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Abstract. Energy efficiency is a growing concern for modern comput-
ing, especially for HPC due to operational costs and the environmen-
tal impact. We propose a methodology to find energy-optimal frequency
and number of active cores to run single-node HPC applications using an
application-agnostic power model of the architecture and an architecture-
aware performance model of the application. We characterize the appli-
cation performance using Support Vector Regression. The power con-
sumption is estimated by modeling CMOS dynamic and static power
without knowledge of the application. The energy-optimal configuration
is estimated by minimizing the product of the power model and the
performance model’s outcomes. Results for four PARSEC applications
with five different inputs show that the proposed approach used about
14 % less energy when compared to the worst case of the default Linux
DVFS governor. For the best case of the DVFS scheme, 23% savings
were observed, with an overall average of 6% less energy.

1 Introduction

Processors are the main contributor to the power consumption of High Per-
formance Computing (HPC) servers. They contribute between 20 and 40% to
the total servers power draw [FWBO07]. Google’s servers showed that during peak
utilization processors consumed about 57% of the overall servers power consump-
tion [BHO7]. Reducing processor power consumption is an effective approach to
reduce the whole system’s power consumption. Therefore, modern processors
incorporate several features for power management such as independent pro-
cessing cores that can be disabled by the operating system [RNAT12], clock
gating techniques for reducing the dynamic power dissipation of synchronous
circuits [SPST15] and Dynamic Voltage and Frequency Scaling (DVFS) [Mit14].

DVFS has been demonstrated to be a very effective technique for reducing
the power consumption of processors [HSIT15, DM14, HDVH12, BAM12, Tral5,
MLV *02, ACS*11, PS14]. The technique tries to optimize power consumption by
adjusting the frequency according to the current load of the processor. Generally,
the frequency scales with the intensity of the load and the voltage scales to
the minimum value that enables the selected frequency. Among other aspects,
DVFS helps reducing energy consumption because it allows memory-bounded
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programs to be executed more efficiently [SSAT06]. Nonetheless, aspects such as
load variability may compromise the effectiveness of DVFS. Another important
aspect that is typically not taken into account is the number of processing cores
to be used by a parallel program. This choice is left to the user, which often is
not trivial as shown in this paper.

We propose a methodology to find the operating frequency and number of
active cores that minimize the total energy used to execute an HPC application
on a single shared-memory HPC node.

The methodology uses an application-agnostic power model and an architecture-
specific application characterization to model performance. The power model is
based on the modeling of Complementary Metal-Oxide-Semiconductor (CMOS)
logic in function of the operating frequency [Sar97]. It models both the dynamic
and static power. Besides operating frequency, the power model is also paramet-
ric to the number of active sockets and the number of active cores per socket.

Performance is modeled by characterizing the application on the target ar-
chitecture. The idea is to predict the performance of the application at any given
configuration. The model takes as inputs the operating frequency, the number of
active cores and the input size. The modeling is done using a supervised learning
method for regression called Support Vector Regression (SVM) [Ven09, SS04].

To find the optimal-energy configurations, the algorithm minimizes the prod-
uct of outcomes of the power and performance models. This approach was vali-
dated on four PARSEC applications [BKSLO08] and compared to the Ondemand
governor, which is the default DVFS scheme for the Linux operating system.
The results show that the proposed approach was able to find configurations
that used about 14x less energy when compared to the worst case of the Onde-
mand governor. When compared to the best case of this DVFS scheme, i.e. when
the user guesses the optimal number of cores to be used, the proposed approach
was able to find configurations that used as much as 23% less energy to execute
the target application. The overall average energy saving reached 6% for the
proposed approach when compared to the best case and 790% when compared
to the worst case.

The rest of this paper is organized as follows. Section 2 presents the proposed
models for power, performance, and energy. The experimental setup and the
fitting of the models are described in Section 3. In Section 4, the results of
applying the proposed approach to four PARSEC applications are presented.
Related works are presented in Section 5. Finally, conclusions are drawn and
future work is proposed in Section6.

2 Models

In this Section, we present the proposed power and performance models that are
used to estimate the minimum-energy consumption configuration.
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2.1 Power Model

Some of the main factors that contribute to the CPU power consumption are
the dynamic power consumption, the short-circuit power consumption, and the
power loss due to the current leakage of transistors, [RRST14, GM16, DGL*17,
GGHO7]. The complexity of the circuits of modern processors makes it very
difficult to model their power consumption accurately. A viable approach for
modeling the CPU’s power draw is to model their building components, which are
mainly made out of CMOS logic gates. Thus, modeling the power consumption
for one logic gate and multiplying this by the total number of gates reduces
the complexity of modeling the internal circuits but still provides the sufficient
accuracy needed for making optimization decisions.
There are three main components of power dissipation in digital CMOS cir-
cuits,
Piotar = Pstatic + Pleak + denamic (1)

namely, static power Pgtqtic, dynamic power Pyynamic, and leakage power Pieqp.
According to [Sar97, BRO7], the dynamic power and leakage power behavior can
be approximated by:

denamic = CV2f’ (2)

and
Pleak X ‘/7 (3)

where C' is the CMOS capacitance, V' the voltage applied to the circuit and f
the switching frequency.

Another common approximation is to expect a linear relationship between
the voltage and the applied frequency [UKK13]:

focV (4)

Thus, the proposed model for one processing core of a multi-core processor
is derived by using (2), (3) and (4) to rewrite (1) as follows:

Piotarl(f) = c1f> + cof + cs, (5)

where ¢y, co, and c3 are the model’s parameters.
When we include the number of active cores p, the estimation of the power
consumption of the whole processor becomes:

Ptotal(f,p) = p(clfB + C?f) + C3. (6)

For systems that have more than one processor sockets, the power cost of
enabling each socket can be considered. Adding the number of sockets s to the
equation gives the final version of the power model used in this work:

Protat(f,p,8) = pler f2 + cof) + c3 + cas, (7)

with ¢4 being the model parameter for the number of sockets.
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2.2 Performance Model

The performance model aims to estimate the application’s execution time for a
given target architecture based on a given operating frequency, number of active
cores and input size.

The performance was modeled by sampling the execution time of the appli-
cation for several combinations of discrete values of frequency, number of active
cores and input size. The samples where used as a training set for a Support Vec-
tor Regression (SVR); a version of the Support Vector Machine (SVM) algorithm
for regression proposed in [DBK*97].

Training the SVR means minimize the weights w subject to:

{yi—<w,x¢> -b<e

(w, ;) +b—y; <e

In our model z; is a vector with the frequency, number of active cores and
input size, y; is the execution time measured. (w,z;) + b — y; is the predicted
output time and ¢ is a free parameter that serves as a threshold.

2.3 Energy Model

By combining outcome of the power model described in Section 2.1 and the SVR
characterization of the application performance described in Section 2.2, we can
estimate the total energy used by the application as follows:

E(f,p,s,N) = P(f,p,s) x SVR(f,p,N), (8)

where P(f,p,s) is the total power modeled by (Eq. (1)), SVM(f,p,N) is the
execution time estimated by the SVR characterization of the application, f is
the frequency, p is the number of active cores, s is the number of sockets, and
N is the input size.

With (Eq. (8)), it is possible to calculate energy consumption estimations for
every possible configuration. Then, the configuration that minimizes energy con-
sumption for a given input can be selected. It is also possible to apply constraints
on the execution time, frequency, and the number of active cores although this
is not considered in this work.

3 Experimental Setup

In the following subsections we present the software and hardware experimental
setup used to validate the proposed approach.

3.1 Case-Study Applications

Four applications from the PARSEC parallel benchmark suite, version 3.0 [BKSLO0S§],
were used as case-studies. This suite focuses on emerging workloads and was de-
signed to be representative of the next generation shared-memory programs for
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chip-multiprocessors. The four applications used in this work were chosen for
being relatively straightforward to devise smaller input sizes from the standard
native inputs. These are: Fuidanimate, Raytrace, Swaptions, and Blackscholes.
A short description of each one follows.

3.1.1 Blackscholes

calculates the prices for a portfolio of European options analytically using the
Black-Scholes partial differential equation. There is no closed-form expression
for the Black-Scholes equation and as such it must be computed numerically.
The program’s inputs are the number of threads, the input file containing the
options data, and the output file name.

3.1.2 Fuidanimate

uses an extension of the Smoothed Particle Hydrodynamics (SPH) method to
simulate an incompressible fluid for interactive animation purposes. The inputs
are the number of threads, the number of frames, and an input file with infor-
mation of all fluid particles and his proprieties.

3.1.3 Raytrace

is a version of the raytracing method that is typically employed by real-time
animations such as the ones used in computer games. It is optimized for speed
rather than realism. The computational complexity of the algorithm depends
on the resolution of the output image and the scene. The inputs used on this
applications was the number of threads, the number of frames, a 3D object and
the display resolution.

3.1.4 Swaptions

Uses the Heath-Jarrow-Morton (HJM) framework to price a portfolio of swap-
tions. Swaptions employs Monte Carlo (MC) simulation to compute the prices.
The input to this program are the number of threads, number of swaptions and
the number of trials.

3.2 Case-Study Architecture

In the experiments performed in this work, we used compute nodes that consists
of two Intel Xeon E5-2698 v3 processors with sixteen cores each and two hard-
ware threads for each core. The maximum non-turbo frequency is 2.3GHz, and
the total physical memory of the node is 128GB (8x16GB). Turbo frequency and
hardware multi-threading were disabled during all experiments. The operating
system used is Linux CentOS 6.5, kernel 2.6.32.

The Linux kernel has many drivers available developed by the CPU manufac-
turers and the community [BMLT05]. The default driver is the ”acpi-cpufreq”
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that uses policies implemented by so-called governors that dynamically decide
the frequency values. Some of the governors available are Performance, Power-
save, Ondemand, Conservative and Userspace. Performance and Powersave are
static, and they set the frequency to the maximum and minimum allowed values,
respectively. Ondemand and Conservative implement algorithms to estimate the
CPU required capacity and adjust the processor frequency accordingly. Finally,
Userspace allows the user to specify the frequency.

In this work, changing the frequency of the cores was done using the Linux
”acpi-cpufreq” driver. The number of active cores was changed by modifying the
appropriate Linux virtual files. Both changes require root privileges. In practice,
this approach can be brought into production by allowing the resource man-
ager to perform this changes for the user using pre- and post-scripts for job
submissions with energy consumption requirements.

3.3 Fitting the Power Model

To fit the power-model equation, the CPU was stressed up to 100% and power
information was acquired from the Intelligent Platform Management Interface
(IPMI) sensors with a sampling rate of about one sample per second. IPMI
provides information about variables and resources such as the system’s temper-
ature, voltage, fans and power supplies; using independent sensors attach to the
hardware.

The power was collected for all combinations of frequency — starting from
1.2 GHz and increasing by 100 MHz each time until 2.2 GHz is reached, and
possible numbers of active cores — from 1 to 32. Between each test the CPU
was left idle until it cooled down to avoid interference on the next test.

The coefficients of (7), ¢1, c2, ¢35 and ¢4, were found by performing multi-linear
regression on the data collected. The retrieved fitting can be seen on Fig. 1.

The equation for estimating the power in the target architecture turned to
be:

Protat(f.p, 8) = p(0.29f% + 0.97f) + 198.59 + 9.18s, (9)

where the unit for frequency is GHz.

To validate this model was calculated the absolute percentage error, i.e. the
mean of the perceptual error on each point. This metric was chosen because of
the significant difference between the smallest and the biggest values and it is
calculated as follows:

#samples

Z |yz - ymode1| ) (10)

Yi

i

The resulting absolute percentage error was 0.75% and the root-mean squared
error was 2.38W.



Energy-Optimal Configurations for Single-Node HPC Applications 7

e measurements
— model

200
225
250
275

300

(M) Jamod

325
350
375

26 3o 2.2

Fig. 1: Power model fitting. The dots represent real power measurements and
the solid lines represents the modeled power.

3.4 Performance Characterization

To characterize an application, we ran it for all different numbers of active cores
in the range of 1 <= p <= 32, for all the frequencies in the range of 1.2 <=
f <= 2.2 using 100MHz steps, and for 5 different input sizes.

The input sizes were chosen in such a way that the average execution time
was in the order of minutes. The sampled power information, on every second,
was used to calculate the real energy usage. The total time to complete the
characterization varied between one and two days, depending on the application.

The SVR model was built using the collected data. A grid search was used to
tune the model parameters. In this case, a Radial Base Function (RBF) kernel
and the penalty for the wrong term of 10 x 103 and gamma 0.5 [PVGT11]. To
train the SVR, the data collected was divided into two parts, 90% for training
and 10% to test the accuracy.

The model was validated also using a cross-validation k-fold with & equal
to 10, using the Mean Absolute Error (MAE) and Percentage Absolute Error
(PAE) as metrics. The average results of the cross validation can be seen in
Table 1.

The results of the characterization can be seen in Figs. 2, 3, 4, and 5.

4 Experimental Results

In this Section, we present results for the energy model that we introduced
in Section 2 based on the parameter fitting described in Sections 3.3 and 3.4.
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Table 1: Performance-Model’s Cross validation Errors
Application |MAE|PAE
Blackscholes [2.01 [4.6%
Fluidanimate|6.65 |1.89%
Raytrace 3.77 10.87%
Swaptions  |2.29 [2.56%
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Fig. 2: Fluidanimate’s performance model. The dots represent real performance
measurements and the solid lines represent the modeled performance for various
numbers of active cores and frequencies when running for input size 3.
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Fig. 3: Raytrace’s performance model. The dots represent real performance mea-

surements and the solid lines represent the modeled performance for various
numbers of active cores and frequencies when running for input size 3.

— model
e measurements

1600
1400
1200
1000
800
600
400
200

(s) 2wl

Fig. 4: Swaptions’ performance model. The dots represent real performance mea-

surements and the solid lines represent the modeled performance for various
numbers of active cores and frequencies when running for input size 3.
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Fig.5: Blackscholes’ performance model. The dots represent real performance
measurements and the solid lines represent the modeled performance for various
numbers of active cores and frequencies when running for input size 3.

First, we compare and comment the model in contrast with the actual energy
measurements. Finally, we evaluate the effectiveness of the proposed approach
by comparing it to the Linux default Ondemand DVFS governor.

4.1 Measured versus Modeled Energy

The energy measurements were obtained by integrating the power measurements
over the total execution time of the application. The power measurements were
made using the IPMI sensors with a sampling rate of about one sample per
second.

Figs. 6, 7, 9, and 8 plot the measured and modeled energy consumption for
Blackscholes, Fuidanimate, Raytrace, and Swaptions, respectfully, for varying
the number of active cores and operating frequency, running with the mid-size
input.

In general, for the case-study applications and case-study architecture, the
optimal-energy configurations tend to be the ones using the highest frequency,
which characterizes a race-to-idle rather than a pace-to-idle optimal behav-
ior [KIH15]. This can be explained by the large static power observed in the
considered architecture, evidenced by the large ¢z parameter in (7) that was
fitted in (9). With a large static power, using a pace-to-idle strategy, i.e. the use
of frequencies lower than the maximum, is expected to be effective only if the
sum of the leakage and the dynamic power parcels is larger than the static power
parcel. Based on the fitted power model, this would never happen, i.e. the sum
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Fig. 6: Fluidanimate’s energy measurements versus modeled energy consumption

varying the number of active cores and operating frequency, running with the
input size 3.
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Fig. 7: Raytrace’s energy measurements versus modeled energy consumption

varying the number of active cores and operating frequency, running with the
input size 3.
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Fig.8: Swaptions’ energy measurements versus modeled energy consumption

varying the number of active cores and operating frequency, running with the
input size 3.
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Fig.9: Blackscholes’ energy measurements versus modeled energy consumption

varying the number of active cores and operating frequency, running with the
input size 3.
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of leakage and dynamic power is always less than the static power,
p(0.2913 +0.97f) + 9.18s < 198.59,

even if we use the maximum number of cores, p = 32 and s = 2, and the max-
imum frequency, f = 2.2. Nevertheless, race-to-idle was not always the best
strategy because energy scales with the execution time, which in turn scales
inversely with the number of active cores and the operating frequency, and be-
cause power scales linearly with the number of cores, but exponentially with the
frequency.

The optimal number of active cores depends on the parallel scalability of
the application. The more scalable the application, the more cores it requires to
minimize energy. A scalable application can increasingly exchange the speedup
of more cores with lower frequencies in order to spend less energy. This is because
of the linear relationship between power and number of cores and the exponential
relationship between power and frequency.

4.2 Proposed Approach versus Ondemand Linux Governor

We have compared the energy consumption of the four case-study applications
using the energy-optimal configurations provided by the proposed approach to
the energy consumption resulted by use of the Linux default DVFS governor,
Ondemand. Since the governor does not choose the number of active cores, we
executed each application using 1, 2, 4, 8,---, 28, 30, and 32 cores, accounting
for the best and the worst cases of energy consumption. Tables 2, 3, 4 and 5
present these results for Fuidanimate, Raytrace, Swaptions, and Blackscholes,
respectively.

Table 2: Fluidanimated Minimal energy

= = = S
o w o e R X
o) —~ | g o) = — g ) g-’
el g T 8|8 2 T 5|8 .o 3|8 | :
HERCRCRE® s U O |3 g0 O |3 g %
g= 8 EE = £ &= = 2@ = |=
1[1.85 (32) [4.85 [2.29 (1) [32.38 [2.0 (32) [4.15 [16.90|680.31
2 11.88 (32) 19.35 [2.29 (1) [66.77 |2.0 (32) |7.89 [18.60|746.54
3 11.89 (32) [18.82 (2.30 (1) [135.002.0 (32) [16.98(10.86(695.04
4 12.08 (32) |37.80 [2.30 (1) |272.55|2.1 (32) |33.20|13.84|720.82
5 [2.00 (32) [76.28 [2.30 (1) |546.84(2.2 (32) [66.83|14.14]718.24
Ondemand Min.|Ondemand Max.|Proposed
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Table 5: Balckschoels Minimal energy
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In most cases, the proposed approach obtained better results than the best
cases of the Ondemand governor. For Blackscholes, the proposed approach was
only better than the Ondemand best case for input number 3. On average, the
proposed method was 6% better than the best case of the Ondemand governor.

In all cases, the method proposed here outperformed the worst case of the On-
demand governor. On average, the difference in energy consumption was about
790%, being 1298% the maximum difference and 59% the minimum. In general,
the energy consumption of the DFVS scheme was larger for smaller numbers
of cores. Nonetheless, it was not always the case that the best number of cores
for this scheme was the maximum, i.e. 32 cores. Possibly, for architectures with
larger number of cores, choosing the exact number the minimizes energy con-
sumption would be less evident.

Fig. 10 shows the behavior of the energy consumption for all tested cases of
the Ondemand governor and the proposed approach with values normalized to
the energy consumption of the proposed approach.

5 Related Work

DVFS is the most common technique employed to obtain energy savings on
multi-core systems. Thus, the technique has been extensively researched with
the aim of providing strategies for selecting the optimal voltage and frequency
for a specific application and architecture. In [ACST11] the authors utilized
two algorithms for scaling the frequency of the processors: a human-immune
system inspired algorithm to monitor the server’s power and performance states;
and a fuzzy logic based algorithm for changing the server’s performance state.
[CHCRI11] introduced a scaling method for determining the system’s optimal
operation points for the number of threads and DVFS settings.
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Fig. 10: Energy consumption of the Ondemand governor for power-of-2 numbers
of cores and the proposed approach. The values are relative to the energy of the
proposed approach.
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In [DP15], an approach that considers instantaneous system activity states
was proposed. In this case, the memory and network activity were used to gen-
erate a DVFS management setting.

Performance counters have also been used to perform effective DVFS. In
[SKK11], the authors used a Continuous Adaptive DVFS based on a perfor-
mance model of the processor. The model was based on sampling the hardware’s
performance counters at regular intervals to predict performance/energy work-
loads. Base on these predictions appropriate voltage, and frequency settings were
selected.

In [GKCEL17], the authors used an energy model for a multi-threaded, multi-
core embedded architecture and static resource analysis to statically evaluate the
energy and timing savings of various DVFS configurations for the same program.
Although, they were able to identify the most optimal configuration without the
need of executing the program with each different configuration and measuring
time and energy, there approach is quite limited as static analysis does not scale
to less time predictable architectures and programs.

In this work, we introduce a power and a performance model to find energy-
optimal operating frequency and number of active cores for applications running
on specific multi-core platforms. Our approach does not use the DVFS manager
to control the processor voltage and frequency settings. This new approach can
obtain better results than DVF'S strategies as was shown in Section 4.

The success obtained from this approach is possibly due to the fact that the
use previous knowledge of the application’s performance on the target architec-
ture can expose sufficiently relevant information, such as parallel speedups, that
is harder to guess in runtime techniques based on DVFS.

The use of an application-agnostic power modeling for the target architecture
helps to make the technique portable to other applications. That is, to estimate
the energy-optimal frequency and number of active cores for a new application,
only a performance characterization is needed.

6 Conclusion and future work

In this paper, we propose a new approach to optimize the energy efficiency
of single-node batch HPC applications. In contrast to existing scheduling al-
gorithms, our technique utilizes the application’s runtime profile, and a power
model of the compute node to predict the optimal frequency and number of
cores to be used. This proven effective in reducing the energy consumption of
applications.

Results from four parallel PARSEC applications running on an HPC node
with two sixteen-core processors show that the novel approach outperforms the
default Linux DVFS scheme on its best case with an average of 6% energy
savings. In its worst case, the savings were about 790%, on average.

A weakness of the proposed technique is the need for information about the
input size of the application before execution. A possible solution would be to
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use performance counters, present in all modern HPC processors, to guess the
input size based on previously trained data.

Future work will improve the proposed energy model by taking into account
more relevant information, such as the percentage of CPU utilization. This can
enable the identification of different phases of the target program and thus, it
will enable more fine-grained changes of the frequency and, perhaps, the number
of active cores, to further improve the results presented here.
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