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Abstract

In high performance computing, scheduling of tasks and allocation to machines is very critical
especially when we are dealing with heterogeneous execution costs. Simulations can be performed
with a large variety of environments and application models. However, this technique is sensitive
to bias when it relies on random instances with an uncontrolled distribution. We use methods
from the literature to provide formal guarantee on the distribution of the instance. In particular,
it is desirable to ensure a uniform distribution among the instances with a given task and machine
heterogeneity. In this article, we propose a method that generates instances (cost matrices) with
a known distribution where tasks are scheduled on machines with heterogeneous execution costs.

1 Introduction

Empirical assessment is critical to determine the best scheduling heuristics on any parallel platform.
However, the performance of any heuristic may be specific to a given parallel computer. In addition
to experimentation on real platforms, simulation is an effective tool to quantify the quality of
scheduling heuristics. Even though simulations provide weaker evidence, they can be performed with
a large variety of environments and application models, resulting in broader conclusions. However,
this technique is sensitive to bias when it relies on random instances with an uncontrolled or
irrelevant distribution. For instance, in uniformly distributed random graphs, the probability that
the diameter is 2 tends exponentially to 1 as the size of the graph tends to infinity [1]. Even though
such instances may be sometimes of interest, they prove useless in most practical contexts. We
propose a method that generates instances with a known distribution for a set of classical problems
where tasks must be scheduled on machines (or processors) with heterogeneous execution costs.
This is critical to the empirical validation of many new heuristics like BalSuff [2] for the problem
R||Cmax and PEFT [3] for R|prec|Cmax in Graham’s notation [4].

In this context, an instance consists of a n ×m cost matrices, M , where the element of row
i and column j, M(i, j), represents the execution cost of task i on machine j. Like the diameter
for graphs, multiple criteria characterize cost matrices. First, the heterogeneity can be determined
globally with the variance of all costs, but also relatively to the rows or columns. For instance, the
dispersion of the means on each row, which corresponds to the varying costs for each task, impacts

1

ar
X

iv
:1

80
3.

08
12

1v
1 

 [
cs

.P
F]

  2
1 

M
ar

 2
01

8



0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000

Iteration

Measure
row corr

col corr

CV

Figure 1: Cost Coefficient-of-Variation (ratio of standard deviation to mean) and mean row and
column correlations at each iteration of the shuffling method [5] when generating a 100× 30 cost
matrix. The shuffling method arbitrarily stops after 3 000 iterations (represented by the black
vertical line).

the performance of some scheduling heuristics [5]. The correlations between the rows and columns
also play an important role as it corresponds to the machines being either related or specialized,
with some affinity between the tasks and the machines [6].

Among existing methods, the shuffling one [5] starts by an initial matrix in which rows are
proportional to each other (leading to large row and column correlations). Then, it proceeds
to mix the values in the matrix such as to keep the same sum on each row and column. This
ensures that the row and column heterogeneity remains stable, while the correlation decreases.
However, this approach is heuristic and provides no formal guarantee on the distribution of the
instances. In addition, when the number of shuffles increases, the cost CV increases, which leads to
non-interpretable results (see Figure 1).

While other methods exist, some of them with stronger formal guarantees, it remains an open
problem to ensure a uniform distribution among the instances that have a given task and machine
heterogeneity. Our contribution is to control the row and column heterogeneity, while limiting
the overall variance and ensuring a uniform distribution among the set of possible instances. The
approach is based on a Markov Chain Monte Carlo process and relies on contingency tables1. More
precisely, the proposed random generation process is based on two steps. For a given n (number of
tasks), m (number of machines) and N (sum of the cost of the tasks):

1. Randomly generate the average cost of each task and the average speed of each machine.
This random generation is performed uniformly using classical recursive algorithms [7]. In
order to control the heterogeneity, we show how to restrict this uniform random generation to
interesting classes of vectors. This step is described in Section 3.

2. Next, the cost matrices can be generated using a classical MCMC approach: from an initial
matrix, a random walk in the graph of contingency tables is performed. It is known (see for
instance [8]) that if the Markov Chain associated with this walk is ergodic and symmetric,
then the unique stationary distribution exists and is uniform. Walking enough steps in the

1A contingency table is a matrix with the sum of each row (resp. column) displayed in an additional total row
(resp. column). They are usually used to show the distribution of two variables.
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graph leads to any state with the same probability. Section 4 provides several symmetric and
ergodic Markov Chains for this problem. The main contribution of this section is to extend
known results for contingency tables to contingency tables with min/max constraints.

In order to evaluate the mixing time of the proposed Markov Chains (the mixing time is the
number of steps to walk in order to be close to the uniform distribution), we propose practical and
statistical estimations in Section 5. Note that obtaining theoretical bound on mixing time is a very
hard theoretical problem, still open in the general case of unconstrained contingency tables. In
Section 6, we used our random generation process to evaluate scheduling algorithms. The algorithms
are implemented in R and Python and the related code, data and analysis are available in [9].

2 Related Work

Two main methods have been used in the literature: RB (range-based) and CVB (Coefficient-of-
Variation-Based) [10,11]. Both methods follow the same principle: n vectors of m values are first
generated using a uniform distribution for RB and a gamma distribution for CVB; then, each row
is multiplied by a random value using the same distribution for each method. A third optional
step consists in sorting each row in a submatrix, which increases the correlation of the cost matrix.
However, these methods are difficult to use when generating a matrix with given heterogeneity and
low correlation [5, 6].

More recently, two additional methods have been proposed for a better control of the hetero-
geneity: SB (shuffling-based) and NB (noise-based) [5]. In the first step of SB, one column of size
n and one row of size m are generated using a gamma distribution. These two vectors are then
multiplied to obtain a n×m cost matrix with a strong correlation. To reduce it, values are shuffled
without changing the sum on any row or column as it is done is Section 4: selecting four elements
on two distinct rows and columns (a submatrix of size 2× 2); and, removing/adding the maximum
quantity to two elements on the same diagonal while adding/removing the same quantity to the last
two elements on the other diagonal. While NB shares the same first step, it introduces randomness
in the matrix by multiplying each element by a random variable with expected value one instead of
shuffling the elements. When the size of the matrix is large, SB and NB provide some control on
the heterogeneity but the distribution of the generated instances is unknown.

Finally, CNB (correlation noise-based) and CB (combination-based) have been proposed to
control the correlation [6]. CNB is a direct variation of CB to specify the correlation more easily.
CB combines correlated matrices with an uncorrelated one to obtain the desired correlation. As for
SB and NB, both methods have asymptotic guarantees when the size of the matrix tends to infinity,
but no guarantee on how instances are distributed.

The present work relies on contingency tables/matrices, which are important data structures
used in statistics for displaying the multivariate frequency distribution of variables, introduced in
1904 by K. Pearson [12]. The MCMC approach is the most common way used in the literature for
the uniform random generation of contingency tables (see for instance [13, 14]). Mixing time results
have been provided for the particular case of 2×n sized tables in [15] and the latter using a coupling
argument in [16]. In this restricted context a divide-and-conquer algorithm has recently been pointed
out [17]. In practice, there are MCMC dedicated packages for most common programming languages:
mcmc2 for R, pymc3 for Python, . . .

2https://cran.r-project.org/web/packages/mcmc/index.html
3https://pypi.python.org/pypi/pymc/
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More generally, random generation is a natural way for performance evaluation used, for instance
in SAT-solver competitions4. In a distributed computing context, it has been used for instance for
the random generation of DAG modelling graph task for parallel environments [18,19].

3 Contingency vectors initialization

Considering n tasks and m machines, the first step in order to generate instances is to fix the
average cost of each task and the average speed of each machine. Since n and m are fixed, instead of
generating cost averages, we generate the sum of the cost on each row and column, which is related.
The problem becomes, given n,m and N (total cost) to generate randomly (and uniformly) two
vectors µ ∈ Nn and ν ∈ Nm satisfying:

n∑
i=1

µ(i) =

m∑
j=1

ν(j) = N, (1)

with the following convention on notations: for any vector v = (v1, . . . , v`) ∈ N`, vi is denoted v(i).
Moreover, the objective is also to limit the maximum value. This is useful to avoid large variance:

for this purpose we restrict the generation to vectors whose parameters are in a controlled interval
[α, β]. This question is addressed in this section using a classical recursive approach [7]. More

precisely, let α ≤ β be positive integers and Hα,β
N,n be the subset of elements µ of Nn such that

N =
∑n

i=1 µ(i) and for all 1 ≤ i ≤ n, α ≤ µ(i) ≤ β (i.e. the set of all possible vectors with values

between α and β). Let hα,βN,n be the cardinal of Hα,β
N,n. By decomposition one has

hα,βN,n =

β∑
k=α

hα,βN−k,n−1. (2)

Moreover,

hα,βN,n = 0 if αn < N or βn > N and,

hα,βN,1 = 1 if α < N < β.
(3)

Algorithm 1 uniformly generates a random vector over Hα,β
N,n.

Note that integers involved in these computations may become rapidly very large. Working
with floating point approximations to represent integers may be more efficient. Moreover, with the
rounded errors the random generation stays very close to the uniform distribution [20].

Figure 2 depicts the distribution of the values when varying the interval [α, β] for n = 10 and
N = 100. Without constraint (α = 0 and β = 100), the distribution is similar to an exponential
one: small values are more likely to appear in a vector than large ones. When only the largest value
is bounded (α = 0 and β = 15), then the shape of the distribution is inverted with smaller values
being less frequent. Finally, bounding from both sides (α = 5 and β = 15) leads to a more uniform
distribution.

Figure 3 shows the CV obtained for all possible intervals [α, β]. The more constrained the values
are, the lower the CV. The CV goes from 0 when either α = 10 or β = 10 (the vector contains only
the value 10) to 1 when α = 0 and β = 100.

4http://www.satcompetition.org/
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Algorithm 1: Generate Sequences

Input: Integers N , n, α, β
Output: µ ∈ Nn such that α ≤ µ(i) ≤ β and

∑
i µ(i) = N if it is possible

⊥ otherwise.
1 begin
2 if α > β or nα > N or nβ < N then
3 return ⊥
4 for 1 ≤ k ≤ n and 0 ≤ N ′ ≤ N do

5 compute hα,βN ′,k using (2) and (3).

6 for i ∈ [1, . . . , n] do
7 s = 0
8 if N − s ≥ 0 then

9 pick at random µ(i) ∈ [α, β] with P(µ(i) = k) =
hα,βN−s−k,k

hα,βN−s,n−i
10 s = s+ k

11 else
12 µi = 0

13 return µ
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Figure 2: Frequency of each value in a vector of size n = 10 with N = 100 generated by Algorithm 1
for three combinations of constraints for the minimum α and maximum β. For each case, the
frequencies were determined by generating 100 000 vectors and are normalized to the maximum
frequency. The frequency for large values when α = 0 and β = 100 are not shown.
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Figure 3: Mean CV in vectors of size n = 10 with N = 100 generated by Algorithm 1 for different
constraints for the minimum α and maximum β. Each tile corresponds to 10 000 vectors. The
contour lines correspond to the levels in the legend (2.5, 5, 7.5 and 10).

It is also possible to generate uniform vectors using Boltzmann samplers [21]: this approach
consists in generating each ν(i) independently according to an exponential law of parameter γ.
Theoretical results of [21] show that by choosing the right γ, the sum of the generated ν(i)’s is close
to N with a high probability. In order to get precisely N , it suffices to use a rejection approach.
This is consistent with the seemingly exponential distribution in Figure 2 in the unconstrained
case. Moreover, in this case, Figure 3 shows that the CV is close to one, which is also the CV of an
exponential distribution.

4 Symmetric Ergodic Markov Chains for the Random Generation

We can now generate two random vectors µ and ν containing the sum of each row and column
with Algorithm 1. To obtain actual cost, we use Markov Chains to generate the corresponding
contingency table. Random generation using finite discrete Markov Chains can easily be explained
using random walk on finite graphs. Let Ω be the finite set of all possible cost matrices (also called
states) with given row and column sums: we want to sample uniformly one of its elements. However,
Ω is too large to be built explicitly. The approach consists in building a directed graph whose set
of vertices is Ω and whose set of edges represent all the possible transitions between any pair of
states. Each edge of the graph is weighted by a probability with a classical normalization: for each
vertex, the sum of the probabilities on outgoing edges is equal to 1. One can now consider random
walks on this graph. A classical Markov Chain result claims that for some families of probabilistic
graphs/Markov Chains, walking long enough in the graph, we have the same probability to be in
each state, whatever the starting vertex of the walk [8, Theorem 4.9].

This is the case for symmetric ergodic Markov Chains [8, page 37]. Symmetric means that if
there is an edge (x, y) with probability p, then the graph has an edge (y, x) with the same probability.
A Markov Chain is ergodic if it is aperiodic (the gdc of the lengths of loops of the graph is 1) and
if the graph is strongly connected. When there is a loop of length 1, the ergodicity issue reduces
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Figure 4: Example of the underlying graph of a Markov Chain when the sum of each row is three
and the sum of column is two. Unless otherwise stated, each transition probability is 1

6 .

to the strongly connected problem. In general, the graph is not explicitly built and neighborhood
relation is defined by a function, called a random mapping, on each state. For a general reference
on finite Markov Chains with many pointers, see [8].

An illustration example is depicted on Fig 4. For instance, starting arbitrarily from the central
vertex, after one step, we are in any other vertex with probability 1

6 (and with probability 0 in the
central vertex since there is no self-loop on it). After two steps, we are in the central vertex with
probability 1

6 and in any other with probability 5
36 . In this simple example, one can show that after

n+ 1 step, the probability to be in the central node is pn+1 = 1
7(1−

(−1
6

)n
) and is 1−pn+1

6 for all
the other nodes. All probabilities tends to 1

7 when n grows.
This section is dedicated to building symmetric and ergodic Markov Chains for our problem.

In Section 4.1 we define the sets Ω that are interesting for cost matrices. In Section 4.2, Markov
Chains are proposed using a dedicated random mapping and are proved to be symmetric and
ergodic. Finally, in Section 4.3 we use classical techniques to transform the Markov Chains into
other symmetric ergodic MC mixing faster (i.e. the number of steps required to be close to the
uniform distribution is smaller).

Recall that N,n,m are positive integers and that µ ∈ Nn and ν ∈ Nm satisfy Equation (1).

4.1 Contingency Tables

In this section, we define the state space of the Markov Chains. We consider contingency tables
with fixed sums on rows and columns. We also introduce min/max constraints in order to control
the variance of the value. We denote by ΩN

n,m(µ, ν) the set of positive n×m matrices M over N

such that for every i ∈ {1, . . . , n} and every j ∈ {1, . . . ,m},
m∑
k=1

M(i, k) = µ(i) and

n∑
k=1

M(k, j) = ν(j) (4)
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For example, the matrix

Mexa =

 3 1
2 0
5 10


is in Ω2,3(µexa, νexa), where µexa = (4, 2, 15) and νexa = (10, 11).

The first restriction consists in having a global minimal value α and a maximal global value
β on the considered matrices. Let α, β be positive integers. We denote by ΩN

n,m(µ, ν)[α, β] the

subset of ΩN
n,m(µ, ν) of matrices M such that for all i, j, α ≤ M(i, j) ≤ β. For example, Mexa ∈

Ω2,3(µexa, νexa)[0, 12]. If β < α, then ΩN
n,m(µ, ν)[α, β] = ∅. Moreover, according to Equation (4),

one has
ΩN
n,m(µ, ν) = ΩN

n,m(µ, ν)[0, N ]

= ΩN
n,m(µ, ν)[0,min(max1≤k≤m µ(k),

max1≤k≤n ν(k))].

(5)

Now we consider min/max constraints on each row and each line. Let αc, βc ∈ Nm and αr, βr ∈ Nn.
We denote by ΩN

n,m(µ, ν)[αc, βc, αr, βr] the subset of ΩN
n,m(µ, ν) of matrices M satisfying: for all i, j,

αc(j) ≤M(i, j) ≤ βc(j) and αr(i) ≤M(i, j) ≤ βr(i). For instance,

Mexa ∈ Ω2,3(µexa, νexa)[(1, 0, 5), (3, 2, 10), (2, 0), (5, 10)].

Using Equation (4), one has for every α, β ∈ N,

ΩN
n,m(µ, ν)[α, β] = ΩN

n,m(µ, ν)[(α, . . . , α),

(β, . . . , β), (α, . . . , α), (β, . . . , β)].
(6)

To finish, the more general constrained case, where min/max are defined for each element
of the matrices. Let Amin and Bmax be two n ×m matrices of positive integers. We denote by
ΩN
n,m(µ, ν)[Am,Bm] the subset of ΩN

n,m(µ, ν) of matrices M such that for all i, j, Amin(i, j) ≤
M(i, j) ≤ Bmax(i, j). For instance, one has Mexa ∈ ΩN

n,m(µ, ν)[Aexa, Bexa], with

Aexa =

(
3 2 4
0 0 5

)
and Bexa =

(
5 4 6
1 3 12

)
.

For every αc, βc ∈ Nm, αr, βr ∈ Nn, one has

ΩN
n,m(µ, ν)[αc, βc, αr, βr] = ΩN

n,m(µ, ν)[A,B], (7)

where A(i, j) = max{αc(j), αr(i)} and B(i, j) = min{βc(j), βr(i)}.

4.2 Markov Chains

As explained before, the random generation process is based on symmetric ergodic Markov Chains.
This section is dedicated to define such chains on state spaces of the form ΩN

n,m(µ, ν), ΩN
n,m(µ, ν)[α, β],

ΩN
n,m(µ, ν)[αc, βc, αr, βr] and ΩN

n,m(µ, ν)[Amin, Bmax]. According to Equations (5), (6) and (7), it

suffices to work on ΩN
n,m(µ, ν)[Amin, Bmax]. To simplify the notation, let us denote by Ω the set

ΩN
n,m(µ, ν)[Amin, Bmax].
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For any 1 ≤ i0, i1 ≤ n, any 1 ≤ j0, j1,≤ m, such that i0 6= i1 and j0 6= j1, we denote by ∆i0,i1,j0,j1

the n×m matrix defined by ∆(i0, j0) = ∆(i1, j1) = 1, ∆(i0, j1) = ∆(i1, j0) = −1, and ∆(i, j) = 0
otherwise. For instance, for n = 3 and m = 4 one has

∆1,2,1,3 =

 1 0 -1 0
-1 0 1 0
0 0 0 0

 .

Tuple (i0, j0, i1, j1) is used as follow to shuffle a cost matrix and to transit from one state to
another in the markov chain: ∆i0,i1,j0,j1 is added to the current matrix, which preserves the row
and column sums. Formally, let K = {(i0, j0, i1, j1) | i0 6= i1, j0 6= j1, 1 ≤ i0, i1 ≤ n, 1 ≤ j0, j1 ≤ m}
be the set of all possible tuples. Let f be the mapping function from Ω × K to Ω defined by
f(M, (i0, j0, i1, j1)) = M + ∆(i0,j0,i1,j1) if M + ∆(i0,j0,i1,j1) ∈ Ω and M otherwise. The mapping is
called at each iteration, changing the instance until it is sufficiently shuffled.

We consider the Markov chainM defined on Ω by the random mapping f(·, UK), where UK is a
uniform random variable on K.

The following result gives the properties of the markov chain and is an extension of a similar
result [13] on ΩN

n,m(µ, ν). The difficulty is to prove that the underlying graph is strongly connected
since the constraints are hindering the moves.

Theorem 1. The Markov Chain M is symmetric and ergodic.

The proof of Theorem 1 is based on Lemma 3 and 4.

Definition 2. Let A et B be two elements of Ω. A finite sequence u1 = (i1, j1), . . . , ur = (ir, jr) of
pairs of indices in {1, . . . , n} × {1, . . . ,m} is called a stair sequence for A and B if it satisfies the
following properties:

1. r ≥ 4,

2. If k 6= `, then uk 6= u`,

3. If 1 ≤ k < r is even, then jk = jk+1 and A(ik, jk) < B(ik, jk)

4. If 1 ≤ k < r is odd, then ik = ik+1 and A(ik, jk) > B(ik, jk),

5. r is even and jr = j1,

Consider, for instance, the matrices

A1 =


3 0 0 0 7
7 4 0 0 0
0 7 5 0 0
0 0 7 6 0
0 0 0 7 5

B1 =


2 1 0 0 7
7 3 1 0 0
0 7 4 1 0
0 0 7 5 1
1 0 0 7 4

 .

The sequence (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4),
(4, 5), (5, 5), (5, 1) is a stair sequence for A1 and B1.

Lemma 3. Let A et B be two distinct elements of Ω. There exists a stair sequence for A and B.

9



Proof. The proof is by construction. Since A and B are distinct, using the constraints on the sums
of rows and columns, there exists a pair of indices u1 = (i1, j1) such that A(i1, j1) > B(i1, j1). Now
using the sum constraint on row i1, there exists j2 such that B(i1, j2) < A(i1, j2). Set u2 = (i1, j2).
Similarly, using the sum constraint on column j2, there exists i3 6= i1 such that A(i3, j2) > B(i3, j2).
Set u3 = (i3, j2). Similarly, by the constraint on row i3, there exists j4 such that A(i3, j4) < B(i3, j4).
At this step, u1, u2, u3, u4 are pairwise distinct.

If j4 = j1, then u1, u2, u3, u4 is a stair sequence for A and B. Otherwise, by the j4-column
constraint, there exists i5 such that B(i5, j4) > A(i5, j4). Now, one can continue the construction
until the first step r we get either ir = is or jr = js with s < r (this step exists since the set of
possible indexes is finite). Note that we consider the smallest s for which this is case.

• If ir = is, s < r, the sequence u1, u2, . . . , ur satisfies the conditions 2., 3. and 4. of Definition 2.
Moreover both r and s are odd. The sequence us, . . . , ur satisfies the Conditions 2. to 5.
of Definition 2. Since r > s and by construction, r − s > 4. If follows that the sequence
ur, ur−1, . . . , us+1 is a stair sequence for A and B.

• If jr = js, then both r and s are even. The sequence us+1, . . . , ur satifies the Conditions 1. to
5. of Definition 2 and is therefore a stair sequence for A and B.

Given two n×m matrices A and B, the distance from A to B, denoted d(A,B), is defined by:

d(A,B) =

n∑
i=1

m∑
j=1

|A(i, j)−B(i, j)|.

Lemma 4. Let A et B be two distinct elements of Ω. There exists C ∈ Ω such that d(C,B) <
d(A,B) and tuples t1, . . . , tk such that C = f(. . . f(f(A, t1), t2) . . . , tk) and for every ` ≤ k,
f(. . . f(f(A, t1), t2) . . . , t`) ∈ Ω.

Proof. By Lemma 3, there exists a stair sequence u1, . . . , ur for A and B. Without loss of generality
(using a permutation of rows and columns) we may assume that u2k+1 = (k, k) and u2k = (k, k + 1),
for k < r

2 and ur = ( r2 , 1).

To illustrate the proof, we introduce some
r

2
× r

2
matrix M over {+,−,min,max}, called difference

matrices, such that: if M(i, j) = +, then A(i, j) > B(i, j); if M(i, j) = −, then A(i, j) < B(i, j); if
M(i, j) = min, then A(i, j) = Amin(i, j); and if M(i, j) = max, then A(i, j) = Bmax(i, j).

Considering for instance the matrices A1 and B1 defined before, with a global minimum equal
to 0 and global maximum equal to 7, a difference matrix is

+ − min min max
max + − min min
min max + − min
min min max + −
− min min max +

 .

Note that it may exist several difference matrices since, for instance, some + might be replaced by
a max

The proof investigates several cases:

10



Case 0: If r = 4, then k = 1 and t1 = (2, 1, 1, 2) works. Indeed, since Bmax(i, j) ≥ A(1, 1) >
B(1, 1) ≥ Amin(i, j), one has Amin(1, 1) ≤ A(1, 1) − 1 ≤ Bmax(1, 1). Similarly, Amin(2, 1) ≤
A(2, 1) + 1 ≤ Bmax(2, 1), Amin(1, 2) ≤ A(1, 2) + 1 ≤ Bmax(1, 2) and Amin(2, 2) ≤ A(2, 2)− 1 ≤
Bmax(2, 2). It follows that C = f(A, (2, 1, 1, 2)) ∈ Ω and d(C,B) = d(A,B)− 4 < d(A,B). In
this case, the following matrix is a difference matrix:(

+ −
− +

)
.

Case 1: If r > 4 and if there exists 3 ≤ ` ≤ r
2 such that A(`−2, `) 6= Amin(`−2, `), then, as for Case 0,

k = 1 works with t1 = (`−2, `−1, `−1, `): f(A, t1) ∈ Ω. Moreover d(f(A, t1), B) = d(A,B)−4
if A(`− 2, `) > B(`− 2, `); d(f(A, t1), B) = d(A,B)− 2 otherwise. In this case, the following
matrix is a difference matrix:

+ −
+ − A(`− 2, `)

+ −

+
.. .
. . . −

+ −
− +


.

Case 2: If r > 4 and Case 1 does not hold and if there exists 1 ≤ ` ≤ r
2 − 1 such that A(` +

1, `) < Bmax(` + 1, `), then, similarly, k = 1 and t1 = (`, ` + 1, ` + 1, `) works. One has
d(f(A, t1), B) = d(A,B) − 4 if A(` + 1, `) < B(` + 1, `), and d(f(A, t1), B) = d(A,B) − 2
otherwise. In this case, the following matrix is a difference matrix:

+ − min
+ − min

A(`+ 1, `) + − min

+
.. .

. . .
. . . − min

+ −
− +


.

Case 3: If Cases 0 to 2 do not hold and if A(1, r2) 6= Bmax(1, r2), then, similarly, k = 1 and
t1 = (1, r2 ,

r
2 , 1) works. One has d(f(A, t1), B) = d(A,B) − 4 if A(1, r2) < B(1, r2), and

d(f(A, t1), B) = d(A,B)−2 otherwise. In this case, the following matrix is a difference matrix:

+ − min A(1, r2)
max + − min

max + − min

max +
.. .

. . .
. . .

. . . − min
max + −

− max +


.
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Case 4: If Cases 0 to 3 do not hold. Since A( r2 ,
r
2) = Bmax(1, r2) and A(1, r2 − 2) = Amin( r2 ,

r
2 − 2),

i0 = max{i | 1 ≤ i < r
2 − 2 and A(i, r2) 6= Amin(i, r2)} exists. In this case t1 = (i0, i0 +

1, i0 + 1, r2), t2 = (i0 + 1, i0 + 2, i0 + 2, r2), . . . , t r
2
−2−i0 = ( r2 − 2, r2 − 1, r2 − 1, r2) works. With

C = f(. . . f(f(A, t1), t2) . . . , t r
2
−2−i0). One has d(C,B) = d(A,B) − 2 × ( r2 − i0 − 1) if

A(i0,
r
2) > B(i0,

r
2), and d(C,B) = d(A,B)− 2× ( r2 − i0 − 2) otherwise. Moreover, for every

` ≤ r
2 −2− i0, f(. . . f(f(A, t1), t2) . . . , t`) ∈ Ω. In this case, the following matrix is a difference

matrix: 

+ − min max
max + − min

max + − min A(i0,
r
2)

max +
.. .

. . .
...

. . .
. . . − min

max + −
− max +


.

One can now prove Theorem 1.

Proof. If A = f(B, (i0, j0, i1, j1)), then B = f(A, (i1, j1, i0, j0)), proving that the Markov Chain is
symmetric.

Let A0 ∈ Ω. We define the sequence (Ak)k≥0 by Ak+1 = f(Ak, (1, 1, 2, 2)). The sequence
Ak(1, 2) is decreasing and positive. Therefore, one can define the smallest index k0 such that
Ak0(1, 2) = Ak0+1(1, 2). By construction, one also has Ak0 = Ak0+1. It follows that the Markov
Chain is aperiodic.

Since d is a distance, irreducibility is a direct consequence of Lemma 4.

Consider the two matrices A1 and B1 defined previously with Bmax containing only the value 7.
Case 4 of the proof can be applied. One has t1 = (1, 2, 2, 5) and

f(A1, t1) = A2 =


3 1 0 0 6
7 3 0 0 1
0 7 5 0 0
0 0 7 6 0
0 0 0 7 5

 .

Next, t2 = (2, 3, 3, 5) and

f(A2, t2) = A3 =


3 1 0 0 6
7 3 1 0 0
0 7 4 0 1
0 0 7 6 0
0 0 0 7 5

 .
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We have t3 = (3, 4, 4, 5) and

f(A3, t3) = A4 =


3 1 0 0 6
7 3 1 0 0
0 7 4 1 0
0 0 7 5 1
0 0 0 7 5

 .

Finally, f(A4, (5, 1, 1, 5)) = B1 (Case 0): there is a path from A1 to B1 and, since the chain is
symmetric, from B1 to A1.

4.3 Rapidly Mixing Chains

The chain M can be classically modified in order to mix faster: once an element of K is picked
up, rather than changing each element by +1 or −1, each one is modified by +a or −a, where a is
picked uniformly in order to respect the constraints of the matrix. This approach, used for instance
in [16], allows moving faster, particularly for large N ’s.

Moving in ΩN
n,m(µ, ν), from matrix M , while (i0, j0, i1, j1) has been picked in K, a is uniformly

chosen such that a ≤ min{M(i0, j1),M(i1, j0)} in order to keep positive elements in the matrix. It
can be generalized for constrained Markov Chains. For instance, in ΩN

n,m(µ, ν)[α, β], one has a ≥ 1
and

a ≤ min{α−M(i0, j0), α−M(i1, j1),

M(i0, j1)− β,M(i1, j0)− β}.

This approach is used in the experiments described in Sections 5 and 6.

5 Convergence of the Markov Chains

We can now generate a matrix that is uniformly distributed when the Markov Chain is run long
enough to reach a stationary distribution. The mixing time tmix(ε) of an ergodic Markov Chain is the
number of steps required in order to be ε-close to the stationary distribution (for the total variation
distance, see [8, Chapter 4]). Computing theoretical bounds on mixing time is a hard theoretical
problem. For two rowed contingency tables, it is proved in [16] that tmix(ε) is in O(n2 log(Nε )) and
conjectured that it is in Θ(n2 log(nε )). The results are extended and improved in [22] for a fixed
number of rows. As far as we know, there are no known results for the general case. A frequently
used approach to tackle the convergence problem (when to stop mixing the chain) consists in using
statistical test. Starting from a different point of the state space (ideally well spread in the graph),
we perform several random walks and we monitor numerical parameter in order to observe the
convergence. For our work, used parameters are defined in Section 5.1. Section 5.2 is dedicated to
finding different starting points. Convergence experimental results are given in Section 5.3.

5.1 Measures

We apply a set of measures on the matrix at each step of the Markov process to assess its convergence.
At first, these measures heavily depend on the initial matrix. However, they eventually converge to
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a stationary distribution as the number of steps increases. In the following, we assume that once
they converge, the Markov Chain is close to the stationary distribution.

These measures consist in:

• the cost Coefficient-of-Variation (ratio of standard deviation to mean):√
1
nm

∑n
i=1

∑m
j=1

(
M(i, j)/ N

nm − 1
)2

• the mean of row Coefficients-of-Variation:
∑n

i=1

√
1
m

∑m
j=1(M(i,j)−µ(i)

m
)2

nµ(i)

• the mean of column Coefficients-of-Variation:
∑m

j=1

√
1
n

∑n
i=1(M(i,j)− ν(j)

n
)2

mν(j)

• Pearson’s χ2 statistic:
∑n

i=1
(M(i,j)−µ(i)ν(j)/N)2

µ(i)ν(j)/N

• the mean of row correlations: 1
n(n−1)/2

∑n−1
i=1

∑n
i′=i+1 ρ(M(i, .),M(i′, .))

• the mean of column correlations: 1
m(m−1)/2

∑m−1
j=1

∑m
j′=j+1 ρ(M(., j),M(., j′))

where ρ(M(i, .),M(i′, .)) (resp. ρ(M(., j),M(.j′))) denotes the Pearson coefficient of correlation
between rows i and i′ (resp. columns j and j′). When a row or column contains identical values,
the related correlations are undefined. When a row (resp. column) sum is zero, the mean of row
(resp. column) CV and the χ2 are undefined.

The first measure is an indicator of the overall variance of the costs. The second two measures
indicate whether this variance is distributed on the rows (task heterogeneity) or the columns (machine
heterogeneity). The χ2 is used to assess the proportionality of the costs and the correlations show
whether rows or columns are proportional.

5.2 Initial Matrix

The Markov Chain described in Section 4 requires an initial matrix. Before reaching the stationary
distribution, the Markov Chain iterates on matrices with similar characteristics to the initial one.
However, after enough steps, the Markov Chain eventually converges. We are interested in generating
several initial matrices with different characteristics to assess this number of steps. Formally, given
µ, ν, Amin and Bmax, how to find an element of ΩN

n,m(µ, ν)[Amin, Bmax] to start the Markov Chain?
We identify three different kinds of matrices for which we propose simple generation methods:

• a homogeneous matrix with smallest cost CV (Algorithm 2)

• a heterogeneous matrix with largest cost CV (Algorithm 3)

• a proportional matrix with smallest Pearson’s χ2 statistic (Algorithm 4)

Ideally, initial matrices could be generated with an exact method (e.g. with an integer program-
ming solver). However, the optimality is not critical to assess the time to converge and Algorithms 2
to 4 have low costs but are not guaranteed.

Moreover, the convergence may be the longest when the search space is the largest, which occurs
when the space is the least constrained. Thus, Algorithms 2 to 4 are used to study convergence
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Algorithm 2: Homogeneous Matrices

Input: Integer vectors µ, ν
Output: M ∈ ΩN

n,m(µ, ν)

1 begin
2 M ← {0}1≤i≤n,1≤j≤m
3 while

∑n
i=1

∑n
j=1M(i, j) 6= N do

4 if max(µ(i))/m ≥ max(ν(j))/n then
5 i← arg maxi µ(i)
6 sort j1, . . . , jm such that ν(jk) ≤ ν(jk+1)
7 for jk ∈ {j1 . . . , jm} do

8 d← min(ν(jk),
µ(i)

m−k+1)

9 M(i, jk)←M(i, jk) + d
10 µ(i)← µ(i)− d
11 ν(jk)← ν(jk)− d

12 else
13 perform the same operation on the transpose matrix (swapping µ and ν)

14 return M

Algorithm 3: Heterogeneous Matrices

Input: Integer vectors µ, ν
Output: M ∈ ΩN

n,m(µ, ν)

1 begin
2 M ← {0}1≤i≤n,1≤j≤m
3 while

∑n
i=1

∑n
j=1M(i, j) 6= N do

4 D ← min(µT · 1m, 1Tn · ν)
5 imax, jmax ← arg maxi,j D(i, j)
6 d← D(imax, jmax)
7 M(imax, jmax)← d
8 µ(imax)← µ(imax)− d
9 ν(jmax)← ν(jmax)− d

10 return M
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Algorithm 4: Proportional Matrices

Input: Integer vectors µ, ν, integer matrices Amin, Bmax

Output: M ∈ ΩN
n,m(µ, ν)[Amin, Bmax]

1 begin
2 M ← max(Amin,min(bµT × ν/N + 1/2c, Bmax))
3 µ(i)← µ(i)−

∑m
j=1M(i, j) for 1 ≤ i ≤ n

4 ν(j)← ν(j)−
∑n

i=1M(i, j) for 1 ≤ j ≤ m
5 while

∑m
j=1M(i, j) 6= µ(i) or

∑n
i=1M(i, j) 6= ν(j) do

6 choose random i and j
7 d← 0
8 if M(i, j) < Bmax(i, j), (µ(i) > 0 or ν(j) > 0) then d← 1
9 if M(i, j) > Amin(i, j), (µ(i) < 0 or ν(j) < 0) then d← −1

10 M(i, j)←M(i, j) + d
11 µ(i)← µ(i)− d
12 ν(j)← ν(j)− d
13 return M

without constraints Amin and Bmax. Only Algorithm 4 supports such constraints and is used to
study their effects in Section 6.

Algorithm 2 starts with an empty matrix. Then, it iteratively selects the row (or column) with
largest remaining sum. Each element of the row (or column) is assigned to the highest average
value. This avoids large elements in the matrix and leads to low variance. Algorithm 3 also starts
with an empty matrix. Then, it iteratively assigns the element that can be assigned to the largest
possible value. This leads to a few large elements in the final matrix. Algorithm 4 starts with the
rounding of the rational proportional matrix (i.e. the matrix in which costs are proportional to the
corresponding row and column costs) and proceeds to few random transformations to meet the
constraints.

In Algorithms 2 and 3, the argmin and argmax can return any index arbitrarily in case of several
minimums. In Algorithm 3, 1n denotes a vector of n ones. Finally, in Algorithms 3 and 4, µT

denotes the transpose of µ, which is a column vector.

5.3 Experiments

We first illustrate the approach with the example of a 20× 10 matrix with N = 4 000 with given µ
and ν. Starting from three different matrices as defined in Section 5.2, we monitor the measures
defined in Section 5.1 in order to observe the convergence (here, approximately after 6 000 iterations).
It is, for instance, depicted in Figure 5 for the cost CV (diagrams for other measures are similar and
seems to converge faster). Next, for every measure, many walks with different µ and ν (but same
N) are performed and the value of the measures is reported in boxplots5 for several walking steps,
as in Figure 6 for the CV, allowing to improve the confidence in the hypothesis of convergence. One
can observe that the three boxplots are synchronized after about 6 000 iterations.

5Each boxplot consists of a bold line for the median, a box for the quartiles, whiskers that extends to 1.5 times the
interquartile range from the box and additional points for outliers.
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Figure 5: Evolution of the measures for a 20× 10 matrix, with N = 20× n×m = 4 000. Initial row
and column sums (µ and ν) are generated with Algorithm 1 without constraints (i.e. α = 0 and
β = N). Initial matrices are generated with Algorithms 2 to 4 without constraints.
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Figure 6: Evolution of the measures for matrices with the same characteristics as in Figure 5. Each
boxplot corresponds to 100 matrices, each based on distinct row and column sums. When a row or
column sum is zero, all undefined measures are discarded.
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(n,m) mixing time

(5, 5) 200
(5, 10) 600
(5, 15) 1 000
(10, 10) 2 500
(10, 15) 3 500
(10, 20) 6 000
(25, 10) 7 500
(15, 20) 8 000
(15, 25) 13 000
(20, 25) 30 000
(20, 30) 50 000
(40, 20) 65 000
(40, 40) 210 000

Table 1: Estimated mixing times with a visual method and with varying number of rows n and
columns m.

These experiments have been performed for several matrices sizes, several µ, ν generations (with
different min/max constraints), and different N . The experimental results seem to point out that
the convergence speed is independent of N (assuming that N is large enough to avoid bottleneck
issues) and independent of the min/max constraints on µ and ν. Estimated convergence time
(iteration steps) obtained manually with a visual method (stability for the measures) for several
sizes of matrices are reported in Table 1. Experimentally, the mixing (convergence) time seems to
be linearly bounded by nm log3(nm).

6 Performance Evaluation of Scheduling Algorithms

This section studies the effect of the constraints on the matrix properties (Section 6.1) and on the
performance of some scheduling heuristics from the literature (Section 6.2).

This section relies on matrices of size 20 × 10 with non-zero cost. This is achieved by using
α ≥ m for µ, α ≥ n for ν and a matrix Amin containing only ones.

Section 5 provides estimation for the convergence time of the Markov Chain depending on the
size of the cost matrix in the absence of constraints on the vectors (α and β) and on the matrix
(Amin and Bmax). We assume that the convergence time does not strongly depend on the constraints.
Moreover, this section relies on an inflated number of iterations, i.e. 50 000, for safety, starting from
the proportional matrix (Algorithm 4).

6.1 Constraints Effect on Cost Matrix Properties

We want to estimate how the constraints on the µ and ν random generation influence the matrix
properties. Figure 7 reports the results. Each row is dedicated to a property from the CV to the
column correlation that are presented in Section 5.1, with the inclusion of the µ and ν CV. On
the left of the plot, only ν is constrained. In the center only µ and in the right, both µ and ν.
Constraints are parametrized by a coefficient in λ ∈ {0, 0.2, . . . , 1}: intuitively, large values of λ
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impose strong constraints and limit the CV. The influence of λ on the CV of µ and/or ν is consistent
with Figure 3 in Section 3: the value decreases from about 20 to 0 as the constraint increases.

The heterogeneity of a cost matrix can be defined in two ways [5]: using either the CV of µ and
ν, or using the mean row and column CV. Although constraining µ and ν limits the former kind of
heterogeneity, the latter only decreases marginally. To limit the heterogeneity according to both
definitions, it is necessary to constraint the matrix with Amin and Bmax. Figure 8 shows the effect of
these additional constraints when the cost matrix cannot deviate too much from an ideal fractional
proportional matrix. In particular, µ (resp. ν) is constrained with a parameter λr (resp. λc) as
before. The constraint on the matrix is performed with the maximum λ of these two parameters.
This idea is to ensure the matrix is similar to a proportional matrix M with M(i, j) = µ(i)×ν(j)

N
when any constraint on the row or column sum vectors is large.

The figure shows that the cost CV decreases as both λr and λc increase. Moreover, as for the µ
(resp. ν) CV, the mean column (resp. row) CV decreases as λr (resp. λc) increases. We can thus
control the row and column heterogeneity with λr and λc, respectively. Note that when reducing
the heterogeneity, row or column correlations tend to increase. In particular, large values for λr/λc
lead to jumps from small correlations when λr = λc to large row (resp. column) correlation when
λr = 1 (resp. λc = 1).

6.2 Constraints Effect on Scheduling Algorithms

Generating random matrices with parameterized constraints allows the assessment of existing
scheduling algorithms in different contexts. In this section, we focus on the impact of cost matrix
properties on the performance of three heuristics for the problem denoted R||Cmax. This problem
consists in assigning a set of independent tasks to machines such that the makespan (i.e. maximum
completion time on any machine) is minimized. The cost of any task on any machine is provided by
the cost matrix and the completion time on any machine is the sum of the costs of all task assigned
to it.

The heuristics we consider constitute a diversified selection among the numerous heuristics that
have been proposed for this problem in terms of principle and cost:

• BalSuff, an efficient heuristic [5] with unknown complexity that balances each task to minimize
the makespan.

• HLPT, Heterogeneous-Longest-Processing-Time, iteratively assigns the longest task to the
machine with minimum completion time in O(nm+n log(n)) steps. This is a natural extension
of LPT [23] and variant of HEFT [24] in which the considered cost for each task is its minimal
one.

• EFT, Earliest-Finish-Time, (or MinMin) is a classic principle, which iteratively assigns each
task by selecting the task that finishes the earliest on any machine. Its time complexity is
O(n2m).

We selected four scenarios that represent the extremes in terms of parameters, heterogeneity
and correlation: λr = λc = 0 with the most heterogeneity and the least correlation, λr = 0, λc = 1
with a high task and low machine heterogeneity, λr = 1, λc = 0 with a low task and high machine
heterogeneity, and λr = 0.75, λc = 1 with low heterogeneity and high correlation (the case λr = λc = 1
lead to identical costs for which all heuristics perform the same). Table 2 gives the mean properties
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Figure 7: Values for the measures presented in Section 5.1 and the cost sums (µ and ν) CV after
50 000 iterations starting with a proportional 20 × 10 matrix generated with Algorithm 4 with
different constraints on µ and/or ν (either ones on the first two columns, both on the third) and with
N = 20× n×m = 4 000. The constraint on µ (resp. ν) is parameterized by a coefficient 0 ≤ λ ≤ 1
such that α = bλNn c (resp. bλNm c) and β = d Nλne (resp. d Nλme), with the convention 1/0 = +∞. Each
matrix contains non-zero costs. Each boxplot corresponds to 30 matrices, each based on distinct
row and column sums.
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Figure 8: Values for the measures presented in Section 5.1 and the cost sums (µ and ν) CV after
50 000 iterations starting with a proportional 20 × 10 matrix generated with Algorithm 4 with
different constraints on µ, ν and the matrix, and with N = 20×n×m = 4 000. The constraint on µ
(resp. ν) is parameterized by a coefficient 0 ≤ λr ≤ 1 (resp. 0 ≤ λc ≤ 1) such that α = bλrNn c (resp.

bλcNm c) and β = d Nλrne (resp. d N
λcm
e), with the convention 1/0 = +∞. The constraint on the matrix

is parameterized by a coefficient λ = max(λr, λc) such that Amin = bλMc and Bmax = dM/λe with

M(i, j) = µ(i)×ν(j)
N . Each matrix contains non-zero costs. Each boxplot corresponds to 30 matrices,

each based on distinct row and column sums. When λr = λc = 1, all costs are identical and the
correlations are discarded.
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Figure 9: Ratios of makespan to the best among BalSuff, HLPT and EFT. The cost matrices were
generated as in Figure 8. Each boxplot corresponds to 100 cost matrices, each based on distinct row
and column sums.

λr λc CV row CV col CV µ CV ν CV χ2 row corr col corr

0 0 2.1 1.1 1.2 0.9 0.87 2831 0.21 0.18
0 1 0.88 0.051 0.9 0.9 0 4.2 -0.058 1
1 0 0.86 0.9 0.051 0 0.9 1.7 1 -0.11

0.75 1 0.17 0.02 0.17 0.17 0 4.3 -0.058 0.98

Table 2: Mean properties over 100 matrices generated as in Figure 9 for each pair of parameters λr
and λc.

for each scenario with 100 matrices each. Figure 9 depicts the results: for each scenario and matrix,
the makespan for each heuristic was divided by the best one among the three. All heuristics exhibit
different behaviors that depends on the scenario. BalSuff outperforms its competitors except when
λr = 0.75 and λc = 1, in which case it is even the worst. HLPT is always the best when λc = 1. In
this case, each task has similar costs on any machine. This corresponds to the problem P ||Cmax, for
which LPT, the algorithm from which is inspired HLPT, was proposed with an approximation ratio
of 4/3 [23]. The near-optimality of HLPT for instances with large row and low column heterogeneity
is consistent with the literature [5]. Finally, EFT performs poorly except when λr = 1 and λc = 0.
In this case, tasks are identical and it relates to the problem Q|pi = 1|Cmax. These instances, for
which the row correlation is high and column correlation is low, have been shown to be the easiest
for EFT [6].
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7 Conclusion

Random instance generation allows broader experimental campaigns but can be hindered by bias in
the absence of guarantee on the distribution of the instances. This work focuses on the generation of
cost matrices, which can be used in a wide range of scheduling problems to assess the performance
of any proposed solution. We propose a Markov Chain Monte Carlo approach to draw random cost
matrices from a uniform distribution: at each iteration, some costs in the matrix are shuffled such
that the sum of the costs on each row and column remains unchanged. By proving its ergodicity
and symmetry, we ensure that its stationary distribution is uniform over the set of feasible instances.
Moreover, the result holds when restricting the set of feasible instances to limit their heterogeneity.
Finally, experiments were consistent with previous studies in the literature. Although constraining
the matrix generation with a minimum and maximum matrices leads to large correlations, it remains
to determine the drawbacks of this approach and whether there could be more relevant solutions
(such as using a simulated annealing to increase the correlations starting from a uncorrelated ones).
A more prospective future direction would be to apply the current methodology on the generation
of other types of instances such as task graphs.
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[19] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J. Vincent, and F. Wagner, “Random
graph generation for scheduling simulations,” in 3rd International Conference on Simulation
Tools and Techniques, SIMUTools ’10, Malaga, Spain - March 16 - 18, 2010. ICST/ACM,
2010, p. 60.

[20] A. Denise and P. Zimmermann, “Uniform random generation of decomposable structures using
floating-point arithmetic,” Theor. Comput. Sci., vol. 218, no. 2, pp. 233–248, 1999.

[21] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Boltzmann samplers for the random
generation of combinatorial structures,” Combinatorics, Probability & Computing, vol. 13, no.
4-5, pp. 577–625, 2004. [Online]. Available: https://doi.org/10.1017/S0963548304006315

25

https://figshare.com/articles/Code_to_assess_the_properties_of_the_cost_matrices_generated_using_MCMC/6011660/1
https://figshare.com/articles/Code_to_assess_the_properties_of_the_cost_matrices_generated_using_MCMC/6011660/1
https://doi.org/10.1016/0020-0255(94)90022-1
https://doi.org/10.1016/S0304-3975(99)00136-X
https://doi.org/10.1017/S0963548304006315


[22] M. Cryan, M. Dyer, L. A. Goldberg, M. Jerrum, and R. Martin, “Rapidly mixing markov
chains for sampling contingency tables with a constant number of rows,” SIAM Journal on
Computing, vol. 36, pp. 247–278, 2006.

[23] R. L. Graham, “Bounds on Multiprocessing Timing Anomalies,” Journal of Applied Mathemat-
ics, vol. 17, no. 2, pp. 416–429, 1969.

[24] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-complexity task schedul-
ing for heterogeneous computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 13, no. 3, pp. 260–274, 2002.

A Notation

Table 3 provides a list of the most used notations in this report.

Symbol Definition

n Number of rows (tasks)
m Number of columns (machines)

M(i, j) Element on the ith row and jth column of matrix M

N Sum of elements in a matrix (
∑

i,jM(i, j))

µ Vector of size n. µ(i)
m is the mean cost of the ith task.

ν Vector of size m. ν(j)
n is the mean cost on the jth machine.

Hα,β
N,n Elements v ∈ Nn s.t. α ≤ v(i) ≤ β and

∑n
i=1 v(i) = N .

hα,βN,n Cardinal of Hα,β
N,n.

d(A,B) Distance between matrices A and B.

ΩN
n,m(µ, ν)

Set of contingency tables of sum N and sums of rows and
columns µ and ν.

α, β
Scalar constraints on minimal/maximal values for generated
matrices.

α, β
Vector constraints on minimal/maximal values for generated
matrices.

Amin, Bmax
Matrix constraints on minimal/maximal values for generated
matrices.

ΩN
n,m(µ, ν)[...] Subset of ΩN

n,m(µ, ν) min/max-constrained by [...].

f(·, ·) Random mapping for the Markov Chains.

Table 3: List of notations.
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