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Abstract—The sensitivity analysis of a cellular genetic algo- the solution, the schedule of tasks, is further defined in the

rithm with local search is used to design a new and simpler next Section, which also presents the scheduling problem in
heuristic for the problem of scheduling independent tasks. The more details.

proposed heuristic improves the previously known Min-Min e VSis i | ful f .
heuristic. Moreover, it provides schedules of similar quality o~ SENSitivity analysis is not only useful for parameter tgnin

the reference cellular genetic algorithm in a significantly reduced but also at design-time. The work presented here is an exampl
runtime. This heuristic is evaluated across twelve different classes of such a process. The results of the analysis are used to

of scheduling instances. design a new heuristic to solve the independent task sanedul
Keywords-Energy-efficient Scheduling Algorithms problem.
The chosen sensitivity analysis method is based on decom-
[. INTRODUCTION posing the variance of the output, as indicated in [4]. Thacex

The assignment of tasks to computing resources in a digplementation used is an extension to the Fourier Ampditud
tributed computing system is a challenging problem. THgensitivity Test proposed in [5], called Fast99. Ref. [$wb
aforementioned is further complicated with the introdoisti the computation of first order effects and interactions fte
of energy minimization as a system criterion. parameter. Parameters interaction occurs when the effect o

This work contributes to this problem by suggesting a nethe parameters on the output is not a sum of their single (first
heuristic for the scheduling of independent tasks that @an @rder) effects.
applied to the energy-efficient operation of distributesteyns.

An interesting feature of this work, is the path that leads - Parallel Asynchronous Cellular GA
its definition, which is a direct consequence of the sensitiv  |n the previous work, the sensitivity analysis was perfatme
analysis performed earlier in [1], on an elaborate cellulgh a parallel asynchronous cellular genetic algorithm {#]
genetic algorithm, termed PA-CGA [2]. scheduling of independent tasks in a computational grid.

The heuristic, termed as 2PH, is a simple extension t0The problem that the EA attempts to solve arises quite
the well-known scheduling heuristic for independent taai(equenﬂy in parameter sweep app"cations, such as théédon
scheduling, the Min-Min [3]. Carlo simulations [6]. In these applications, many taskthwi

The rest of the paper is organized as follows. Section dlmost no interdependencies are generated and submitted to
presents the previous work on the sensitivity analysis ef tihe computational grid to be efficiently scheduled. Efficien
PA-CGA evolutionary algorithm (EA). Section Il describesmeans to allocate tasks as fast as possible and to optimize
the new heuristic and provides a comparison with the Mipome criteria, such as makespan or flowtime. Makespan is
Min heuristic and the PA-CGA evolutionary algorithm. among the most important optimization criterion of a grid
II. SENSITIVITY ANALYSIS OF A CELLULAR GA system. Indeed, it is a measure of the system_’s produ_ctivity

(throughput). Task scheduling is treated as a single albgct

Ref. [1] performed sensitivity analysis on a cellular gémet o oiimization problem, in which the makespan is minimized.
algorithm, PA-CGA [2], which was designed to schedulgy,iespanthe finishing time of latest task, is defined as:
independent tasks on a distributed system. This secti@fiyori

presents the results from the aforementioned previousrpape minmax{F; : t € Tasks}, Q)
Sensitivity analysis aims to identify how uncertainty ircka s
of the parameters influences the uncertainty in the systevhereF; is the finishing time of task in a schedules.
output [4]. This technique can answer the following impotta
guestion: given uncertainty in system parameters, whidson More precisely, assuming that the computing time needed
affect (the most and the least) the system output. (also knote perform a task knowm priori (assumption that is usually
as screening). made in the literature [7], [8], [9]), the problem is repnetesl
In the previous work [1], the analyzed output was the qualityith the Expected Time to Compute (ETC) modeled by Braun
of the solution produced by the PA-CGA EA. The quality ot al. [7]. The instance definition of the problem is as fokow



o nb_tasks: the numberof independent (user/application)

tasksto be scheduled. : 0,‘30302320303
o nb_machines: the number of heterogeneousnachine 3 0.0.0.0@?‘.0. :
candidates to participate in the planning. Oococococococo -
» Theworkload of each task (in millions of instructions). 3 0.0.0.0@3’0.0. X
« The computing capacityf each machine (iMIPS). Ooﬁotoﬁocococo -
o ready,: Ready time indicating when machine will 7 0.0.0.0@g‘.ﬁ. ;

have finished the previously assigned tasks.

o« The Expected Time to Compute E{T'C) matrix
(nb_tasks x nb_machines) in which ET'CJt][m] is the Fig. 1. Partition of arB x 8 population over 4 threads.
expected execution time of tagkon machinem.

The two benchmark instances used for this analysis con- ) ) , . )
sisted of 512 tasks and 16 machines. Both instances reﬂ?@,cks is made possible. Th|§ ne|ghborhood. may include
sented different classes of ETC matrices. The classifitasio !nd!v!duals from _ot_her pop_ulatlon blocks. This allows an
based on three parameters: (a) task heterogeneity, (b)imeacl‘f"d'v'duals genetic information to cross block boundarie

heterogeneity, and (c) consistency [10]. Instances awléah The different threads evolve their population block inde-
asg_x_yyz~ where: pendently and do not wait for each other to complete their

o . generation (the evolution of all the individuals in theiobk)
g stands for Gamma distribution (used for generatlr% f . . . . .
the matrix). efore pursuing their evolution. Therefore, if a breediogp

takes longer for an individual of a given thread, the indivts
. . . ) evolved by the other threads may go through more generations
for inconsistent, and for semi-consistent). An ETC y the ot Y9 9 gene

L . . . The combination of a concurrent execution model with the
matrix is considered consistent when the following _. . )
. o : eighborhoods crossing block boundaries, lead to conaurre
is true: if a machinen; executes a taskfaster than

access to shared memory. To ensure safe concurrent mem-

machinem;, thenm, executes all tasks faster than . . L )
] L ory access, the access is synchronized to individuals with a
m;. Inconsistency means that a machine is fast

for some tasks and slower for some others. An E_I_ErOSIX [13] read-write lock. This high-level mechanism alfo

e . . . o .—_concurrent reads from different threads, but not conctirren
matrix is considered semi-consistent if it contains a . X .

. . reads with writes, nor concurrent writes. In the two lat@&ses,
consistent sub-matrix.

o . ) the operations are serialized.
vy |qd|cates the heterogeneity of the tasks (neans The algorithm implements a local search operator, H2LL
high, andlo means low).

zz  indicates the heterogeneity of the resourcés ((Algqrithm 1.)’ WhiCh Is conceiveq for the scheduling proble
means high, ando means low). considered in this research. This opergtor moves a randoml_y
’ chosen task from the most loaded machine (a machine’s load is

B. Algorithm the total of the tasks completion times assigned to the maghi

The EA analyzed is a parallel asynchronous CGA (PAO @ selected candidate machine among Ahdeast loaded.
CGA) [2], which is based on the study reported in [11}A candidate machine is selected if its new completion time,
Cellular genetic algorithms (cGAs) [12] are a kind of GA withiith the addition of the task moved, is the smallest of all
a structured population in which the individuals are sprieaal the candidate machines. This new completion time must also
two dimensional toroidal mesh and are only allowed to intera’®main inferior to the makespan. This operation is perfarme
with their neighbors. The algorithm iteratively consideech Several times (a parameter of the local search).
individual in the mesh. This individual may only interactthvi
individuals belonging to its neighborhood, moreover parenAlgorithm 1 Pseudo-code for H2LL, our local search.
are chosen among the neighbors using a given criterion. THe for all iter iterationsdo o
crossover and mutation operators are applied to the ingigg  2°  SOrtmachines on ascending completion time

x stands for the type of consistenayfor consistent;

. o . . 3:  task < random task of the last machine inachines;
with probabilities Pe. and p,, _respectlvely. _Followmg the . best_score < CT[lastmachines]; {makespah
crossover and mutation operations, the algorithm comgh&es 5. for all mac in N first machines do
fitness value of the new offspring individual (or individsgl 6: new_score < CT[mac] + ETC[mac][task];
and inserts it (or one of them) instead of the current indigid 7 if new_score < best__score then
in the population following a given replacement policy. Thi & best_mac < mac; .

9: best_score < new_score,

loop is repeated until termination condition(s) are fugfill 10: end if
In the PA-CGA, the population is partitioned into a numbef;:  end for
of contiguous blocks with a similar number of individualsi2:  movetask to best_mac if any
(Figure 1). Each block containsp_size/#threads individ-  13: end for
uals, where#tthreads represents the number of concurrent
threads executed. To preserve the exploration charaateris The following parameters have been used in the analysis
the CGA, the communication between individuals of différerof PA-CGA. The population is initialized randomly, except




TABLE |
SETTINGS FOR THE COMPARISON WITH OTHER ALGORITHMS IN THE

1 |:D P LITERATURE.
O interactions

Instance size 128 tasksx 16 machines
2 Instance classes 12

Instances per class 30

PA-CGA runtime 1-5 seconds
e | PA-CGA population 8 X 8

PA-CGA thread(s) 1

PA-CGA search iterationg 5
o 2PH search iterations 30
S 1. ATwo-PHASE HEURISTIC

’:‘ The previous section recapped the findings of the sen-

s B3 ——— sitivity analysis performed in [1]. It clearly showed that

Pop P_mutation Iter_mutation P_crossover ~P_search Iter_search Load_search  Threads

the specifically designed local search operator, H2LL, was
very important to the quality of the schedules found. More
Fig. 2. Sensitivity analysis, hihi instance. precisely, it also found that the number of iterations foiickh
to perform this local search was of prime importance.

This algorithm is important because it improves on a well-
for one individual obtained with the Min-Min heuristic [3]. known heuristic, the Min-Min [3], which has been recently
The selection operator used is binary tournament. The recogpplied to the problem of energy-efficient scheduling of
bination operator used is the one-poiaps) crossover and tasks [14]. Therefore, improving this algorithm shoulddea

the mutation operator moves one randomly chosen task t@oaimprovements in their derivative applications to energy
randomly chosen machine. The neighborhood shape usegfgiency.

linear 5 (L5), also known as the Von Neumann neighborhood, o o
which is composed of the 4 nearest individuals (measuredAn The 2PH Heuristic Description

Manhattan distance), plus the individual evolved. Theaegl The algorithm proposed is simply the execution of the Min-
ment strategy is the "replace if betteré., the newly generated Min, followed by the local search operator H2LL, originally
offspring replaces the current individual if it improveseth designed for the PA-CGA.
parent fitness value. The number of iterations for the local search in H2LL is
increased from 5 to 30. This is because the sensitivity ammly
indicated that this parameter influences the quality of the
Figure 2 depicts for each parameter studied, their lines¢hedules. Additionally, the local search is performedyonl
and non-linear effects on the output for the problem instanonce for the 2PH. In contrast with PA-CGA which executes
with high tasks and resources heterogeneity. The quality ipffor each individual in the population at each generation.
the solution is recorded as the average makespan ovemierefore more iterations can be afforded in the 2PH.
independent runs. Although this new heuristic is simple, theredspriori evi-
This study clearly showed that the local search parameteence that it should perform well. The next section dessribe
and notably the maximum number of iterations, influence th@w it compares to other algorithms.
output the most. It plays a role twice as big as the second ) ) ) )
most influential parameter: the local search rate. Becehmse B- Configuration for Simulations
chosen method for the sensitivity analysis is quantitaiival- The 2PH extends the Min-Min heuristic with an additional
lows such comparisons, whereas qualitative methods can ophase, the local search. Therefore, it seems natural toateal
indicate the order of importance. This result is consistéttt  how this additional phase improves the results of Min-Min.
related works in the scheduling literature which highliaght This is the first point of comparison.
the importance of the local search when dealing with hybrid Secondly, the 2PH differs from the PA-CGA EA for the
metaheuristics. evolutionary part, and the number of iterations of locarsea
These results also highlighted that other parameters play5afor PA-CGA versus 30 for the 2PH). Therefore, it also
limited rolei.e,, population size, mutation rate, iterations, aseems natural to examine the impact of these differences on
well as the number of threads. This is also beneficial becadbe schedules produced. Wallclock times for the 2PH and
values that have a positive impact on the other aspects of the PA-CGA EA implementations are useful to measure the
algorithm, such as runtime can be selected without impgctiperformance of the algorithms. Moreover, defining scheslule
the quality of the solutions. Indeed, the proposed algorithfor independent tasks is often a time-critical activity.
was designed to be run for a limited period of time (wall Table | summarizes the different points of comparison for
clock); therefore choosing a smaller population and a highthe evaluation of the 2PH. A total of 360 instances were used
number of threads will provide more generations. in the comparison (30 instances of each class). The PA-CGA

C. Results of the Sensitivity Analysis
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Fig. 3. Makespan results for the @ hihi instances. Fig. 4. Makespan results for the @ hilo instances.

EA was run for 1 to 5 seconds, wallclock time. The original
article [2] ran the algorithm for 90 seconds: however, the
2PH only took 3 milliseconds to complete these instances.,,,
Therefore the same treatment was chosen for all algorithms.
One thread for PA-CGA was chosen for the same reason.ss
Moreover, the sensitivity analysis showed that the number
of threads does not play the biggest role in the search for™ [
good solutions. Finally, PA-CGA with 1 thread completes |
over 100,000 evaluations per second of runtime, which is —
sufficient for an EA. It should be noted that PA-CGA initi@iz 500
its population randomly (uniform distribution) except fone
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individual, which is the result of the Min-Min heuristic. As "’ I I I I 1
mentioned earlier, 30 iterations were chosen for the 2PH, ‘ ‘ ‘ ‘ ‘ ‘ ‘
instead of 5 for the PA-CGA EA. The other parameters for PA- MinMin - 2PH - PACGATL PACGAZ PACGAS PACGA4 PACGAS
CGA have identical values to those chosen for the sengitivit

. Fig. 5. Makespan results for the @ lohi instances.
analysis.
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C. Simulation Results T
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This section presents the simulation results of the differe ol |
algorithms: (a) the Min-Min heuristic, (b) the 2PH, and (ot
PA-CGA EA with various runtimes, in seconds. 80 - H

The graphics are box-and-whisker plots. They show the sx
minimum and maximum makespans, the first and third quar-_ |
tiles and the median value, for the 30 instances of each ETC
class. 800

Overall, the 2PH improves the quality of the resource 7o
allocation significantly over Min-Min, and provides resutif
similar quality to PA-CGA. These results are good because it
achieves this in about 3 milliseconds on a Xeon E5400 server-"°
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class machine. 760 . . . . . . .
. . Min-Min 2PH PA-CGA-1 PA-CGA-2 PA-CGA-3 PA-CGA-4 PA-CGA-5
The results for the different ETC classes are detailed mext.
the consistent instances, the results forghe lohi instances Fig. 6. Makespan results for the g lolo instances.

stand out because all the algorithms provide similar result

The results for theg_c_lolo instances show that PA-CGA

provides better solutions than the 2PH. the g_s_lolo instances show that the 2PH provides the best
In the semi-consistent instances, the results fogtheloh: solutions.

instances are similar across all the algorithms. The re$oit In the inconsistent instances, the results for thé lohi
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instances are again similar across all the algorithms. The IV. CONCLUSIONS

results for they_i_lolo instances show that the 2PH provides This paper exploits the results of the sensitivity analysis
the best solutions, like the results for thes_lolo instances. of a parallel asynchronous cellular genetic algorithm,hwit
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[13]
local search. The analysis lead to the design of a simple

2-phase heuristic for the scheduling of independent tasks!
This new heuristic was compared against two algorithms from
the literature, (a) the parallel asynchronous cellularegien
algorithm, and (b) the Min-Min heuristic. In most problem
instances, it found equivalent schedules in much less time
(milliseconds versus seconds) to the cellular geneticritgo.

It also significantly improves the schedules found by the
Min-Min heuristic, with little additional computation cbs
Moreover, this little computational cost scales well wittet
problem sizes.

This new heuristic can be applied to solve the problem of
energy-efficient scheduling of independent tasks, whene- Mi
Min is currently used.

An interesting extension of this current work could be the
inclusion of the analysis of how this second phase succeeds
in improving Min-Min, and confirm how larger instances can
be quickly processed by this two-phase heuristic.
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