead of answering with an “activation ready” to be
consumed.

3) A component model for HPC applications
In [14] authors study the feasibility of efficiently

combining both a software component model and a task-based
model. Task based models are known to enable efficient
executions on recent HPC computing nodes while component
models ease the separation of concerns of application and thus
improve their modularity and adaptability. This paper is a
Software Engineering effort for capturing maintainability of
HPC codes. Authors notice that HPC task-based scheduling
runtime systems have been designed to ease reaching high
performance on complex hardware as well as performance
portability. They keep the option that task granularity should
be small enough such that the runtime scheduling algorithm
can leverage the flexibility to make the efficient choices for
the available hardware. In others words they assume that
overlapping or combining small computational chunks is
better for performance.

Then authors introduce the COMET programming model
is based on the L

2
C model, a minimal HPC-oriented

component model [15]. The COMET runtime distinguishes
three types of components: a) components written by the user
in the programming model, b) components generated during
the compilation phase, and c) components written by experts
that make the runtime easily extensible to support potential
new concepts in the programming model. The task
implementation is provided by a use of a port of the “meta-
task” that is connected to a component instance outside any

dataflow section. Hence, meta-tasks do not contain user- level
code; they only enable the implicit description of task sets; the
actual implementation is delegated to components. The
expression of task parallelism is achieved thanks to the
composition of meta-tasks of dataflow sections, while data
parallelism is expressed inside meta-task using data
partitioning and alignment expressions.

C. Challenges and possible adaptation of RedisDG

Summarizing the previous subsection, we can say that
three directions have been explored, all of them put an
emphasis on the notion of a task graph, but for objectives that
are quite different but important nowadays: performance
(OpenAlea), reproducibility and provenance (Chiron),
maintainability (COMET). We propose to keep some features
for the RedisDG workflow engine and we assume that only the
workflow description (currently implemented as an XML file)
can be enriched. We do not want to count on “external” tools
or techniques; we mean for instance the introduction of a new
programming model. The programming model is the DAG,
that’s it!

We now introduce an example to explain how we plan to
go through “data life cycle” (DLC) and interoperability with
other execution models (EM). Data life cycle is the description
of operational stages through which data pass when we enter
to a system and until we leave the system. We have in mind
the Active Data

1
 and the StarPU

2
 frameworks and we attempt

to offer some kind of unified view. The challenges are to
expose an high level view for DLC and EM across distributed
systems and architectures and also to expose interactions
between the infrastructure and DLC/EM. For instance we need
to react when a failure occurs in data transmission or we need
to configure an execution model when we detect its presence.
Regarding the data transmission problem, the system should
drop the whole dataset (for instance the input files of a file),
remove any associated file and metadata, re-acquire the
dataset using the same parameters. Regarding the execution
model, the system should interact with the physical node to
detect if the environment variable for the number of logical
GPU devices is lower than the number of physical devices.
The system should also check the default scheduling policy
and the availability of a performance model and changes them
according to the data that will be computed on the node.

For the modeling, we propose a collaborative system
which is centered on the notion of user’s workspace. We
assume that the workspace of a user is given by a map. It is a
tree used to visualize and organize tasks in which the user is
involved together with information used for the resolution of
the tasks. The workspace of a given user may, in fact, consist
of several maps where each map is associated with a particular
service offered by the user. To simplify, one can assume that a
user offers a unique service so that any workspace can be
identified with its graphical representation as a map. Each map
is associated with a node of the DAG and it specifies the

1. http://graal.ens-lyon.fr/˜gfedak/pmwiki-test/pmwiki.php/Main/ActiveData

2. http://starpu.gforge.inria.fr/doc/html/index.html

resolution of the task regarding DLC/EM. The following map
might represent the workspace of a task regarding our toy
example:

Task_i --- DLC --- ?transmission --- drop -- remove -- reload
 |
 |- EM --- ?GPU -- fix_number_devices
 |
 |- ?Scheduling --- data_aware --- choose_data_aware
 |
 |- in_memory --- choose_in_memory

We interpret a task as a problem to be solved, that can be
completed by refining it into sub-tasks using some kind of
business rules. In a first approximation a business rule can be

modeled as a production rule P : s0→s1→⋯→sn stating that

task s0 can be reduced to subtasks s1 to sn. We argue that the
Guarded Attribute Grammar Syntax, as in , is a good formal
model to continue into this direction.

However, to become concrete, the modeling implies that
we revisit also the RedisDG protocol. At least two new
communication channels (one for capturing DLC interactions,
and one for capturing EM interactions) needs to be added.
These channels connect the coordinator, the worker actors but
could also impact the broker since in some cases we may need
to re-publish a task (see Figure 2). Future work needs to be
done to decide on the modifications.

VI. CONCLUSION

In this paper we introduced our methodology, through an
example, for designing and solving computational problem
inside the ADAPT framework according to a Service oriented
view, i.e. according to requirements we found for clouds, with
the objective to exploit heterogeneous platforms and highly
dynamic environments. The basic idea is to admit that
excellent, in terms of performance, numerical libraries are now
available because they have been optimized for many
hardware architectures. The problem is not so much to try
again to improve performance but rather, in our opinion, to
exploit all the resources in terms of computing, networking,
storing, available on the planet and/or in major cloud providers
and for everyone.

One opportunity we analyzed in this paper is the following.
In our past work, we have assumed, implicitly, that each node
corresponds to a sequential task. The parallelism is depicted
by parallel edges of the workflow and started from the same
node. We could imagine that a node corresponds to a parallel
execution, for instance a parallel version of METIS or
MUMPS for instance. The related work for capturing such
feature exhibits many possibilities but, none of them are good
enough to capture heterogeneous and highly dynamic
environments as with our RedisDG system. We isolated the
key challenges to address in order to adapt the RedisDG
system for capturing Data Life Cycle (DLC) and Execution
Model (EM) requirements.

REFERENCES

1. Leila Abidi, Jean-Christophe Dubacq, Christophe Cérin, and Mohamed
Jemni. A publication-subscription interaction schema for desktop grid
computing. In Sung Y. Shin and José Carlos Maldonado, editors, SAC,
pages 771–778. ACM, 2013.

2. Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput.
Surv.,35(2):114–131, 2003.

3. Fayssal Benkhaldoun, Jaroslav Fort, Khaled Hassouni, and Jan Karel.
Simulation of planar ionization wave front propagation on an
unstructured adaptive grid. Journal of Computational and Applied
Mathematics, 236(18):4623 – 4634, 2012. {FEMTEC} 2011: 3rd
International Conference on Computational Methods in Engineering and
Science, May 9–13, 2011. URL:
http://www.sciencedirect.com/science/article/pii/S0377042712001707,
doi:http://dx.doi.org/https://doi.org/10.1016/j.cam.2012.04.010.

4. S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, Mei-Hui Su, and K.
Vahi. Characterization of scientific workflows. In Workflows in Support
of Large-Scale Science, 2008. WORKS 2008. Third Workshop on,
pages 1–10, Nov 2008. doi:10.1109/WORKS.2008.4723958.

5. Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J. Lipman. Gapped blast
and psiblast: a new generation of protein database search programs.
NUCLEIC ACIDS RESEARCH, 25(17):3389–3402, 1997.

6. Robert Graves, Thomas H. Jordan, Scott Callaghan, Ewa Deelman,
Edward Field, Gideon Juve, Carl Kesselman, Philip Maechling, Gaurang
Mehta, Kevin Milner, David Ok aya, Patrick Small, and Karan Vahi.
CyberShake: A Physics-Based Seismic Hazard Model for Southern
California. Pure and Applied Geophysics, 168:367–381, 2011. doi:
10.1007/s00024-010-0161-6.

7. Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A survey of
data-intensive scientific workflow management. J. Grid Comput.,
13(4):457–493, 2015. URL: http://dx.doi.org/10.1007/s10723-015-9329-
8, doi:10.1007/s10723-015-9329-8.

8. Yogesh Simmhan, Lavanya Ramakrishnan, Gabriel Antoniu, and Carole
A. Goble. Cloud computing for data-driven science and engineering.
Concurrency and Computation: Practice and Experience, 28(4):947–949,
2016. URL: http://dx.doi.org/10.1002/cpe.3668, doi:10.1002/cpe.3668.

9. Arnaud Lanoix, Julien Dormoy, and Olga Kouchnarenko. Combining
proof and model-checking to validate reconfigurable architectures.
Electronic Notes in Theoretical Computer Science, 279(2):43–57, 2011.

10. Jeffrey O Kephart and David M Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

11. Christophe Pradal, Samuel Dufour-Kowalski, Frédéric Boudon,
Christian Fournier, and Christophe Godin. Openalea: a visual
programming and component-based software platform for plant
modelling. Functional Plant Biology, 35(10):751–760, 2008. URL:
http://dx.doi.org/10.1071/FP08084.

12. Christophe Pradal, Christian Fournier, Patrick Valduriez, and Sarah
Cohen Boulakia. Openalea: scientific workflows combining data
analysis and simulation. In Proceedings of the 27th International
Conference on Scientific and Statistical Database Management, SSDBM
’15, La Jolla, CA, USA, June 29 - July 1, 2015, pages 11:1–11:6, 2015.
URL:http://doi.acm.org/10.1145/2791347.2791365;
doi:10.1145/2791347.2791365.

13. Eduardo S. Ogasawara, Jonas Dias, Vítor Silva Sousa, Fernando Seabra
Chirigati, Daniel de Oliveira, Fábio Porto, Patrick Valduriez, and Marta
Mattoso. Chiron: a parallel engine for algebraic scientific workflows.
Concurrency and Computation: Practice and Experience, 25(16):2327–
2341, 2013. URL: http://dx.doi.org/10.1002/cpe.3032, doi:10.1002/
cpe.3032.

14. Olivier Aumage, Julien Bigoty, Hélène Coullon, Christian Pérez, and
Jérôme Richard. Combining both a component model and a task-based
model for hpc applications: a feasibility study on gysela. In 17TH
IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER,
CLOUD AND GRID, CCGRID ’17, pages ??–??, IEEE, Piscataway
USA, 2017. IEEE. Julien Bigot, Zhengxiong Hou, Christian Pérez, and
Vincent Pichon. A low level component model easing performance
portability of HPC applications. Computing, 96(12):1115–1130, 2014.
URL:http://dx.doi.org/10.1007/s00607-013-0368-3, doi:10.1007/s00607-
013-0368-3.

15. Eric Badouel, Loïc Hélouët, Georges-Edouard Kouamou, Christophe
Morvan, and Nsaibirni Robert Fondze, Jr. Active workspaces:
Distributed collaborative systems based on guarded attribute grammars.
SIGAPP Appl. Comput. Rev., 15(3):6–34, October 2015. URL:
http://doi.acm.org/10.1145/2835260.2835261,
doi:10.1145/2835260.2835261

http://www.sciencedirect.com/science/article/pii/S0377042712001707
http://dx.doi.org/https:/doi.org/10.1016/j.cam.2012.04.010
https://pubs.er.usgs.gov/publication/70035955
https://pubs.er.usgs.gov/publication/70035955
http://dx.doi.org/10.1007/s10723-015-9329-8
http://dx.doi.org/10.1007/s10723-015-9329-8
http://dx.doi.org/10.1007/s10723-015-9329-8
http://dx.doi.org/10.1071/FP08084
http://doi.acm.org/10.1145/2791347.2791365
http://dl.acm.org/citation.cfm?doid=2791347.2791365
http://dx.doi.org/10.1007/s00607-013-0368-3
https://link.springer.com/article/10.1007%2Fs00607-013-0368-3
https://link.springer.com/article/10.1007%2Fs00607-013-0368-3
http://doi.acm.org/10.1145/2835260.2835261
http://doi.acm.org/10.1145/2835260.2835261
http://doi.acm.org/10.1145/2835260.2835261
http://doi.acm.org/10.1145/2835260.2835261

