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Abstract—Energy efficiency has become a crucial factor in
high-performance computing, mainly due to its effect on operat-
ing costs and failure rates of computing platforms. To improve the
energy efficiency of such systems, processors are equipped with
low-power techniques such as dynamic voltage and frequency
scaling (DVFS) and power capping. These techniques have to
be controlled carefully as per the workload; otherwise, it may
result in significant performance loss and/or power consumption
due to system overheads (e.g. DVFS transition latency). Existing
approaches are not effective in adapting to workload variations as
they do not consider the combined effect of application compute-
/memory-intensity, thread synchronization contention, and non-
uniform memory accesses (NUMAs) owing to the underlying
processor architecture. In this work, we propose a workload-
aware runtime energy management technique that takes the
aforementioned factors into account for efficient V-f control.
The proposed technique measures the processor workload using
Memory Accesses Per Micro-operation (MAPM), and also con-
siders the thread synchronization contention and latency due to
NUMAs to select an appropriate V-f setting. This approach also
uses workload prediction for pro-active V-f control to improve
the energy consumption and performance loss. The proposed
technique has been implemented on the 12-core (24 threads)
Intel Xeon E5-2630 and 61-core (244 threads) Xeon Phi many-
core platforms, supporting per-core and system-wide DVFS,
respectively. When evaluated with different application scenarios,
results show an improvement in energy efficiency of up to 81.2%
compared to existing approaches.

Index Terms—Run-time Power/Energy Management, Dynamic
Voltage and Frequency Scaling, High-Performance Computing,
Non-Uniform Memory Access

I. INTRODUCTION

The Information Technology (IT) industry has evolved over
past decades, and changed lifestyles. IT has enabled the
revolution of many veteran industries and businesses, and pro-
portioned the disruption of some of the biggest markets. This
growth has been made possible by cheaper and more powerful
High-Performance Computing (HPC) resources. Such systems
can be accessed from anywhere in the world through the
cloud computing infrastructure [1]. One of the main design
challenges to these HPC systems is energy efficiency [2].

There have been various approaches proposed to improve
the energy efficiency of HPC systems [2]-[14] using low-
power techniques such as dynamic voltage and frequency
scaling (DVFS), power capping or clock gating. These ap-
proaches introduced various metrics, such as Instructions Per
Cycle (IPC) and Millions Instructions Per Second (MIPS), for
determining the application workload on the processor through

online and/or offline characterization. These metrics are used
to take decisions on the selection of Voltage-frequency (V-f)
setting. The low-power techniques used for deciding the V-f
setting have to be controlled carefully, as per the workload,
to avoid performance and/or power overheads [4]. Therefore,
accurate estimation of workload is a key to achieving energy
efficiency.

The applications targeted for HPC systems are usually im-
plemented as multi-threaded to efficiently exploit the available
hardware-level parallelism [15]. For multi-threaded applica-
tions, the workload not only depends on memory-/compute-
intensity but also on thread synchronization contention. In
addition to that, modern HPC systems are usually based on
Non-Uniform Memory Access (NUMA) architecture, where
memory access time depends on the memory location relative
to the processor [16]. A thorough analysis of related works
[31-[51, [7]-[9], [11], [12], [17], [18] shows that the existing
approaches do not consider the combined effect of the above
factors. As a result, they are not efficient for adapting to
workload variations, which is essential for improving en-
ergy efficiency. Furthermore, reported approaches do not take
memory-contention into account when executing applications
concurrently, resulting in increased power consumption with-
out any performance benefits.

This work proposes a workload-aware runtime energy man-
agement technique that takes the aforementioned factors into
account for improving the energy efficiency. Our proposal
measures the processor workload using Memory Accesses Per
Micro-operation (MAPM) and utilization for estimating the
thread synchronization contention. Moreover, latency due to
NUMAs is calculated by monitoring the remote and local
memory accesses during the application execution. As part of
this, we use four hardware performance monitoring counters
(PMCs) to compute MAPM, utilization and NUMA latency.
To determine the appropriate V-f setting, a binning based
approach is employed which takes utilization and MAPM as
inputs. Furthermore, our approach works on both per-core
and system-wide DVFS supporting platforms. Experimental
validation is performed on the 12-core (24 threads) Intel
Xeon E5-2630 and 61-core (244 threads) Xeon Phi many-core
platforms. The former supports per-core DVFES, whereas the
latter is based on system-wide DVFS. The main contributions
of this paper are:

1) An accurate estimation of processor workload by consid-



ering the combined effect of memory-/compute-intensity,
thread synchronization contention and NUMA latency;
2) A binning based approach for efficiently determining the
V-f setting as per the predicted workload;
3) Validation of the proposed approach on two hardware
platforms, the Xeon E5-2630 and Xeon Phi 7620P.

The rest of the paper is organized as follows. A brief review
of existing works is presented in Section II. The problem
formulation is discussed in Section III. A detailed discussion
of the proposed approach and its experimental evaluation are
given Section IV and Section V, respectively. Finally, Section
VI concludes the paper.

II. RELATED WORK

There have been several approaches proposed for obtaining
energy savings in HPC systems. Techniques proposed in
[7]1-[9] determines bottlenecks during application execution
using performance counters. They present a framework for
direct, automatic profiling of power consumption for non-
interactive and parallel scientific applications to assist the
scheduler. Rountree et al. [10] do a critical path analysis
to determine which tasks may be slowed down to achieve
energy savings while minimizing the performance loss in the
parallel execution. This analysis appears beneficial only when
applications have computation or communication imbalances
among participating processes, which is typically not the case
for highly efficient parallel applications [5].

The schemes presented in [11], [12] determine the com-
munication phases to apply DVFS. A technique that applies
both DVFS and over-clocking to CPUs to save energy and
improve execution time is discussed in [17]. Marathe et al.
[18] proposed a runtime system conductor that dynamically
distributes available power to different compute nodes and
cores based on the available slack to improve performance.
The conductor performs both upscaling and downscaling of
processor frequency to decrease execution time and to save
energy in an indirect manner through power clamping, which
differs from the traditional approach of only downscaling to
save energy. The authors of [3] proposed a latency-aware
DVES algorithm to avoid aggressive power state transitions.
They argue that too frequent DVFS changes are not only
unprofitable but also detrimental to performance, due to the
extra time and energy costs introduced. This approach divides
each application into phases through profiling and uses this
information to decide whether changing the V-f setting is
beneficial or not during the application execution.

Sundriyal et al. [4] present an energy management approach,
relying on the Intel Running Average Power Limit (RAPL). It
provides a standard interface for measuring and limiting the
processor and memory power. This approach uses Memory
Access Per Micro-operation (MAPM) and MIPS (millions of
instructions per second) metrics to indicate how a change
of frequency will affect the performance. A procedure to
select power capping thresholds dynamically on the Xeon
Phi platform is given in [5]. They noticed that default power
capping limits employed on this platform are much higher than
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Fig. 1. Illustration of various steps in the proposed approach as a flow-chart.

the majority of applications would reach. Considering this,
different power limits are defined according to the workload
characteristics and application performance.

The aforementioned works show how energy savings can
be achieved by adapting to the workload at runtime. However,
they do not take into account the combined effect of ap-
plication compute-/memory-intensity, thread synchronization
contention and NUMA latency. Furthermore, the memory
contention due to concurrent execution of applications is also
not addressed. This shows an opportunity for improving the
energy consumption, which is exploited in this paper.

III. PROBLEM FORMULATION

The proposed approach considers two kinds of many-core
platforms; one supporting per-core DVFS and the other one
with system-wide DVFS. The following provides our problem
definition, assuming that there are N cores in a platform.

Given a set of multi-threaded applications and a many-core
platform supporting per-core/system-wide DVFS

Find an efficient V-f setting periodically for each core (V-f;,
where ¢ = 1, 2,..., N) or for the whole system such that the
overall system energy consumption can be minimized while
maximizing performance.

IV. PROPOSED APPROACH

The proposed approach is illustrated in Fig. 1, which has
the following four steps:

(a) PMC data collection;

(b) Computing MAPM, utilization and NUMA latency;
(c) Workload prediction;

(d) Identification of V-f setting.

The PMC data are collected periodically to get the informa-
tion about the architectural events. The collected data is used to
compute the MAPM, utilization and NUMA latency, which are
further fed into a prediction algorithm for estimating the future
workload. Considering the underlying architecture (per-core or
system-wide DVES), the V-f setting is determined according
to the predicted workload. The detailed discussion on each
step is given in the following sections. As the device firmware
automatically adjusts the voltage for a selected frequency in
our chosen hardware platforms, we refer to V-f and frequency
interchangeably throughout the paper.



A. PMC data collection

The modern processors support runtime monitoring of
architectural events (e.g. instructions retired, cache misses,
etc.) through a set of hardware performance monitoring
counters (PMCs). These counters can be configured to count
a particular architectural event from a list of supported
events by a particular processor. The proposed approach
needs instructions retired, Last-Level Cache
(LLC) misses and active CPU cycles. It has been
already shown in [19], [20] that similar events can be used to
efficiently estimate the processor workload at runtime. Further,
if the chosen platform has NUMA architecture, remote
memory accesses are also collected. On our chosen
platform (Xeon E5-2630 and Phi), the events matching to the
above are the following symbolic names: UOPS_RETIRED,
LAST_LEVEL_CACHE_MISSES, UNHALTED_CORE_CYCLES,
and MEM LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM.
We use the tool perfmon [21] for periodically sampling
the PMCs on each core simultaneously. This tool provides
routines to configure the PMCs using symbolic names to
count a particular event, to initialize, and to terminate the
data collection.

B. Computing MAPM, utilization and NUMA latency

To find the appropriate frequency, the processor workload
has to be determined accurately. This involves choosing a
right metric and taking underlying memory architecture into
account. Therefore, we use the metric Memory Accesses
Per Micro-operation (MAPM), similar to [4], [20], [22],
along with utilization and latency associated with non-uniform
memory accesses. MAPM is computed as a ratio between
memory accesses and micro-operations retired during the
DVES interval. This one has been used for measuring the
memory-intensity of workload during application execution
[4], [20]. Usually, a high value of MAPM suggests that
the workload is memory-bound and vice versa. The memory
accesses and micro-operations retired are measured using the
PMCs, LAST_LEVEL_CACHE_MISSES and UOPS_RETIRED, re-
spectively.

We have observed, especially in case of multi-threaded
applications, the actual value of MAPM does not always
represent the memory-intensity of the workload accurately. A
lower value of MAPM may not always mean a compute-bound
workload due to the following reasons. An application might
have a lot of synchronization contentions, such as inter-thread
locks and barriers or communication contentions, happening
on external peripheral devices, e.g. storage devices, keyboard,
etc. In such cases, MAPM alone will fail to determine the
actual load on the processor. To address this issue, along
with MAPM, utilization is also considered for estimating the
effect of aforementioned factors. To compute the processor
utilisation, we utilise un-halted CPU cycles, monitored using
the PMC UNHALTED_CORE_CYCLES.

Moreover, if a many-core platform is based on NUMA
architecture, then the memory latencies differ depending on

the relative distance between processor and memory. Ac-
cess to the local memory will be much faster than ac-
cessing the remote memory. Therefore, to efficiently cal-
culate the effect of MAPM on processor performance, the
NUMA latency should also be taken into account to se-
lect an appropriate V-f setting. To accomplish this, we
measure the number of remote memory accesses using the
PMC MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM
and use it while computing the MAPM. Assume that p-ops,
m; and m, represent micro-operations retired, accesses to
local and remote memory, respectively. Then, MAPM can be
determined as follows,

MAPM = m (1)
[L-0pS
The constant § depends on the latency associated with the
remote memory access, which can be determined from the
datasheet of the processor. As discussed in [20], the contention
on memory, when applications are memory-bound, is also
considered (refer to equation (4)).

C. Workload prediction

To adapt to workload variations and to achieve energy mini-
mization, proactive control of V-f is of utmost importance [20].
Therefore, the future workload (¢;11) needs to be predicted at
t; to determine the appropriate V-f setting for the time interval
t; — t;4+1. To accomplish this, we use an exponential weighted
moving average (EWMA) filter [23] to predict the workload
Di+1 during the interval ¢; — ¢;41,

Pit1 =7 X a; + (1 =) X p; + pe )

where v, p; and a; are the smoothing factor, predicted and
actual workloads for the epoch ¢,_; — t;, respectively. To
minimize workload miss-predictions, the predicted workload
of the interval t;_; — t; is compared to the actual workload
measured from hardware PMCs. Subsequently, computed pre-
diction error p. (the difference between actual and predicted
workloads) is used to improve the workload prediction for ¢;
— t;4+1. The accuracy of prediction highly depends on « and
a fixed value of v would result in frequent miss-predictions if
there are large workload variations. Therefore, similar to [19],
the value of + is changed as follows,

¥ =B+ axp/pi (3)

The values of coefficients o and 3 are given in Section
V-A. We use the Equation (2) for predicting the utilization
and MAPM on each core, which will be used to identify the
V-f setting proactively as explained in the following section.

D. Identification of V-f setting

Determining the appropriate V-f setting is key to energy
efficiency and to minimize performance loss. We employ a
binning based approach [24] for finding the V-f setting based
on the application workload. This approach consists of the
two bins, one utilization bin and other one is MAPM bin. The
utilization and MAPM computed from the step explained in
Section IV-B acts as inputs to this stage, as shown in Fig. 2.
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Fig. 2. An example of V-f setting selection using binning based approach.

Bins training:: We use offline training to determine the
bin boundaries. The first part of the training process is
obtaining training samples. One training sample consists of
the collection of metrics, MAPM and utilisation, along with
the application performance at different V-f settings available
on the chosen platform. In order to generate a diverse range
of training samples, we used the applications from different
benchmark suites, including SPEC CPU2006 [25], LMBench
[26], RoyLongbottom [27], PARSEC 3.0 [28], NAS [29] and
Rodinia [30]. These training samples are grouped into bins
based on the utilisation and MAPM, and assigned a V-f setting
to each bin that is energy efficient with no or little (<1%)
performance loss. During runtime, the utilization and MAPM
are computed to find an appropriate V-f setting using the
pre-determined bins. We use the utility cpufreg-set for
changing the V-f setting during the application execution.

In case of per-core DVFS supporting platforms, the V-f
setting of each core can be set as per its workload. But, if
the platform supports only system-wide DVFS, the V-f setting
of the whole system should be chosen in such a way that
no application thread experiences the performance loss. Such
cases can arise when applications with different workload
types (e.g. compute-bound, memory-bound, etc.) are running
concurrently. A memory-bound workload can be run at a lower
V-f setting than a compute-bound, but if both such workloads
are executing concurrently, selection of an appropriate V-f
setting is challenging. We use the similar approach proposed in
[20] to address this issue by giving the preference to compute-
bound workload over memory-bound one, and considering the
impact of memory-contention due to concurrent execution.
Therefore, the V-f setting is determined by the following
MAPM value (M APM,),

N
M;
MAPM, = min{ M, Mo, M3, ..., My} + C % Z ~ @
1=1

Here, M;, N and ( represent MAPM of core i, number of
processing cores in the system and coefficient to determine the
effect of memory contention on the performance of each appli-
cation thread, respectively. Furthermore, it can be understood
that the result of minimum value computation in Equation (4)
is same as the MAPM of the core with maximum utilisation

because the most compute-intensive workload has minimum
MAPM.

Identification of unused cores: MAPM of idle cores,
executing no application thread, is usually low due to fewer
memory accesses [19]. This gives a misimpression that such
cores are executing a compute-intensive application, leading
to the selection of a high V-f value for the whole system and
thus increasing energy consumption. This becomes prominent
when there are more cores than the number of concurrent
applications. To address this, the proposed algorithm de-
termines idle cores at runtime using utilization threshold.
It is important to note that, for per-core DVFS supporting
platforms, identification of idle cores is not required as the V-f
setting is determined for each core, which is already taken care
by the utilization bins, shown in Fig. 2. Based on experimental
observation, if the utilization of a core is below 5%, it is
identified as an idle core. Subsequently, MAPM of such cores
is set to 10 (any value larger than one would be fine as the
value of MAPM usually does not exceed one). This nullifies
the influence of idle cores on V-f setting as it is mostly decided
by the minimum MAMP (Equation (4)).

V. EXPERIMENTAL SETUP AND RESULTS

The proposed approach is validated on an Intel Xeon ES5-
2630 running Red Hat Linux, and Xeon Phi coprocessor 7120P
platforms. The Xeon E5-2630 platform has 2 sockets with 6-
cores per socket, i.e. a total of 12 physical cores or 24 logical
cores with hyper-threading enabled. It has three levels of cache
hierarchy with 32 KB of L1 (I/D), 256 KB of L2 and 15 MB
of L3, and 32 GB of main memory running at 1600 MHz. This
supports per-core DVFES with 15 levels ranging from 1.2 GHz
to 2.6 GHz in 100 MHz steps. The Xeon Phi has an L2 cache
size of 30.5 MB and 16 GB of main memory. All cores share a
common V-f island and the frequency can be varied from 619
MHz to 1238 MHz in nine steps with corresponding voltage
ranging from 0.995 V to 1.060 V. To measure the energy
consumption of the cores and main memory, the read-only
model specific register (MSR) MSR_PP0_ENERGY_STATUS
and MSR_DRAM_ENERGY_STATUS are sampled for every 50
ms, sufficient enough considering the DVFS time slice of 100
ms. These MSRs are updated every ~1 ms with a wraparound
time of around 60 secs when power consumption is high and
may be longer otherwise.

The Rodinia [30] and NAS parallel [29] OpenMP bench-
marks are used to demonstrate the efficacy of the proposed
runtime energy management approach. The classes of NAS
and input to Rodinia benchmarks are chosen such that their
execution times are sufficiently large (more than five seconds).
The details of benchmarks are given in Table I. For Xeon
E5-2630 and Phi, the number of application threads is set to
24 and 61, respectively. These applications are executed in
single, double and triple application scenarios (due to space
limitations, we are unable to report the results for four or
more concurrent applications). The experimental results are
collected by running each scenario for ten times and finally,



TABLE I
DETAILS OF SELECTED APPLICATIONS FROM RODINIA [30] AND NAS PARALLEL [29] BENCHMARKS

Benchmark Application Name Domain Abbreviation

Breadth-First Search Graph Algorithms bfs

HotSpot Physics Simulation hs

K-means Data Mining km

lavaMD N-body Simulation Algorithms Imd

Rodinia Myocyte Medical mc
Needleman-Wunsch Bioinformatics nw

Particle Filter Object tracking pf

Stream Cluster Data Mining sc
Speckle Reducing Anisotropic Diffusion Image Processing srad

Block Tri-diagonal solver bt

Scalar Penta-diagonal solver computational fluid dynamics pseudo-application sp

Lower-Upper Gauss-Seidel solver Iu

NAS Conjugate Gradient cg
Embarrassingly Parallel computational fluid dynamics kernel ep

Multi-Grid mg

Data Cube data movement dc

their average values (energy and performance) are computed
for the comparison.

The proposed technique is compared against Linux’s con-
servative (CONS), ondemand (OD) and performance (PERF)
power governors, which are implemented on millions of de-
vices, making them competitive baselines [31]. In addition
to that, we also considered the approach presented in [4]
for comparison. To demonstrate the advantage of taking the
underlying NUMA architecture into account while estimating
the workload, two variants of the proposed (prop) approach,
prop-NNUMA (NNUMA stands for 'No NUMA’) and prop-
NUMA, are derived. As opposed to prop-NNUMA, prop-
NUMA takes NUMA latency into account while deciding the
V-f setting. For the better representation, we have normalized
the energy consumption of evaluated approaches to the energy
consumption obtained by prop-NUMA.

A. Estimation of coefficients

The accuracy of the predicted workload as compared to the
actual workload of the prior time intervals depends on the
coefficients 6, « and ( (refer to Equation (1), (2) and (4)). The
value of 7 is computed from « and S (refer to Equation (3)).
These coefficients are experimentally obtained by executing
a diverse set of applications individually and concurrently.
Finally, considering the relative workload prediction accuracy,
0, {, a and B are set to 2, 0.05, 0.3 and 0.6, respectively.
The same coefficient values are used for all the application
scenarios.

B. Evaluation of Workload Prediction

To evaluate the workload prediction accuracy, various appli-
cation scenarios (executing single and multiple applications)
are considered. For a set of 40 application scenarios, the av-
erage error in workload prediction was 5.4% with a minimum
and maximum error of 0.5% and 9.3%, respectively.

C. Evaluation on Xeon E5-2630

1) Energy Savings: In the case of a single-application sce-
nario, there is only one active application. The number of cores
allocated to each application is 24; the same as the number
of logical cores available on Xeon ES5-2630. Fig. 3 shows
a comparison of the adopted approaches, prop-NUMA and
prop-NNUMA, with existing techniques in terms of normalized
energy consumption. It can be observed that the proposed
approach prop-NUMA outperforms existing approaches, ex-
cept for the application sc executing under the CONS power
governor. Moreover, prop-NNUMA also achieves better energy
savings than reported approaches, except for applications sc
and ep executing under CONS and PERF power governors,
respectively. The proposed prop-NUMA achieves energy sav-
ings up to 57.9%, 60.3%, 61.6% compared to CONS, OD and
PERF, respectively. Furthermore, on an average, prop-NUMA
consumes 3.2% less energy than prop-NNUMA.

For double and triple application scenarios, two and three
applications are executed concurrently. In this evaluation,
available cores on the platform are equally shared among
the applications; for example, an application gets 12 cores
in the double application scenario. This has been ensured by
setting the core affinity of each application at the start of
its execution. Concurrent execution increases the contention
on memory, which actually suggests scaling down of V-f
setting to exploit the increased data access latency for energy
efficiency. Unlike existing approaches [4], [31], the proposed
technique efficiently estimates memory contention, thereby
minimizing energy consumption. Fig. 4 gives the normalized
energy consumption for various approaches executing two
applications concurrently. The proposed prop-NUMA approach
improves energy consumption by up to 77.1%, 79.4% and
79.5% compared to CONS, OD and PERF, respectively.
For the application bf-nw scenario, prop-NUMA and PERF
have similar energy consumption values. Furthermore, prop-
NNUMA achieves an average energy saving of 7.8% with a
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standard deviation of 10.7% compared to prop-NUMA.

The proposed approach is also compared against the re-
ported techniques in terms of normalized energy consumption
for a triple application scenario. As shown in Fig. 5, prop-
NUMA outperforms CONS, OD and PERF by up to 81.2%,
77.9% and 69.8%, respectively. From Fig. 3, 4 and 5, it can
be observed that the average energy savings of prop-NUMA
over prop-NNUMA keeps increasing, which is 9.4% with a
standard deviation of 8.9%. This suggests that the advantage
of considering NUMA latency is more evident when multiple
applications are executing concurrently, leading to increased
LLC-misses and remote memory accesses.

2) Application Performance: The application performance
is evaluated for various application scenarios by computing the
average execution time over 10 runs. The proposed technique
achieves energy savings by scaling down the V-f setting if
it does not result in performance loss. However, hardware
platforms do not usually support fine-grained control of V-f
setting, leading to performance degradation. Fig. 6 shows the
mean and standard deviation of the performance difference (%)
between prop-NUMA and other approaches. The average exe-
cution time for prop-NUMA, considering different application
scenarios, is 0.66% and 0.47% less compared to CONS and
OD, respectively. However, PERF, which runs at the maximum

V-f setting, outperforms prop-NUMA by 4.18% (average). This
shows that proposed approach improves energy efficiency with
negligible performance loss in the most cases.

D. Evaluation on Xeon Phi

1) Energy Savings: To show the effectiveness of the pro-
posed approach on a platform supporting system-wide DVFS,
we also conducted experiments on the Xeon Phi with various
application scenarios. It should be noted that the Xeon Phi
supports only simultaneous sampling of two PMCs. To address
this issue, time multiplexing can be used to monitor more
than two events; however, it increases the uncertainties in
event count and runtime overheads [32]. Therefore, the /proc
sysfs is used for measuring the core utilisation. Furthermore,
the remote memory accesses, used in prop-NUMA, are not
considered due to the above limitation. As shown in Fig. 7,
on an average, considering all the application scenarios, prop-
NNUMA improves energy efficiency by up to 54.3%, 60.9%,
and 60.4% compared to CONS, OD and PERF, respectively.
These energy savings relatively lesser (16%) compared to the
ones achieved by per-core DVFS supporting platform (refer to
Fig. 3, 4 and 9).

2) Application Performance: The mean and standard de-
viation of the performance difference between prop-NNUMA
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and other approaches are given in Fig. 8. Unlike the per-core
DVFS platform, in this case the V-f setting of the whole system
is decided by the most compute-intensive thread of all the
executing applications. As a result, performance loss is mini-
mized at the cost of lower energy efficiency, which is evident
from the Fig. 7 and 8. The average execution time for prop-
NNUMA, considering nine application scenarios, is 0.66% and
0.47% better compared to CONS and OD, respectively. But,
as expected, PERF outperforms prop-NNUMA by 1.19%.

E. Comparison with Sundriyal et al. [4]

Sundriyal et al. [4] presented a model, which aims to predict
the micro-operations retired at different frequencies and the
memory accesses per micro-operation (MAPM) values by
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Fig. 8. Mean performance difference between prop-NUMA and other ap-
proaches, with standard deviation error bars (evaluated on the Xeon Phi).

using a linear regression analysis. It further chooses the scaling
frequency at which the energy consumption is minimum
by measuring the power using the Intel RAPL technology.
This approach is proposed for single application scenario
considering per-core DVFS. For comparison, the evaluation
is carried out on the Xeon E5-2630 using ep, cg, lu, mg, sp
and bt (same applications used in [4]). The approach proposed
in [4] gives an average of 7.4% energy savings compared to
PERF with a performance loss of 5.58%. Whereas, proposed
approach (prop-NUMA) achieves an average energy savings of
17.8% with a performance loss of 1.8%. It shows that proposed
approach outperforms the technique presented in [4] by 10.4%
in energy efficiency and 3.7% in performance.

F. Runtime Overheads

Proposed approach involves sampling of four PMCs (only
two on the Xeon Phi) on each core and subsequent processing
to find and change the V-f setting. For all the application
scenarios used in the evaluation, we have measured the run-
time overhead of our approach on Xeon E5-2630 and Phi
by monitoring the time spent in each decision epoch (100
ms). A maximum overhead of 0.52% and 1.3% (in terms of
application execution time) is observed for Xeon E5-2630 and
Phi, respectively.



VI. CONCLUSIONS

The need for energy efficiency in HPC systems has been
increasing in recent years, to minimize operating costs and
improve lifetime. To address this, we presented a workload-
aware runtime energy management technique that takes the
combined effect of application compute-/memory-intensity,
thread synchronization contention, and non-uniform mem-
ory accesses (NUMAs), for controlling the V-f setting. Our
approach showed that accurate estimation of the processor
workload periodically is important for efficient V-f control. In
the case of concurrent execution, it has been demonstrated that
a careful selection of workload and taking the memory con-
tention into account for V-f control improve energy efficiency
with a low performance loss. Experimental results showed
energy savings of up to 81.2% with negligible performance
loss when compared to existing approaches. Our future work
involves incorporating the performance-awareness and task
mapping to adapt to performance variations across different
applications.
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