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Abstract—This paper deals with the cellular biological network

analysis of the tumor-growth model, consisting of multiple spaces
and time scales. In this paper, we present a model in graph
simulation using ABM for tumor growth. In particular, we
propose a graph agent-based modeling and simulation system
in the format of tumor growth scenario for evolving analysis.
To manage cellular biological network analysis, we developed a
workflow that allows us to estimate the tumor model and the
complexity of the evolving behavior in a principled manner. By
developing the model using Python, which has enabled us to
run the model multiple times (more than what is possible by
conventional means) to generate a large amount of data, we
have succeeded in getting deep in to the micro-environment of
the tumor, employing network analysis.
Combining agent-based modeling with graph-based modeling
to simulate the structure, dynamics, and functions of complex
networks is exclusively important for biological systems with
a large number of open parameters, e.g., epidemic models of
disease spreading or cancer. Extracting data from evolutionary
directed graphs and a set of centrality algorithms helps us to
tackle the problems of pathway analysis and to develop the
ability to predict, control, and design the function of metabolisms.
Reproducing and performing complex parametric simulations
a known phenomenon at a sufficient level of detail for com-
putational biology could be an impressive achievement for fast
analysis purposes in clinics, both on the predictive diagnostic and
therapeutic side.

Index Terms—multi scale modeling, agent based modeling
(ABM), graph-based modeling, tumor agent-based model.

I. INTRODUCTION

Scientific agent-based modeling and simulation requires
specific techniques to manage parametric executions and the
computational cost of the evolution analysis. It gets more
complicated when it is defined as Systems Biology (SB) based
on a multiscale nature. There is a large set of references in SB
which reviewed and compared different agent-based modeling
tool-kits. From the scientific community point of view this
field still lacks an accepted generic methodology to address
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multiscale computation. Specifically to optimize the transport
of data between sub-models in high-performance computing
(HPC) environments which means exchanging large volumes
of data. In this case, dedicated data pattern software and
high-performance multiscale computing applications would be
needed.

This paper presents our work in graph simulation and
modeling of an agent-based tumor growth. The most novel
changes in this paper on the ground of the other scenarios
are obtaining a probabilistic state machine in Python using
Mesa [4], a graph-based representation using NetworkX [21]
and consideration of multiscale simulation to perform cellular
and molecular population dynamics. Unlike many other tools,
NetworkX [21] data analysis features are designed to handle
data on a scale relevant to complex problems, and most of the
core algorithms rely on extremely fast legacy code for flexible
graph representations which a node and edge can be anything.

On the other hand, implementing our tumor agent-based
model in Python using Mesa [4] is indeed a prospective
approach since it is becoming the language for scientific com-
puting and facilitating the web crawling for direct visualization
of every model step. Mesa allows large-scale modeling to
create agent-based models using built-in core components such
as agent schedulers and spatial grids in parallel computation.

II. BACKGROUND

A primary tumor model just addressing the vascular growth
state depends on differential equations, but In silico [6] refers
to computational models of biology and it has many applica-
tions. There are three approaches of In silico to build a cancer
model: continuum, discrete and hybrid. Each approach has
the characteristics that make it suitable for analyzing specific
properties of tumors and tumor cells [8]. However, an adaptive
hybrid model which integrates both continuous and discrete
based models is the most challenging for simulating a complex
system. A minimal coupling of a vascular tumor dynamics to
tumor angiogenic factors through agent-based modeling has
pushed the progress of experimental studies during recent



yearsﬂ It is a big challenge to simulate total process of a
complex system such as tumor growth, metastasis, and tu-
mor response treatments mathematically because mathematical
modeling is still a simplification of the systems biology and
the results require validation [7]. As we can see in some
papers such as [8][9], it is apparent that building a bulky
model over a range of matrix densities which covers numerous
factors in this way for large domain sizes or 3D simulations
are restricted by computational and application costs. In [8]
they have presented a series of ABMs that are intended to in-
troduce a multiscale architectureE] for representing biomedical
knowledge in NetLogo [1] and in conclusion they mentioned
that a full-scale ABM implementation is not possible at this
time. They have pointed out that there is a need to develop
and communicate the potential framework that is conceptually
robust and allows the evolution of knowledge represented
in a computable form. Authors of [10][11] also suggested
focusing on modified methods for analyzing and modeling
which scales more with network size using information about
edge betweenness to detect community peripherie This
suggestion allows scientists to go through a broader inves-
tigation of tumor information extraction and tumor-growth
dynamics. Also, it seems using dynamic networks based on
a large number of interactive agents make it possible for
researchers to carry out more detailed research on inter-cellular
network interactions and metastasis in a multiscale model
[12]. One of the latest papers is [22] which addresses recent
progress and open questions in multiscale modeling. From
their point of view, a well-established methodology is building
and maintaining a computer code and proposing a framework
which includes theoretical concepts, a multiscale modeling
language and an execution environment to solve the interdisci-
plinary multiscale problems such as spatial scale. On the other
hand, cell populations can be very heterogeneous, so nested
effects modeling for single-cell data to simultaneously identify
different cellular sub-populations to explain the heterogeneity
in a cell population will be necessary. It helps entering the
mechanisms of gene regulation and the reconstruction of cell
signaling networks [23].

Building a general framework at this time which could
model the static and dynamic aspects of the tumor behavior
and provide the computational resources is an open application
area challenge with many technical barriers overcome in recent
years [23]. Perhaps a hybrid graph agent-based simulation
and modeling could be an outset to metabolic engineering for
applications which have expanded to address problems such
as evolution.

It is noteworthy that graphs, in general, are useful in
such integrative analysis of data from different sources which

' ABM model that allows rule definition with great detail and different levels
of activation to model the angiogenesis phenomenon.

2Multilevel structure of information exchange through which it is defined
that how the agents interact in the model.

3Methods proposed by [10-12] are based on the exchange of information
between agents that allows extracting a greater quantity of tumor information
and understanding its dynamics

Fig. 1. Stem cells evolution and metastasis visualization with grow-
factor=1.75, apoptosis=low and replication-factor=high (near 200,000 cells
in steady state).

naturally required an in-depth integrity and dependency.

A. Modeling and Simulation in NetLogo

Our initial ABM NetLogo model [2] was designed as a
self-organized model that illustrates the growth of a tumor
and how it resists chemical treatment. This model in NetLogo
which is based on Wilensky’s tumor model [1] permits us to
change the parameters that affect tumor progression, immune
system response, and vascularization. Figure 1 shows the
steady state of a tumor metastasis visualization with six stem
cells and the grow-factor=1.75, replication-factor=high, and
apoptosis=low. As it could be seen, the growth of metastasis
is more aggressive and through reducing apoptosis, there is a
higher number of cells that do not die, amounting near 200,000
cells (agents) [2]. NetLogo [1] includes the Behavior Space
tool that allows the exploration of the model data space using
parametric executions in varying settings of the model and for
recording the results of each model run. The main problem
of these executions is that the Behavioral Space only supports
multithreading, so its performance is limited to the number of
cores/threads at the local infrastructure. To solve the problem,
we have executed the parametric simulations using our HPC
cluster in order to reduce the necessary time to explore a
determinate model data space. It has pointed out that this
implementation using NetLogo caused the limitations of the
execution environment (Java memory limitations) and loss of
performance with a high number of metastasis cells. Also, it
shows this model did not allow capturing in detail interactions
between the different parameters the microenvironment level.

B. Static preliminary model in Python

Taking into account the limitations of Netlogo and the
different research tendencies to introduce multiscale simula-
tions to represent biomedical knowledge, our research was



Fig. 2. Graph visualization for a tumor in three states (normal, dead and
inflamed) which has shown in three colors(green, grey and red).

oriented towards this type of ABM simulations. For this,
the environment and modeling were changed to represent all
the interactions in a multiscale ABM model. In this sense,
Python + Mesa were chosen as a development environment
and a graph-based model was selected to represent all the
complexity and interactions of the tumor model. Fig. 2] shows
the visual form of our second approach [5] for tumor agent-
based modeling which tumor cells changed color while they go
through state transition. We have implemented a preliminary
tumor agent-based model in graph architecture considering
that in life science data analysis such as tumor almost ev-
erything is about connections and dependencies. As well a
large amount of data makes it difficult for researchers to
identify insights or controlling dynamical networks and here
the role of graph architecture in displaying complex patterns
of interactions between components is significant. Each agent
nested in a single-node and changes in three states under the
influence of the neighbor nodes. The process goes on until
the tumor agent’s volume appears as metastasis. To simulate a
graph network for this model, we selected a random graph to
construct the cell interactions and stromal cells behavior within
a tumor microenvironment. Due to the time-dependency of the
connections, we developed our graph agent-based model on
Erds-Rnyi [24] topology. Erds-Rnyi model takes a number of
vertices N and connecting nodes by selecting edges from the
(N (N-1)/2) possible edges randomly. As the same scenario
as our NetLogo tumor model, to study and analyze the
behavior of Python tumor model under different conditions,
we needed to explore the relevant data of the model using
parametric executions. For this purpose, we found Mesa [4]
which supports multi-agent and multiscale simulations. It is a
framework that allows us to make changes to existing ABMs.
Also monitoring the data management issues when processing
actions happen in parallel seems facile in Mesa since each
module runs on the server and turns a model state into JSSON

data. Graph visualization makes large amounts of data more
accessible and easier to read as we can see in Fig. 2| The
interactive visualization in Mesa helps us to identify insights
and generate value from connected data. The visualization of
the model is a network of nodes that shows the distribution
of agents and their links. A scheduler (time module) activates
agents and stores their locations and updates the network. The
total operation time is directly related to the number of steps
necessary to deploy all the agents.

III. A NEW MULTISCALE GRAPH AGENT-BASED MODEL OF
TUMOR-GROWTH

Large multiscale experimental modeling and simulation
causes an accumulation of data which reflect the possible
infinite divers of interactions in cellular biological networks.
Accordingly, there is a great need for computational methods
and computer tools to manage, query and analysis of these
experiments. In the most abstract level, cellular biological
networks represent as mathematical graphs because metabolic
networks generally require complex representations which
have made it possible to investigate the topology and func-
tions of these kinds of networks. By using graph-theoretical
concepts, predicting the dynamical properties of deep layers
may suggest new biological hypotheses. Functional modules
across different data sources will be essential in understanding
the behavior of the system on a large scale. Since agent-
based modeling became an alternative and potentially a more
appropriate form of mathematics to define for a computational
system, ABM researchers use model analyzing sample distri-
butions to record real-world network outcomes and summarize
the theoretical concepts. In the end, the results of these
analyses also can be beneficial on the biological goals of
the study. The development and clinical implementation for
tumor growth behaviors have become a priority these days,
and it requires the analysis of large multiscale data from
cell populations to identify features and parameters which
predict tumor behavior. Our static preliminary model in Python
still was a limited scale model because of using the Erds-
Rnyi graph. To advance the initial idea, we have developed
a computational workflow for simulating a multiscale tumor
model. The graph-based methodology nested in agent-based
modeling aids us to exploit evolving analysis more accurate.
Mapping agents to the nodes in the graph-structure model
coordinates the assignments of values to their variables in such
a way that maximizes their aggregation. Agents work as states,
locations or even sometimes as controls of all the variables that
map to the nodes.

A. A workflow for simulating tumor model and evolving
analysis

This section aims to illustrate an evolving analysis of tumor
growth in different patients. Let’s assume that an oncologist
needs growing analysis of cellular interplay for a patient with
newly diagnosed cancer disease. Therefore the basic level of
the tumor must be characterized for future prediction of the
possible growth behaviors. In principle, we need intervention



by agent-based modeling to set the initial experimental con-
ditions. Fig. |3| introduces the workflow of our computational
simulation system for modeling a scenario of tumor growth
and preparing data from different scales and stages of its
evolving behavior. As can be seen at the part (ii) in Fig. 3] we
have defined three steps for the scenario of the workflow. The
first step is simulating an initial tumor by setting up initial
features to create an initial graph model. Collecting data at
the end of each step helps the oncologist to reuse the data
whenever he needs again.

The second step is forwarding the initial graph to the
growing module with redirection possibilities in tumor growth.
The third step is feeding the growing tumor by changing subset
features of angiogenic switch.

The last two steps of the scenario are implemented as a
growing network with redirection (GNR) [21] nested in an
ABM model. The subset features of the angiogenic switch
define as a state transition based on probabilistic state machine
(explained in next section). We considered that the transient
states probability adopted in the subset features are necessarily
valued between 0 and 1. Finally, in the Back-end computa-
tional part of the workflow, we designed a data visualization
tool for the oncologists.
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Fig. 3. Graph-based modeling and simulation system in the format of tumor
growth scenario

We have deployed two complementary graph-driven meth-
ods for analyzing and estimating probable growing network
patterns. The selected methods are presented in the context
of network analysis in Python using Mesa [4] and NetworkX
[21] packages. The amount of data which is extracted from
the methods address some problems in cell biology.

We chose a fast binomial graph generator on Erds-Rnyi
topology for initialization, so we used our static preliminary
model as an initial input. To simulate our growing network
nested in the agent-based model, we used a growing network
with redirection (GNR) graph with probability (p) for adding
nodes one at a time with a link to the initial nodes. In this
graph, a target node is a node where a new link attached. Target
nodes are selected randomly following a uniform distribution.
We set the redirection probability (p) which is shown by the
equation in (1) like that gives us a new pattern of tumor growth
every time.

Based on [13], we used the following equation in (1) to
calculate the probability (p) of tumor growth. It contains five

biological parameters which are known as cancer driver: the
number of divisions (d), the number of stem cells (N), the
number of critical rate-limiting pathway driver mutations (k),
and the mutation rate (u).

p=1-(1—-01-(1—-uhHHV (1

Subset features get in the computational simulation system
through agents as state transition probabilities to change the
state of the cells in the growing network. These parameters
could be selected by the oncologist or any other user of the
system through the interactive visualization form.

At the agent-based model, tumor cells are affected, inflamed
and turn quiescent. Based on these key factors we have
simulated the tumor growth behavior and measurements such
as the tumor volume, density and also we calculate a number
of dead, inflamed and tumor-derived cells.

B. The probabilistic state machine of tumor growth

Using probabilistic automaton (PA) in computational biol-
ogy can be a useful aspect of tracking a natural problem.

Initial Cancer Stem Cells

. 2 Yes
AngioPrevention —>—»

Proliferation

Inflammation

¢ Angiogenic Switch

Progression
Fig. 4. Flowchart representation of our tumor behavior in a PFA model

Probabilistic finite-state automaton (PFA) during the past
years was applied to the model and generate distributions over
sets of possible infinite terms and trees. Typically, PFA is
represented as directed labeled graphs[15][16].

The fundamental biological aspect of the probabilistic
model of our tumor growth comes from the acute inflammation
based upon the key factors involved such as an angiogenic
switch. Tumor angiogenesis is critical for tumor growth and
maintenance [14][20].

Fig. ] shows the metabolic flowchart of this aspect and how
we have created our PFA model based on the flowchart. The
strategy begins with initial identification of a minor population
of cells with the characteristics of tumor-initiating cancer stem
cells and they will be assumed inflamed or dead under the
influence of angiogenic switch factors.

The threshold of angioprevention K is compared with
the assessment values of transition probability P4 which is
selected by oncologist interactively. The result of the com-
parison works as a trigger to change the state of the cells
from their current state Sy to the proliferation state S; or
the inflammation state S5. Afterward, under the influence of
changing angiogenic switch values €2, the inflammation state
S1 may turn to the progression state Sy and metastasis can
happen.
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From the probabilistic point of view in equation 2 and 3, a
finite generic states S, is transitioned under the influence
of angiogenic probabilities defined by alphabets . K is
a threshold drawn from a uniform [0,1] distribution. If the
transition probability P4 is greater than K, the current state
assumed to be extended with P4(s,b.s"). In the End, initial-
state probability 4, final state probability F4 and transition
probabilities P4 are considered as total and PFA definition
will be a tuple of below functions.

C. Results of Parametric Execution

Human-tumor-derived cell lines contain common and dif-
ferent transforming genomic profiles which is essential for
a comprehensive understanding of tumorigenesis, and for
identifying the earliest events in tumor evolution [17].

We assumed four different parametric baseline executions
for monitoring tumor-growth model in four different patients
as it can be seen in Fig. [5] For each baseline, it is considered
three repetitions as growth patterns to be able to extract data
from the growing network in different redirection patterns. The
goal is simulating the dynamic behavior of tumor-growth.

Patient 1
Stem Cell : 200
Cancer Stem Cell - 50
Growth Number ; 400
Density :0.0025

Patient 2
Stem Cell : 400
Cancer Stem Cell : 200
Growth Number : 800
Density 0.00125

Patient 3
Stem Cell : 600
Cancer Stem Cell : 400
Growth Number : 1200
Density :0.00125

Patient 4
Stem Cell : 1200
CancerStem Cell : 600
Growth Number : 2400
Density :0.000416

Fig. 5. Initial tumor graph to set up four baselines (Symbol of four patients)

The first baseline set to an initial state of 200 stem cells and
increase to 400 under the influence of 50 cancer stem cells.
The second baseline set to an initial state of 400 stem cells
and increase to 800 under the influence of 200 cancer stem
cells. The third baseline set to an initial state of 600 stem
cells and increase to 1200 under the influence of 400 cancer
stem cells. Moreover, the forth baseline set to an initial state
of 1200 stem cells and increase to 2400 under the influence
of 650 cancer stem cells.

The configuration management of these four baselines is es-
tablished for analyzing tumor density variations, tumor-derived
cells into cancer redirection and identifying genomic profiles
of those essential cells. Significant revision regarding graph
patterns configuration is extracted from neighborhood analysis
and graph centrality methods such as centrality closeness or
betweenness [19] which quantify the number of times a node
acts as a bridge along the shortest path between two other

nodes. These methods were introduced as a measure for quan-
tifying the control of a human on the communication between
other humans in a social network by Linton Freeman. In this
conception, vertices which have a high probability to occur
on a randomly chosen shortest path between two randomly
chosen vertices have a high betweenness [21]. We used this
concept to reconstruct the tumor-derived cell lines and produce
their profiles by extracting data from our experiments and
comparing the results of the baselines in Table |I| to Table

As it could be seen, the most aggressive growth pattern be-
longs to the Table [l about patient3 for as-much as the average
value of the essential genomic profile of tumor patterns and
the number of tumor-derived cells are higher than the other
tumors.

TABLE 1
TUMOR-DERIVED CELL ID AND GENOMIC PROFILE FOR PATIENT 1

Initial tumor(Patientl) GP1 GP2 GP3
tumor-derived cell ID 10 4 18
Essential Genomic Profile | 2.19E-03 | 4.70E-03 | 3.34E-03

TABLE 1T
TUMOR-DERIVED CELL ID AND GENOMIC PROFILE FOR PATIENT 2

Initial tumor(Patient2) GP1 GP2 GP3
tumor-derived cell ID 6 12 6

Essential Genomic Profile | 1.34E-03 | 8.94E-04 | 1.50E-03
TABLE III
TUMOR-DERIVED CELLS ID AND GENOMIC PROFILE FOR PATIENT 3
Initial tumor(Patient3) GP1 GP2 GP3
tumor-derived cell ID 1 17 and 10 5
Essential Genomic Profile | 3.96E-04 7.07E-04 6.85E-04
TABLE IV

TUMOR-DERIVED CELLS ID AND GENOMIC PROFILE FOR PATIENT 4

Initial tumor(Patient4) GP1 GP2 GP3
tumor-derived cell ID 1 6 1
Essential Genomic Profile | 2.70E-04 | 3.70E-04 | 2.13E-04

Fig. [6] is a visual representation of genome profile variation
of tumor-derived cells distribution in tumor number three.
We selected this tumor because it behaved more aggressive
than the others especially because it grows very radical in
its growth patterns number two and three. Cell lines serve
as models to study cancer biology and to connect genomic
variation to angiogenic responses. This modeling can aid in
understanding different tumor behavior. The tumor-derived cell
distribution results are significant for molecular and cell lines
study. Molecular sub-typing could be done based on gene
expression patterns and it helps for tumor-derived cell classi-
fication [24]. Accordingly, the assortment of classes in tumor-
derived cell distribution is our future work. By computing
the ratio of the dead cells to the inflamed cells, we have
also been able to demonstrate different tumor growth behavior
upon the effective laboratory condition from the angiogenic
switch. Fig. [/ illustrates the change scale of inflammatory in



tumor3 based on different angiogenic key factors determinate
in Table [V] There is evidence in the chart that angiogenesis
and inflammation are mutually dependent.

TABLE V
ANGIOGENIC SWITCH KEY FACTORS AS TRANSITION PROBABILITIES
PA Values ASWI1 | ASW2 | ASW3
AngioPrevention 0.4 0.6 0.4
Angiogenesis 0.6 04 0.6
Quiescent 0.2 0.2 0.8
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Fig. 6. Genome profile variation of tumor-derived cells distribution in tumor
number three

Also, stem cell quiescence is a way to control the inflam-
mation in the tumor microenvironment. Increasing angiogenic
value in angiogenic switch 1 causes inflammatory reactions
and raise the number of inflamed cells. Targeting inflammation
by using angioprevention and stop cancer cells from prolifer-
ating helps to decrease the number of inflamed cells as it is
shown in angiogenic switch 2 and 3 of the chart.

D. Conclusions and Future work

In this paper, we simulated and developed a multiscale
graph agent-based model. The model uses for extracting and
analyzing data from the cellular network of a tumor while
growing. The extracted information from the hybrid simulation
with transient probabilities and variable angiogenesis key

factors to target emulating the dynamic behavior of tumor-
growth seems interesting to oncologists and scientist since
they can study the probable predictive power of pathways in
the cellular network of the tumor. Migrating from NetLogo to
Python using Mesa and NetworkX was a successful strategy
since the Python framework permits us to develop faster and
deeper into the details in multistage and multiscale modeling.
Presenting the mathematical and biological form of the tumor-
growth model in the format of graph agent-based model using
a probabilistic state machine and the identification based on
genomic profiling idea could be validated in the future. Also,
this idea will allow us to integrate our model to an alternative
approach in discovering similarly or densely connected sub-
graphs of nodes[18]. This approach is an imitation of the
metastasis complication.
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Fig. 7. The result of the change scale of inflamed and dead cells of tumor
number 3
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