
Data Exploration on Large Amount of Relational
Data through Keyword Queries

Domenico Beneventano, Francesco Guerra
University of Modena and Reggio Emilia

Modena, IT
Email: first name.last name@unimore.it

Yannis Velegrakis
University of Trento

Trento, IT
Email: velgias@disi.unitn.eu

Abstract—The paper describes a new approach for querying
relational databases through keyword search by exploting Infor-
mation Retrieval (IR) techniques. When users do not know the
structures and the content, keyword search becomes the only
efficient and effective solution for allowing people exploring the
data of a relational database.

The approach is based on a unified view of the database
relations (performed through the full disjunction operator), where
its composing tuples will be considered as documents to be
indexed and searched by means of an IR search engine. Moreover,
as it happens in relational database, the system can merge the
data stored in different documents for providing a complete
answer to the user. In particular, two documents can be joined
because either their tuples in the original database share some
Primary Key or, always in the original database, some tuple is
connected by a Primary / Foreign Key Relation. Our preliminary
proposal, the description of the tabular data structure for storing
and retrieving the possible connections among the documents and
a metrics for scoring the results are introduced in the paper.

I. INTRODUCTION

Traditional database technology has been designed to serve
query answering where users know well the elements of
interest and through a formal and unambiguous query specify
the conditions these elements should satisfy in order to be in
the answer set. In the era of Big Data, data exploration has
become as important as data querying since users need not to
retrieve a portion of the data but to understand the data set
in general. Often they may browse different parts of the data
until they find something of interest. Unfortunately, existing
query languages cannot be used easily for data exploration due
to their strict semantics. Queries on structured data are issued
assuming that a correct specification of the user information
need exists and that answers are perfect, i.e. they follow the
“exact match” search paradigm. On the other hand, end-users
exploring a database are more oriented towards a “best match”
search paradigm given that their information needs are often
vague and subjected to a progressive process of refinement
enabled by the search activity itself [?].

A technology that has recently received considerable at-
tention and is gaining momentum is keyword querying on
structured data sources [6]. We claim that keyword queries
offer a great opportunity for data exploration since users can
form a high level and generic request, but the results returned,
since they come from structured data sources, contain not only
the values but also the schema, i.e., the semantics, of these

values, helping the user understand how the data is structured
and its meaning.

The majority of the existing techniques that support key-
word search over relational databases can be classified as
schema-based or graph-based [?] approaches. Schema-based
techniques exploit the schema information to issue SQL
queries with the same meaning as the original keyword
queries. On the other hand, graph-based techniques treat
relational databases as graphs. Solving keyword queries in this
context requires the computation of specific structures over
the graphs (e.g., Steiner trees). A few proposals have adopted
information retrieval (IR) style solutions, where the main issue
is building meaningful and integral information units from the
data (which in a relational database is spread over a number
of tables) to index and rank according to the given query. In
[7], these atomic pieces of data are called tuple units.

Within the last few years, we have engaged into a long
line of work in which we have tried to tackle a number
of interesting problems in keyword searching over relational
structures. We have introduced a principal model for keyword
search over structured databases and developed a number of
schema-based techniques and prototypes based on heuristic
and machine learning techniques. Our KEYMANTIC [2][1]
system has focused on finding a solution based on a bipartite
graph matching model where user keywords were matched
to database schema elements by using an extension of the
Hungarian algorithm. In KEYRY [5][9] we extended KEY-
MANTIC by providing a probabilistic framework, based on a
Hidden Markov Model (HMM) to compute the mapoping of
keywords to database structures. Finally, in QUEST [4][3] we
provided a complete end to end solution that the mapping is by
means of HMM and the way these mappings are combined by
means of Steiner Trees and a probabilistic framework provided
by the Dempster-Shafer theory.

In this paper, we introduce and analyze a new proposal
that extends some of the ideas introduced in the Tuple Unit
approach. In particular, we advocate that IR techniques can be
exploited to provide an implementation of keyword search over
the relational data. To do it, the relational databases have to
be viewed and materialized into documents which in turn can
be queries and retrieved in the same way these IR tasks have
done with regular documents. The advantage is that the IR
community has developed reliable, and mature technologies



available also as open libraries (see for example Apache
Lucene1, Terrier 2) and evaluated with robust methodologies
(see for example the TREC initiative3) to be used for this
purpose. These techniques are mature and allow users to easily
retrieve keywords and rank large collections of documents.
The challenge is now how to make relations in a database
“documents” to be efficiently and effectively retrieved and
ranked by a IR system. Our approach is still under devel-
opment. The next section introduces, also by examples, the
main issues we are addressing and the main features of our
idea.

II. LEVERAGING IR FOR QUERYING STRUCTURED DATA

IR techniques require the use of some elementary units.
Traditionally this role is played by documents. Unfortunately,
in relational databases, the logical units are fragmented both
horizontally in different tuples of the same table, and vertically
in different tuples across different tables. Thus, there is a
need for a way to turn the distributed tuples into documents.
For this, we introduce the notion base joining trees of tuples
(BT) that can play the role of the documents and we show
how they are to be created. However, in contrust to the
traditional documents, the BTs can be further combined to
create additional more complex documents, i.e., they serve a
role similar to base tables.

A. From tuples to documents

To turn tuples to documents we extend the idea of tuple
units. A tuple unit is a set of tuples in different tables
connected throwback referential constraints [7]. We extend the
idea of tuple units by materializing and indexing base joining
trees of tuples (BTs) obtained from the application of the full
disjunction operator to the database.

We use the notion of joined tuple tree introduced in [?].
Consider a database with n relations R1,...,Rn. Each relation
Ri is composed of A1i,. . . ,Ami attributes, a primary key and
possibly foreign keys into other relations. The schema graph G
is a directed graph that captures the foreign key relationships
in the schema. G has a node for each relation Ri, and an edge
Ri→ Rj for each primary key to foreign key relationship from
Ri into Rj . A Joined Tuple Tree T is a tree of tuples where
each edge (ti, tj) in T , with ti ∈ Ri and tj ∈ Rj satisfies
two properties: (1) (Ri, Rj) ∈ G, and (2) ti tj ∈ Ri Rj . The
size(T ) of a joining tree T is the number of tuples in T .

Any joined tuple tree of tuples T consisting of at most
n tuple from each relation in R with n ≥ 1 is called a n-
level joining tree, denoted by Tn; a 1-level joining tree is
base joining tree and denoted by BT . The first interesting
observation is that all possible BTs can be computed by
means of the full disjunction (FD) [8] operator, an associative
extension of the outer-join operator to an arbitrary number of
relations; it has the main ability of maximally combining data

1http://lucene.apache.org/core/
2http://terrier.org/
3http://trec.nist.gov/

from different relations while preserving all possible connec-
tions among the database tuples. BTs will be the elementary
units of information that play the role of documents and are
indexed and retrieved. The second interesting observation is
that the (n+1)-level joined tuple trees are built upon those of
n-level, which facilitates a map reduce implementation of their
computation.

B. Joined Tuple Trees

A keyword query is a set of keywords Q = [w1, ..., wm]
specifying the user information need. An answer to the query
Q is a n-level joining tree of tuples T containing all keywords
wi in Q.

Indexing Building. The computation of an answer requires an
indexing system to efficiently retrieve the BTs containing all
or part of the keywords in the query, to compute the possible
joins between BTs, and to rank the answers obtained according
to a score function that takes into account the selected BTs
and the paths joining them. An approach computing firstly the
best results reduces the answering time, potentially high due
to the number of possible paths in a database.

To reach this goal we build two grouping tables for each
level of joining tree n we want to compute4. The tables
represent the possible ways two n-level trees can be groups in
n+1-level trees. The grouping table (KSETn+1) shows how n-
level trees can be joined according to their primary keys, thus
forming Tn+1 trees. The second table FKSETn + 1 is built
upon the first one and shows the Tn+1s trees in KSETn+1

joined with Tn trees, since they are the primary key in one
primary / foreign key relation. The results are Tn+2 trees.

Moreover, a number of inverted indexes are built on the
KSETn and FKSETn tables. These inverted indexes, built
and managed by means of Apache Lucene5, are exploited for
building the joining tables of the next level and, query-time,
to find possible answers to the user queries.

Let us show through a running example how the data
structures are created and used to provide query answers. Top-
left part of Figure 1 shows a small database composed of
three tables, representing people working in Cities and living
in Regions. Note that Cities are located in Regions, and all
these connections are coded in the database through primary
/ foreign key relationships connecting Person with Town and
Region; Town with Region. Figure 1 shows also all possible
BT s. Bottom part of the same Figure shows the 1-level joining
trees of tuples. For each BT B (Column KT ), KSET1 shows
the BTs having one of the constituting tuples sharing a primary
key with one of B constituting tuples (column TSKSET1

).
Column FKSKSET1 ) reports the BTs that references at least
one of the elements in TSKSET1

6 through a primary / foreing
key relation. We can easily see by construction that two joining
tree of tuples t1, t2 ∈ Tn are connected by a joining path if

4In the following, we suppose that an identifier is defined for each BT
5lucene.apache.org/
6We refer to TSKSET1

as the TS column in table KSET1. A similar
notation has been adopted for the other joining tables.



Fig. 1. The reference database

there is an entry in the table where (a) t1and/ort2 ∈ KT1

and (b) t1and/ort2 ∈ TSKSET1
. This property is true for

each level n.
Example. The first entry in KSET1 shows that BT s 5, 6, 7,
11, and 12 can be connected with each other via one of the
tuples constituting BT 5. Moreover, tuples in these BT s are
referenced via primary / foreign key relationships from tuples
in BT 7, 11, and 13.

Table FKSET1 includes an entry for each element in
FKSTI1 that is referencing an element in TSKSET1

via a pri-
mary / foreing key relation. We can easily see that two joining
tree of tuples t1, t2 ∈ Tn are connected by a joining path if
there is an entry in the table where t1andt2are ∈ TSKSET1

.
The joining path is the union of t1, t2 and the elements in
FKSTI1 .
Example. The BT s 8 and 6 forms a joining tree of tuples
with BT 10 according to the first entry in FKSET1.

For the sake of clarity, Figure 1 shows also table TI1,
containing the inverted indexes on primary and foreign keys
of the original tuples in the database In particular, the TI1
dictionary contains the primary keys of all tuples composing
the BT s. For each primary key, TSTI1 lists the BT s where
the key appears, and FKSTI1 shows the BT s (if any) where
there is one of the constituting tuples referred as primary key
in a primary / foreign key relationship.

Example. The first entry in TI1 shows that it is possible to
retrieve the value “P2” in the BT s identified as the values
5,6,7. Moreover “P2” is never a primary key in a primary /
foreign key relationship.

Note that the index and joining tables related to Tn+1

joining trees of tuples can be easily generated via the in-
verted index and the tables defined for Tn. Furthermore,
the computation of a high number of indexes and joining
tables is not needed: after few levels (1) we cannot obtain
new groups (typically 8-9 in our experiments); (2) the data
we are joining are to far for carrying out some interesting
semantics for the user. Finally, the joining tables are built by
means of inverted indexes. Therefore, the time required for
the computation of these data structures is low, existing tools
are able to process large amount of data, and, in any case,
the operation is performed off-line (the data structures can be
updated periodically).

Selection. Answering a keyword query means to select the n-
level joining trees of tuples containing all keyword. Our idea
is to base this task on the analysis of the indexes and joining
tables. Let us consider a keyword query Q = [w1, ..., wm],
where for sake of simplicity, keywords refers only to primary



Fig. 2. An answer to the query P4, SO, NO

or foreign keys in the original database7. Let us start from
the first level. Table TI1 allows the system to map keywords
wm ∈ Q] into sets of joining trees Bm ∈ BT containing them.
Joined tuple trees mapped by all keywords, i.e. b ∈ Bm∀m,
are answers to Q. Further answers can be found in KSET1.
In particular, an inverted index on the elements in TSKSET1

allows to easily retrieve if there are rows in TSKSET1
able to

complete answer a query. Once identified the rows, the solution
is computed by adding (if not already included) the T s in KT1

(needed to guarantee the existence of a connected tree) and
removing the Ts in TSKSET1

not needed. A similar approach
can be applied to FKSET1 and to the remining of TSKSETn

and FKSETn.
Example. Let us suppose that a user is interested in Person
P4 working in City MO and living in ER. The inverted indexes
in TI1 show that keyword P4 can be found in BT s 1 and 3;
keyword MO in BT s 1 and 2; keyword ER in BT s 1, 2, 3,
4, and 8. Only BT 1 is common to all keywords, and this is
one possible answer for the keyword query. We can found
other answers checking the TS values in tables KSET1,
FKSET1, KSET2, FKSET2, and so on. For example, entry
D in KSET1 contains BT 1, and 8, that is another answer to
the keyword query.

Let us suppose now that a user formulates the keyword
query P4, SO, NO. TI1 shows that P4 can be found in
BT s 1 and 3; SO in BT s 6, 7, and 10; LA in BT s 11
and 13. Figure 1 shows that these keywords does not share
any common BT . However, column TS of entry 7 in table
KSET2 contains BT s 3, 7, and 11. Therefore, the union of
these BT s and the ones in column KT are an answer for the
keyword query, as shown in Figure 2.

Ranking. The strategy for ranking the answers takes into
account three perspectives. The first evaluates the quality of
the BT s selected as partial answers. The BT s are created by
means of the Full Disjunction and this operators maximises
the possible connections among the tables, without taking
into account the original semantics the Designer had in mind
when he created the database schema. This means that, even if
“syntactically” correct, not all BT s have the same importance
for the user. A specific score will be assigned to each BT ,
reflecting this knowledge. We plan to compute the score by
combining two values: the importance of the tables involved
in the full disjunction and of the path joining them. In [?]
a method based on entropy and foreign key / primary key

7Finding for each keyword the primary key of the tuple where the keyword
can be found is an easy task.

relationships for computing the importance of tables and paths
is proposed.

The second perspective evaluates the ability of a BT as a
“document” to satisfy a keyword query. The usual parameters
adopted in IR (term frequency, inverse document frequency,
document size, . . . ) can be adopted for this purpose.

Finally, the third perspective evaluates the distance among
the BT s which have been selected to form an answer. The
higher the n-level of the trees involved the lower should be
the answer score.

III. CONCLUSION

We have described a new approach that leveraging on
big data technologies and information retrieval for computing
answers to keyword queries over relational databases. We pro-
vide a technique enabling keyword search on a unified single-
table representation of the content of a relational database,
built based on the notion of full-disjunction [8]. We described
how indexes can be used to answer the keyword queries and
re-generate the relations from the retrieved documents.

REFERENCES

[1] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Mirko Orsini,
Raquel Trillo-Lado, and Yannis Velegrakis. Keymantic: Semantic
keyword-based searching in data integration systems. PVLDB, 3(2):1637–
1640, 2010.

[2] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo-
Lado, and Yannis Velegrakis. Keyword search over relational databases:
a metadata approach. In SIGMOD, pages 565–576. ACM, 2011.

[3] Sonia Bergamaschi, Francesco Guerra, Matteo Interlandi, Raquel Trillo
Lado, and Yannis Velegrakis. QUEST: A keyword search system for
relational data based on semantic and machine learning techniques.
PVLDB, 6(12):1222–1225, 2013.

[4] Sonia Bergamaschi, Francesco Guerra, Matteo Interlandi, Raquel Trillo
Lado, and Yannis Velegrakis. Combining user and database perspective
for solving keyword queries over relational databases. Inf. Syst., 55:1–19,
2016.

[5] Sonia Bergamaschi, Francesco Guerra, Silvia Rota, and Yannis Vele-
grakis. A hidden markov model approach to keyword-based search over
relational databases. In ER, LNCS 6998, pages 411–420. Springer, 2011.

[6] J. Coffman and A. Weaver. An empirical performance evaluation of
relational keyword search techniques. IEEE TKDE, (99):1, 2012.

[7] Jianhua Feng, Guoliang Li, and Jianyong Wang. Finding top-k answers in
keyword search over relational databases using tuple units. IEEE Trans.
Knowl. Data Eng., 23(12):1781–1794, 2011.

[8] César A. Galindo-Legaria. Outerjoins as disjunctions. In Richard T.
Snodgrass and Marianne Winslett, editors, Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data, Minneapo-
lis, Minnesota, May 24-27, 1994., pages 348–358. ACM Press, 1994.

[9] Silvia Rota, Sonia Bergamaschi, and Francesco Guerra. The list viterbi
training algorithm and its application to keyword search over databases.
In CIKM, pages 1601–1606, 2011.


