
Energy efficiency optimization of task-parallel
codes on asymmetric architectures

Luis Costero, Francisco D. Igual, Katzalin Olcoz and Francisco Tirado
Departamento de Arquitectura de Computadores y Automática

Universidad Complutense de Madrid
Email: {lcostero, figual, katzalin, ptirado}@ucm.es

Abstract—We present a family of policies that, integrated
within a runtime task scheduler (Nanox), pursue the goal of
improving the energy efficiency of task-parallel executions with
no intervention from the programmer. The proposed policies
tackle the problem by modifying the core operating frequency
via DVFS mechanisms, or by enabling/disabling the mapping of
tasks to specific cores at selected execution points, depending
on the internal status of the scheduler. Experimental results on
an asymmetric SoC (Exynos 5422) and for a specific operation
(Cholesky factorization) reveal gains up to 29% in terms of
energy efficiency and considerable reductions in average power.

Task parallelism; runtime task schedulers; asymmetric architec-
tures; energy efficiency; DVFS

I. INTRODUCTION

Asymmetric Multiprocessors (AMPs) are a class of hetero-
geneous parallel architectures in which cores that implement
different microarchitectures share a common ISA (Instruction
Set Architecture) and, possibly, a subset of memory resources.
Typically, the available architectural heterogeneity is exploited
pursuing energy efficiency and performance restrictions on
heterogeneous software environments. One of the most popular
implementations of AMPs is the big.LITTLE architectural
paradigm present in many ARM SoCs (Systems-on-chip),
that combines a number of high performance ARM Cortex-
A57/A15 BIG cores with a (possibly different) number of
energy-efficient ARM Cortex-A53/A7 LITTLE cores. Lever-
aging low-power architectures to the HPC (High Performance
Computing) arena is one of the main trends in the road
towards the Exaflop barrier. Among them, ARM Cortex-A
processors, and more specifically, asymmetric SoCs based on
this microarchitectural family, are nowadays on the spotlight
as the most promising architectures to achieve such a goal.

However, increasing the heterogeneity entails a non-
negligible impact on the programmability of such platforms.
In the last decade, task-parallel programming models have
emerged as an interesting solution that combines a correct
orchestration of parallel programs and a reduced impact on
the complexity of the parallel versions of existing or new
codes. These models aim at casting a complete computation in
terms of discrete pieces of code (tasks) with data dependences
among them with the aid of task annotations provided by the
programmer, and rely on a runtime task scheduler (or just
runtime in the following) that orchestrates the correct ordering
of tasks execution as dependences are satisfied at run time.

The extension of these programming models and associated
runtimes to heterogeneous architectures, managing data co-
herency and data transfers among isolated memory spaces has
been implemented in a number of software efforts, together
with techniques that drive to performance gains in multi-core,
many-core, accelerator-based and distributed-memory archi-
tectures. The necessary efforts to adapt these programming
models to AMPs is also a topic of interest of recent works [1]–
[5], pursuing the goal of boosting performance by correctly
mapping critical tasks to the most appropriate element of the
asymmetric architecture. These works complement energy-
efficiency studies specifically targeting asymmetric architec-
tures [6], [7]. However, the impact and possibilities of task
schedulers in terms of improving energy efficiency of task-
parallel implementations has not been previously studied in
such a level of detail. As of today, similar efforts, together
with their impact on performance and energy efficiency, have
not been ported or adapted to AMPs.

In this paper, we propose an extension of Nanox, the runtime
task scheduler underlying the OmpSs [8] programming model
that pursues the goal of reducing energy consumption with
minimal impact on performance and programmability. We
introduce a set of policies that modify both task scheduling
algorithms and frequency of operation of modern AMPs via
DVFS depending on the internal status of the task scheduler,
and evaluate their impact on both performance and energy
efficiency on a Cholesky factorization (a widely used routine
in many problems that arise in science and engineering, and
illustrative of others DLA (dense linear algebra) implemen-
tations with similar features) and an implementation of the
big.LITTLE architecture (a Samsung Exynos 5422 SoC).

The rest of the paper is structured as follows. Section II
reviews the state-of-the-art in modern task-parallel program-
ming models and their adaptation to asymmetric architectures.
Section III describes a number of energy-aware policies and
mechanisms that pursue an improvement in performance and
energy-efficiency of Nanox on AMPs. Section IV reports the
impact of the aforementioned policies in terms of performance
and energy efficiency on the Exynos SoC. Section V closes
the paper with general remarks and future work.

ar
X

iv
:2

40
2.

06
31

9v
1 

 [
cs

.D
C

] 
 9

 F
eb

 2
02

4



II. RUNTIME-BASED PARALLEL EXECUTION ON
ASYMMETRIC PLATFORMS

A number of task-based programming models have pre-
viously proved to be an efficient solution towards the ex-
ploitation of parallelism on multi-core, many-core and het-
erogeneous architectures. In general, these models provide
a mechanism to annotate sequential codes and to indicate
potential points of parallelism, that is exploited at runtime
by a task scheduler that takes care of data dependences
among tasks and a proper task-to-processor mapping, typically
improved by heuristics. Among others, following the path
pioneered by Cilk [9], efforts like StarPU [10], Superglue [11],
QUARK [12], Kaapi [13], and OmpSs [8] pursue a common
goal: extracting and exploiting task parallelism on modern
parallel architectures with minimal intervention of the pro-
grammer.

OmpSs is one of the most widely accepted programming
models nowadays. At a glance, this programming model is
based on the inclusion of directives (pragmas) similar to
those used in OpenMP, that annotate specific sections of
codes as tasks, that is, minimum scheduling units to the
available execution resources or processors. These annotations
include information about operands and their directionality
(input, output and input/output). At runtime, this information
is handled by a task scheduler (named Nanox) that maps each
task to the most appropriate computational resource available
as the inferred data dependences are satisfied.

A. A driving example: the Cholesky factorization

In the following, we employ the Cholesky factorization of
a dense matrix as an illustrative example of the necessary
modifications required by OmpSs to extract and exploit the
available task parallelism in a specific operation. Given a
symmetric positive definite matrix A of dimension n× n, the
Cholesky factorization decomposes it into A = UTU , where
the Cholesky factor U is an upper triangular matrix. Listing 1
sketches a C implementation of a blocked Cholesky imple-
mentation for a blocked matrix A composed of s × s blocks
of dimension (block size) b × b each. Note that the routine
decomposes the global operation into a collection of basic
kernels or fundamental operations, namely: po_cholesky
(Cholesky factorization of the diagonal block); tr_solve
(solution of a triangular system); ge_multiply (general
matrix-matrix multiplication); and sy_update (symmetric
rank-b update).

These are the fundamental parts of the overall computation,
or tasks. Obviously, provided each task is internally exe-
cuted in a sequential fashion, the aforementioned code would
not extract any further level of parallelism. Listing 2 includes
the necessary modifications in the definitions of each task in
order to exploit the OmpSs programming model and, thus,
to extract task parallelism in a transparent manner. Note how
each task is annotated with the corresponding pragma omp
task directive, including the directionality of each operand
involved in the computation. At runtime, the invocation of
each task in Listing 1 is intercepted by the runtime task

1 void cholesky (double *A[s][s], int b, int s) {
2 for (int k = 0; k < s; k++) {
3 // Cholesky factorization
4 // (diagonal block)
5 po_cholesky (A[k][k], b, b);
6
7 for (int j = k + 1; j < s; j++)
8 // Triangular system solve.
9 tr_solve (A[k][k], A[k][j], b, b);

10
11 for (int i = k + 1; i < s; i++) {
12 for (int j = i + 1; j < s; j++)
13 // Matrix-matrix multiplication.
14 ge_multiply (A[k][i], A[k][j],
15 A[i][j], b, b);
16 // Rank-b update.
17 sy_update (A[k][i], A[i][i], b, b);
18 }
19 }
20 }

Listing 1. C implementation of the blocked Cholesky factorization.

Fig. 1. DAG with tasks and data dependences extracted from the application
of the code in Listing 1 on a matrix with 4× 4 blocks (s=4). The labels in
the nodes specify the type of kernel/task as follows: “C” for the Cholesky
factorization; “T” for the triangular system solve; “G” for the matrix-matrix
multiplication, and “S” for the symmetric rank-b update. The subindices
(starting at 0) specify the submatrix updated by the corresponding task.

scheduler (Nanox), that dynamically builds a DAG (Directed
Acyclic Graph) as the one shown in Figure 1, including tasks
(nodes) and data dependences among them (edges). Only
when all data dependences for a given task are satisfied,
the runtime dispatches that task to an available processor,
effectively exploiting task parallelism.

B. Asymmetry-aware task schedulers

The design of efficient task scheduling algorithms on multi-
core and heterogeneous systems has been extensively studied
in the past. Some of these works have been recently ex-
tended in order to accommodate AMPs as the target platform.
Examples of these efforts are CATS [1] or CPATH and
HYBRID [2], which aim at dynamically identifying which



1 #pragma omp task inout([b][b]A)
2 void po_cholesky (double *A, int b, int ld) {
3 static int INFO = 0;
4 static const char UP = ’U’;
5
6 // LAPACK Cholesky factorization
7 dpotrf (&UP, &b, A, &ld, &INFO);
8 }
9

10 #pragma omp task in([b][b]A) inout([b][b]B)
11 void tr_solve (double *A, double *B, int b, int ld) {
12 static double DONE = 1.0;
13 static const char LE = ’L’, UP = ’U’,
14 TR = ’T’, NU = ’N’;
15
16 // BLAS-3 triangular solve
17 dtrsm (&LE, &UP, &TR, &NU, &b, &b,
18 &DONE, A, &ld, B, &ld);
19 }
20
21 #pragma omp task in([b][b]A,[b][b]B) inout([b][b]C)
22 void ge_multiply (double *A, double *B,
23 double *C, int b, int ld) {
24 static double DONE = 1.0, DMONE = -1.0;
25 static const char TR = ’T’, NT = ’N’;
26
27 // BLAS-3 matrix multiplication
28 dgemm (&TR, &NT, &b, &b, &b,
29 &DMONE, A, &ld, B, &ld, &DONE, C, &ld);
30 }
31
32 #pragma omp task in([b][b]A) inout([b][b]C)
33 void sy_update (double *A, double *C, int b, int ld) {
34 static double DONE = 1.0, DMONE = -1.0;
35 static const char UP = ’U’, TR = ’T’;
36
37 // BLAS-3 symmetric rank-b update
38 dsyrk (&UP, &TR, &b, &b,
39 &DMONE, A, &ld, &DONE, C, &ld);
40 }

Listing 2. Annotated tasks for the blocked Cholesky factorization.

tasks belong to the critical path of the DAG, assigning them
to the fastest cores, thus reducing the total execution time.

In OmpSs the CATS implementation is called BOTLEV
(Bottom level-aware scheduler), and it has been used as a
starting point for our work. BOTLEV dynamically detects the
longest path of the DAG, assigning those tasks that belong
to it to the fast cores of the system. In order to determine
which tasks belong to the longest path, each task is internally
annotated with the longest distance between itself and a leaf
task. Each time a new task is inserted into the DAG, all
of its predecessor nodes in the graph are updated only if
the longest path increases; proceeding this way, the longest
distance between each task and a leaf node is always updated.

When a task becomes ready for execution, it is classified
as critical or non-critical based on the annotated distance: if
it belongs to the longest known path, it is stored as a critical
task. Ready critical and ready non-critical tasks are stored in
two different priority queues sorted by its annotated distances.
When a core becomes idle, it retrieves a ready task depending
on the kind of core: BIG cores execute ready tasks stored in the
critical queue, and LITTLE cores retrieve tasks from the non-
critical queue. BOTLEV enables work stealing for BIG cores
by default, allowing BIG cores to execute non-critical tasks if
the critical-queue is empty. Optionally, work stealing can be
activated in a bi-directional fashion.

512 KB L2 cache

Exynos 5422 System on Chip

DVFS domain

32+32Kb L1

32+32Kb L1 32+32Kb L1

32+32Kb L1

Cortex A7 Cortex A7

Cortex A7 Cortex A7

DVFS domain

2 Mb L2 cache

32+32Kb L1

32+32Kb L1 32+32Kb L1

32+32Kb L1

Cortex A15

Cortex A15 Cortex A15

Cortex A15

Cortex A15 quad CPU Cortex A7 quad CPU

(800, 900, 1000, 1100, 1200, 1300) MHz (800, 900, 1000, 1100, 1200, 1300) MHz

Fig. 2. Samsung Exynos 5422 SoC employed in our experiments.

C. Target asymmetric architectures

The target architecture for our experiments is an
ODROID-XU3 board comprising a Samsung Exynos 5422
SoC with an 32-bit ARM processor and 2GB DDR3 RAM.
The chip features an ARM Cortex-A15 quad-core process-
ing cluster and a Cortex-A7 quad-core processing cluster.
Each ARM core (either Cortex-A15 or Cortex-A7) has a
32+32-KByte L1 (instruction+data) cache. The four A15 cores
share a 2-MByte L2 cache, while the four A7 cores share a
smaller 512-KByte L2 cache. All cores of the same cluster
share the same frequency of operation, clocking from 800MHz
to 1300MHz in steps of 100MHz in both cases. The board
exposes independent power measurements for each cluster.
Figure 2 shows a schematic view of the Exynos SoC.

III. PROPOSED ENERGY-AWARE POLICIES

We introduce two different general approaches that pursue
an improvement on the energy efficiency of task-parallel
codes on asymmetric architectures. The first group of policies
(named as FS) is based on the dynamic application of DVFS
techniques at runtime. The goal is to integrate these techniques
on an asymmetry-aware scheduler, and to reduce energy con-
sumption by modifying the frequency of one of the clusters
based on the internal state of the scheduler, without further
modifications on the scheduling algorithm. Pursuing the same
goal, the second group of policies (named TS) implements
different asymmetry-aware scheduling algorithmic variations
on existing task schedulers.

A. Policies based on frequency scaling (FS)

Applying DVFS techniques to a task-parallel problem re-
quires three main runtime decisions to be made, namely: (a)
which frequencies (among those available) to use; (b) at which
moments of the parallel execution these changes need to be
made; and (c) which elements of the architecture (among those
that support DVFS) are affected by the voltage/frequency scal-
ing. The set of frequencies that a processor can run at is usually
defined by the architecture, so the first decision is reduced to
choosing between using all the available frequencies or just a
subset of them. The remaining decisions are directly related
to the specific problem to tackle, and the knowledge that the
task scheduler has of it.

Figure 3a shows, for a Cholesky factorization of a 1024×
1024 matrix divided in blocks of dimension 64 × 64, the



evolution in time of the amount of critical and non-critical
tasks ready for execution (Ncrit and Nnon crit, respectively,
being Nready = Ncrit + Nnon crit), together with the ratio
between them (Rc nc = Ncrit/Nnon crit). In the following,
we also consider Nnc

max and Nmax as the maximum amount
of ready non-critical tasks and ready tasks (critical and non-
critical) observed from the beginning of the execution at
each moment. Both values, Nnc

max and Nmax, are constantly
monitored and updated at runtime by the scheduler. Finally,
Rnon crit = Nnon crit/N

nc
max denotes the ratio of non-critical

ready tasks compared with the maximum amount observed for
this value.

1) Policy FS1. Tasks limited by the critical path: Runtime
task schedulers annotate tasks while the DAG is built and,
typically, no further external information is used; thus, it
is possible that multiple paths of the DAG are detected as
critical at the same time. On an asymmetry-aware scheduler
like BOTLEV, this situation entails that most of the tasks will
be executed by BIG cores (as they are annotated as critical),
while LITTLE cores will be in idle state until new non-critical
tasks are detected. Asymmetry-aware task schedulers alleviate
these situations by allowing critical tasks to be executed by
both types of cores until new non-critical tasks are ready to
run. However, using LITTLE cores to execute critical tasks
can slow down the execution as, despite the fact that tasks
can start their execution earlier due to the greater number of
available cores, running a task on a slow core can increase its
execution time meaningfully.

Our approach to respond to this situation is different, as
is our goal (reducing energy consumption): the FS1 policy
leverages these moments –where the number of ready critical
tasks is greater than the number of ready non-critical tasks– to
reduce power consumption by decreasing the frequency of the
LITTLE cluster. The side effect is that the execution time of
non-critical tasks increases, but as the global execution time
is limited by the critical tasks executed on the BIG cluster,
delaying the execution of non-critical tasks on these moments
should not dramatically impact the global performance.

In FS1, the decision on which frequency the LITTLE
cluster should run at is made by the scheduler each time
the number of ready tasks changes (i.e., when a task be-
comes ready or a ready task is executed by an idle core),
and it is based on the relation between the sizes of both
queues (Rc nc), that determines the specific frequency step
that will be applied to the LITTLE cluster. For example,
if Rc nc == 2, the LITTLE cluster will run at its second
maximum available frequency (in this case, 1200MHz); if
Rc nc == 5, the cluster will run at its fifth maximum
frequency available (in this case, 900MHz).

Figure 3b reports the instantaneous frequency applied by
the task scheduler when applying FS1 on the same execution
as that shown in Figure 3a. Observe how, when the number
of ready critical tasks is higher than the number of ready
non-critical tasks (e.g. at the beginning and end stages of
the execution in this example), the frequency of the LITTLE
cluster is scaled down, and how the frequency chosen for the

Time
0

20

40

60

80

N
u
m
.
of

re
ad

y
ta
sk
s
(N

r
e
a
d
y
)

5

10

15

20

R
at
io

(R
c
n
c
)

Non-critical tasks (Nnon crit)
Critical tasks (Ncrit)
Ratio (Rc nc)

(a) Evolution of the number of critical and non-critical ready tasks.

Time

800

900

1000

1100

1200

1300

F
re
q
u
en
cy

(M
H
z)

Little cluster
Big cluster

>6

5

4

3

2

<1

R
c
n
c

(b) Policy FS1.

Time

800

900

1000

1100

1200

1300

F
re
q
u
en

cy
(M

H
z)

Little cluster
Big cluster

<16%

33%

50%

66%

83%

100%

R
n
o
n

c
r
it

(c) Policy FS2. Notice that policy FS3 will have the same behavior, but
applied to the other cluster.

Time

800

900

1000

1100

1200

1300

F
re
q
u
en

cy
(M

H
z)

Little cluster
Big cluster

<50%

>50%

R
n
o
n

c
r
it

(d) Policy FS2’.

Fig. 3. Behavior of each FS policy when is applied to a Cholesky factorization
of a 1024× 1024 matrix divided in blocks of 64× 64 elements.

cluster is directly related with Rc nc. Also, note how, when
Nnon crit increases, the policy forces the LITTLE cores to
run at a higher (even at the maximum) frequency.

2) Policies FS2 and FS2’. LITTLE cluster frequency
scaled based on the workload: Instead of modifying the
frequency based on the ratio between the number of both types
of ready tasks, policies FS2 and FS2’ modify the frequency
based on the absolute amount of non-critical tasks at each
moment, i.e., if there is a high number of non-critical tasks,
the LITTLE cluster will run at a high frequency, and if the
number is low, the frequency will be lower.

In order to determine when the number of non-critical tasks
is considered high or low, Nnon crit is compared with Nnc

max.



If higher, FS2 and FS2’ will consider that the number of
non-critical tasks is high, and the LITTLE cluster will run
at its maximum frequency; if not, frequency is scaled down
depending on the value of Rnon crit.

The difference between FS2 and FS2’ is the set of frequen-
cies to select: while FS2 chooses one between all the available
frequency steps according to Rnon crit (see Figure 3c), FS2’
only uses the highest and lowest available frequencies (see
Figure 3d). In this case, if the current number of non-critical
tasks is lower than the 50% of the maximum amount recorded
(that is, if Rnon crit < 0.5), the frequency will be the lowest
available, in other case, it will be the highest.

Observing the evolution of Ncrit and Nnon crit in Fig-
ure 3a, two different phases can be distinguished: a first phase
where the number of ready non-critical tasks increases, and a
second phase where it decreases. This behaviour matches with
a Cholesky factorization DAG, which enlarges very fast at the
beginning, and it reduces slowly later. While the first phase
occurs, the maximum amount of ready non-critical tasks is
growing, so the frequency which LITTLE cluster is running
at is its maximum frequency; during the second phase, the
scheduler scales down frequency based on the amount of non-
critical tasks and available frequencies.

3) Policy FS3. BIG cluster frequency scaled based on the
workload: The behavior of policy FS3 is similar to that of
FS2, but, instead of modifying the frequency of the LITTLE
cluster, FS3 scales the frequency of the BIG cluster.

B. Policies based on task scheduling (TS)

The TS policies described next are based on the same ideas
as FS policies but, instead of applying DVFS techniques,
they decide at runtime the phases in which both clusters are
considered to execute tasks, or just one of them is used as a
scheduling target. On one hand, using only one of the clusters
in specific moments means that power consumption is likely
to decrease, but on the other hand, performance will also be
affected. Our goal is to find a trade-off between both parts,
and thus to improve energy efficiency.

1) Policies TS1 and TS2. Making cluster unusable de-
pending on the workload: Similar to policies FS2 and FS3,
these policies track the value of Nready at each moment, and
determine when the amount of tasks is increasing or decreasing
(comparing this value with Nmax). If the number of ready
tasks is low enough, the policy will not assign any new task
to one of the clusters, making it to be in an idle state from
the scheduler’s perspective, and saving power consumption.
If the number of tasks increases later, the cluster becomes
available again and it will execute new tasks as they become
available. The amount of tasks (or threshold) that determines
when to disable or enable the cluster (denoted as Nthres in
the following) is configurable and not defined by the policy;
several experiments with different values for Nthres can be
found in the next section.

The difference between policies TS1 and TS2 is that, while
TS1 acts on the LITTLE cluster, TS2 acts disabling and
enabling the BIG cluster. As TS2 disables the BIG cluster in

(a) Execution trace per core.

(b) Num. of ready tasks.

Fig. 4. Policy TS2: task scheduling based on the number of ready tasks, for a
Cholesky factorization of a square 4096× 4096 elements matrix, grouped in
square blocks of 512×512 elements each executed on an ODROID platform.
Color key: red=TRSM, pink=POTRF, blue=SYRK, green=GEMM, white=IDLE.

some moments of the execution, critical tasks are executed on
LITTLE cores until the BIG cluster is enabled again.

Figure 4 shows an execution of policy TS2 applied to a
Cholesky factorization, where the cluster is disabled when the
current number of ready tasks is under the 30% of Nmax

(that is, Nthres = 30%). Each line in the trace corresponds
to a specific core executing tasks (coloured areas) or in idle
state (white areas). The trace has been obtained on an ODROID
platform, where cores (numbered from the top to the bottom)
0-3 belong to the LITTLE cluster, and cores 4-7 to the BIG
cluster. The plot at the bottom shows the number of ready
tasks at each moment. Observe how, at the beginning, the task
scheduler assigns tasks to all the available cores, until the
number of ready tasks is under 30% of maximum recorded;
from that moment on, no tasks are assigned to BIG cluster. As
there are less cores to execute ready tasks, in some moments
of the execution the number of ready tasks becomes greater
than Nthres, starting BIG cores to execute ready tasks until
number of ready tasks decreases again and the cluster becomes
unavailable for scheduling purposes.

2) Policy TS3. Cluster disabled based on workload: Some
platforms allow switching off one of the clusters under demand
via the OS, which entails an important decrease on power
consumption, as shown in Figure 5. Policy TS3 is similar to
policy TS2, but in addition to deactivating the BIG cluster to
the task scheduler, it switches it off completely1.

IV. EXPERIMENTAL RESULTS

In the following, we report the experimental results obtained
for the Cholesky factorization on the ODROID SoC applying
the proposed policies. In all cases, we show results for
performance (in terms of GFLOPS), average power (in Watts)
and energy efficiency (in GFPLOPS/Watt). All experiments
were carried out using single precision and gathering power
results from the internal meters in the board. Each experiment
was repeated ten times, showing the average measurements in
the following.

1As the Linux Kernel does not allow powering off the core number zero
in our platform, experiments related with switching off the LITTLE cluster
could not be performed.



| 4 cores | 3 cores | 2 cores | 1 core | 0 cores |

0.1

0.15

0.3

0.35

0.4
W
a
tt
s

Cortex-A7 (LITTLE)
Cortex-A15 (big)

Fig. 5. Power consumption of each cluster on idle state with different number
of active cores. Linux kernel does not allow switching off the whole LITTLE
cluster, thus measures could not be made for this scenario.

0

3

6

9

12

G
F
L
O
P
S

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

0

1

2

3

4

W
at
ts

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

0

1

2

3

4

G
F
L
O
P
S
/W

at
t

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

PBotlev FS1 FS2 FS2’ FS3

Fig. 6. Experimental measures for policies from FS1 to FS3 on an
ODROID platform. Policy PBOTLEV stands for a normal execution using
the asymmetry-aware scheduler BOTLEV without any policy. Tags in the
horizontal axis represent the sizes of the matrix and blocks of each experiment.

A. Policies based on frequency scaling (FS)

Figure 6 shows the results obtained when applying policies
from FS1 to FS3 to different Cholesky factorizations on
an ODROID platform. The experiments cover a range of
different matrix sizes and block dimensions. A number of
general, preliminar remarks can be extracted from the results.
Depending on the matrix size, the conclusions differ, namely:

• For small matrices, (m ≤ 2048), there is a consider-
able difference between the performance obtained when
the factorization is made without any policy (named
PBOTLEV in the Figures) and when using any of our
policies. This big difference in the performance has a
huge impact on the energy efficiency.

• For large matrices (m ≥ 4096), applying our policies
also implies a penalty in performance, as expected. How-
ever, energy efficiency measurements are very similar
to PBOTLEV. In this case, FS3 clearly outperforms
PBOTLEV in terms of energy efficiency. In addition, as a
positive side effect and for this range of problem sizes, the

TABLE I
IMPROVEMENT OF AVERAGE POWER CONSUMPTION (IN WATTS) FOR

POLICIES FROM FS1 TO FS3.

Matrix size (m × m) and block size (b × b).
(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

FS1 -0.93 -0.30 -0.04 0.17 0.00 0.13 0.11 0.42 0.07 0.39 0.05 0.27
FS2 -1.22 -0.46 0.15 0.27 0.22 0.30 0.21 0.41 0.22 0.40 0.20 0.34
FS2’ -0.78 -0.09 0.13 0.22 0.19 0.23 0.20 0.33 0.18 0.35 0.22 0.31
FS3 -1.09 -0.21 0.73 0.93 0.87 0.96 0.89 1.18 0.85 1.21 0.86 1.21

TABLE II
IMPROVEMENT OF ENERGY EFFICIENCY (IN GFLOPS/WATT) FOR

POLICIES FS1-FS3 OF DIFFERENT CONFIGURATIONS OF A CHOLESKY
FACTORIZATION ON AN ODROID PLATFORM.

Matrix size (m × m) and block size (b × b).
(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

FS1 -4.83 -3.84 0.04 -0.19 -0.12 -0.07 -0.05 -0.10 -0.06 -0.20 -0.03 -0.12
FS2 -5.12 -4.87 -0.04 -0.16 -0.11 -0.16 -0.17 -0.16 -0.11 -0.26 -0.18 -0.25
FS2’ -4.64 -2.49 -0.01 -0.23 -0.16 -0.19 -0.12 -0.04 -0.15 -0.19 -0.25 -0.27
FS3 -5.01 -4.22 0.41 0.31 0.34 0.43 0.41 0.43 0.31 0.48 0.36 0.50

application of any FS policy clearly reduces the average
power consumption (in Watts) of the execution.

Diving into details of average power and energy efficiency
results for each policy, a number of specific insights can
be extracted. First, the gap in performance, average power
and energy efficiency between policies FS2 and FS2’ is not
remarkable and, similar to policy FS1, experimental results do
not show any improvement in terms of energy efficiency when
using these policies for this application and platform. However,
a decrease in the power consumption is observed, making these
policies of great appeal when targeting environments where the
power consumption is limited by design. Table I reports the
decrease of power consumption (in Watts) achieved for each
policy. In the first set of matrices (the ones with lowest size),
the power consumption increases, but, in the second group,
the power consumption decreases in all matrix configurations
and for all the policies, achieving a decrease up to 0.41 Watts
(12.85%) for policies FS2 and FS2’, and a decrease up to
1.21 Watts (34.88%) for policy FS3.

Second, the penalty introduced by the application of FS1,
FS2 and FS2’ in terms of performance does not make up
for the improvements in average power introduced by the
frequency scaling in those policies. Thus, for this problem,
they actually increase the energy consumption of the solution.

Finally, from Figure 6 we can observe that the policy which
obtains the best results is FS3, outperforming BOTLEV in
terms of energy efficiency. Table II reports a detailed study
of the energy efficiency improvement (in GFLOPS/Watt) of
each policy and matrix configuration compared with a nor-
mal execution using BOTLEV. For matrices larger than 2048
elements, FS3 obtains a rise on energy efficiency, achieving
improvements from 11.7% up to 29.3%.



TABLE III
AMOUNT OF TIME WHEN THE LITTLE CLUSTER IS UNUSABLE FOR

DIFFERENT CONFIGURATIONS OF POLICY TS1 (ROWS) AND CHOLESKY
FACTORIZATION (COLUMNS) IN A JUNO PLATFORM.

Matrix size (m × m) and block size (b × b).
(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

50% 69.36 45.83 43.44 50.83 39.39 38.48 40.91 42.07 39.15 35.24 40.32 48.33
40% 68.20 31.25 29.41 33.33 30.61 32.73 32.73 30.54 32.83 30.42 30.15 37.92
30% 63.42 34.58 21.14 32.50 20.88 24.85 25.00 28.06 23.08 25.43 21.81 33.75
20% 20.40 17.92 11.40 31.67 11.97 17.27 18.41 21.04 14.56 19.12 13.11 26.67
10% 23.10 15.00 5.27 20.00 4.87 11.52 9.55 15.13 7.69 10.3 5.64 12.92

TABLE IV
IMPROVEMENT OF ENERGY EFFICIENCY FOR POLICY TS2.

Matrix size (m × m) and block size (b × b).
(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

10% -3.67 4.07 -0.52 -0.27 -0.52 -0.37 -0.32 0.05 -0.33 -0.08 -0.44 -0.22
20% -3.98 1.98 -0.30 -0.16 -0.48 -0.23 -0.25 -0.01 -0.27 0.00 -0.28 -0.13
30% -4.04 -0.99 -0.15 -0.12 -0.27 -0.13 -0.12 0.00 -0.15 -0.03 -0.29 -0.03
40% -3.69 1.56 0.06 -0.06 -0.15 -0.01 -0.02 -0.02 -0.06 -0.01 -0.19 0.01
50% -4.04 -1.47 0.16 0.04 0.06 0.01 0.05 -0.01 0.01 -0.03 -0.11 0.08

B. Policies based on task scheduling (TS)

Opposite to FS, TS policies do not pre-define a specific
moment of the execution in which a cluster is disabled.
The experiments described below take into account different
configurations of the policies, from disabling the cluster when
the amount of ready tasks is 50% of the maximum amount
recorded (that is, Nthres = 50%), to disabling it when the
amount is only at 10%. Note that disabling the cluster when
the current number of ready tasks is, for example, half of the
maximum amount recorded does not imply that the cluster will
be unusable 50% of the execution time. Table III shows the
percentage of time in which the LITTLE cluster is unusable
for policy TS1, depending on the configuration of the policy
and problem dimensions.

Figures 7 and 8 report the behavior of policies TS1 and
TS2, respectively, for different matrix sizes and policy config-
urations, in terms of performance, average power and energy
efficiency. The experiments reveal that Nthres has a high
impact on the final performance, independently of the cluster
which is affected by the policy. In general, both policies
exhibit worse energetic results than not using any policy.
Whereas policy TS2 has similar energy efficiency results than
PBOTLEV, the results obtained when TS1 is used are worse
than when not using it.

Table IV shows the improvement of GFLOPS/Watt obtained
when policy TS2 is compared with a normal execution (policy
PBOTLEV). Although this policy does not achieve an improve-
ment in energy efficiency, it obtains similar energy-efficiency
measurements with lower overall power consumption, making
this policy, together with policies FS2 and FS2’, good candi-
dates for scenarios where the power consumption is limited.

Policy TS3 does achieve an improvement in terms of energy
efficiency on most of the tested configurations. Figure 9 shows
the results obtained when this policy was applied for different

0

3

6

9

12

G
F
L
O
P
S

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

0

1

2

3

4

W
at
ts

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

0

1

2

3

G
F
L
O
P
S
/W

at
t

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

PBotlev 50% 40% 30% 20% 10%

Fig. 7. Experimental results for different TS1 configurations applied to
multiple matrix sizes.

0

3

6

9

12

G
F
L
O
P
S

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

0

1

2

3

4

W
at
ts

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

0

1

2

3

G
F
L
O
P
S
/W

at
t

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

PBotlev 50% 40% 30% 20% 10%

Fig. 8. Experimental results for different TS2 configurations applied to
multiple matrix sizes.

problem dimensions. The application of the policy attains an
improvement of up to 17.1%. Table V shows the improvements
for each configuration in terms of GFLOPS/Watt.

Although policies TS2 and TS3 exhibit similar behavior
(policy TS2 does not use BIG cores meanwhile policy TS3
switches them off), the performance obtained is lower for
policy TS3. This overhead is probably caused by the OS
when it migrates the processes running on a BIG core to a
LITTLE one when a complete cluster is switched off (and
similarly when it is switched on again). However, due to the
considerable decrease in power consumption when the cluster
is off (as shown in Figure 5), the decrease in performance does
not entail a big impact on the overall energy efficiency.



0

3

6

9

12
G
F
L
O
P
S

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

0

1

2

3

4

W
at
ts

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

0

1

2

3

G
F
L
O
P
S
/W

at
t

(b)
(m)

64
1024

128 128
2048

256 256
4096

512 256
4608

512 512
5120

1024 512
6144

1024 512
8192

1024

PBotlev 50% 40% 30% 20% 10%

Fig. 9. Experimental results for different TS3 configurations applied to
multiple matrix sizes.

TABLE V
ENERGY PERFORMANCE IMPROVEMENT (IN GFLOPS/WATT) FOR

DIFFERENT TS3 POLICY CONFIGURATIONS COMPARED WITH A NORMAL
EXECUTION USING BOTLEV (POLICY PBOTLEV).

Matrix size (m × m) and block size (b × b).
(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

10% -4.98 -5.02 -0.16 -0.08 -0.02 0.01 0.02 -0.02 -0.01 0.02 0.24 0.33
20% -4.95 -4.70 0.00 -0.05 0.03 -0.03 0.01 0.01 0.01 -0.02 0.35 0.35
30% -4.71 -4.83 0.12 0.07 0.16 0.04 0.05 0.01 0.05 -0.05 0.13 0.33
40% -4.92 -4.44 0.15 0.02 0.29 0.07 0.09 0.03 0.04 -0.01 0.13 0.41
50% -4.89 -3.92 0.06 0.02 0.14 0.06 0.09 -0.01 0.04 -0.03 0.05 0.37

V. CONCLUSIONS

In this paper we have explored a number of ways to
extend an asymmetry-aware scheduler to optimize the energy
efficiency of task-parallel applications, focusing on ARM
big.LITTLE systems-on-chip. From the observations made for
an illustrative dense linear algebra application with complex
data dependencies among tasks (the Cholesky factorization),
a number of insights have been extracted, namely: (1) scal-
ing the frequency of the LITTLE cluster does not have a
positive effect on the energy efficiency, but a reduction in
average power consumption is constantly achieved; (2) scaling
the frequency of the BIG cluster does achieve considerable
improvements on energy efficiency, increasing it up to 29.3%;
(3) we have demonstrated that disabling the use of one of the
clusters in some moments of the execution also achieves a
decrease on power consumption, but not in energy efficiency,
unless the switching off of the whole cluster is supported by
the hardware and OS, with improvements on energy efficiency
of up to 17.1%.

While the Cholesky factorization is representative of com-
mon operations in the dense linear algebra field, future work
will extend the experimental study to applications with differ-

ent features, and also to include extended levels of heterogene-
ity (e.g. including low-power GPUs in the SoC). Automatically
predicting optimal policies for a given application/architecture
is also in our roadmap.

ACKNOWLEDGMENTS

This work has been supported by the EU (FEDER) and
the Spanish MINECO, under grants TIN 2015-65277-R, TIN
2012-32180 and FPU15/02050.

REFERENCES

[1] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta,
and M. Valero, “Criticality-aware dynamic task scheduling for
heterogeneous architectures,” in Proceedings of the 29th ACM on
International Conference on Supercomputing, ser. ICS ’15. New
York, NY, USA: ACM, 2015, pp. 329–338. [Online]. Available:
http://doi.acm.org/10.1145/2751205.2751235

[2] K. Chronaki, A. Rico, M. Casas, M. Moretó, R. M. Badia, E. Ayguadé,
J. Labarta, and M. Valero, “Task scheduling techniques for asymmetric
multi-core systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. PP, no. 99, pp. 1–1, 2016. [Online]. Available:
http://doi.acm.org/10.1109/TPDS.2016.2633347

[3] L. Costero, F. D. Igual, K. Olcoz, S. Catalán, R. Rodrı́guez-Sánchez, and
E. S. Quintana-Ortı́, “Refactoring conventional task schedulers to exploit
asymmetric arm big.little architectures in dense linear algebra,” in 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), May 2016, pp. 692–701.

[4] Q. Chen and M. Guo, “Adaptive workload-aware task scheduling for
single-isa asymmetric multicore architectures,” ACM Trans. Archit.
Code Optim., vol. 11, no. 1, pp. 8:1–8:25, Feb. 2014. [Online].
Available: http://doi.acm.org/10.1145/2579674

[5] C. Torng, M. Wang, and C. Batten, “Asymmetry-aware work-stealing
runtimes,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), June 2016, pp. 40–52.

[6] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “Sparta: Runtime
task allocation for energy efficient heterogeneous manycores,” in 2016
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Oct 2016, pp. 1–10.

[7] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and
S. Vishin, “Power-performance modeling on asymmetric multi-cores,”
in Proceedings of the 2013 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, ser. CASES ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 15:1–15:10. [Online].
Available: http://dl.acm.org/citation.cfm?id=2555729.2555744

[8] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, and L. e. a. P.
Martinell, “Ompss: a proposal for programming heterogeneous multi-
core architectures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173–
193, 2011.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” in Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPOPP ’95.
New York, NY, USA: ACM, 1995, pp. 207–216. [Online]. Available:
http://doi.acm.org/10.1145/209936.209958

[10] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[11] M. Tillenius, “Superglue: A shared memory framework using data
versioning for dependency-aware task-based parallelization,” SIAM
Journal on Scientific Computing, vol. 37, no. 6, pp. C617–C642, 2015.
[Online]. Available: http://dx.doi.org/10.1137/140989716

[12] A. YarKhan, J. Kurzak, and J. Dongarra, “Quark users’ guide: Queueing
and runtime for kernels,” Innovative Computing Laboratory, University
of Tennessee, Tech. Rep., 2011.

[13] T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin, “XKaapi: A runtime
system for data-flow task programming on heterogeneous architectures,”
in Proc. IEEE 27th Int. Symp. on Parallel and Distributed Processing,
ser. IPDPS’13, 2013, pp. 1299–1308.

http://doi.acm.org/10.1145/2751205.2751235
http://doi.acm.org/10.1109/TPDS.2016.2633347
http://doi.acm.org/10.1145/2579674
http://dl.acm.org/citation.cfm?id=2555729.2555744
http://doi.acm.org/10.1145/209936.209958
http://dx.doi.org/10.1137/140989716

	Introduction
	Runtime-based parallel execution on asymmetric platforms
	A driving example: the Cholesky factorization
	Asymmetry-aware task schedulers
	Target asymmetric architectures

	Proposed energy-aware policies
	Policies based on frequency scaling (FS)
	Policy FS1. Tasks limited by the critical path
	Policies FS2 and FS2'. LITTLE cluster frequency scaled based on the workload
	Policy FS3. big cluster frequency scaled based on the workload

	Policies based on task scheduling (TS)
	Policies TS1 and TS2. Making cluster unusable depending on the workload
	Policy TS3. Cluster disabled based on workload


	Experimental results
	Policies based on frequency scaling (FS)
	Policies based on task scheduling (TS)

	Conclusions
	References

