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ABSTRACT

In heterogeneous computing systems it is crucial to sched-
ule tasks in a manner that exploits the heterogeneity of
the resources and applications to optimize systems perfor-
mance. Moreover, the energy efficiency in these systems is
of a great interest due to different concerns such as opera-
tional costs and environmental issues associated to carbon
emissions. In this paper, we present a series of original low
complexity energy efficient algorithms for scheduling. The
main idea is to map a task to the machine that executes it
fastest while the energy consumption is minimum. On the
practical side, the set of experimental results showed that
the proposed heuristics perform as efficiently as related ap-
proaches, demonstrating their applicability for the consid-
ered problem and its good scalability.
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ergy efficiency, scheduling, optimization

1. INTRODUCTION

Modern-day computing platforms such as grid or cloud
computing are composed of many new features that enable
sharing, selection, and aggregation of highly heterogeneous
resources for solving large scale and complex real prob-
lems. All these heterogeneous computing systems (HCS)
are widely used as a cheap way of obtaining powerful par-
allel and distributed systems. However, the required electri-
cal power to run these systems and to cool them is of a great
interest due to different concerns. This results in extremely
large electricity bills, reduced system reliability and envi-
ronmental issues due to carbon emissions [1]. Therefore,
energy efficiency in HCS is the great interest.

HCS comprises different hardware architectures, operating
systems and computing power. In this paper, heterogene-
ity refers to the processing power of computing resources
and to the different requirements of the applications. To
take advantage of the different capabilities of a suite of het-
erogeneous resources, a scheduler commonly allocates the
tasks to the resources and determines a date to start the ex-
ecution of the tasks. In this paper, we assume that energy is
the amount of power used over a specific time interval [2].
For each task the information on its processing time and the
voltage rate of the processor to execute one unit of time is
sufficient to measure the energy consumption for that task.
In this context, we additionally promote the heterogeneity
capability of the computing system to efficiently use the en-
ergy of the system [3-5]. The main idea is to match each
task with the best resource to execute it, that is, the resource
that optimizes the completion time of the task and executes
it fastest with minimum energy.

The main objective of our work is to contribute to the effi-
cient energy consumption in HCS. This target is achieved
by providing a new set of scheduling algorithms. These
algorithms take advantage of the resource capabilities and
feature a very low overhead. The algorithms are based on
list scheduling approaches and they are considered as batch
mode dynamic scheduling heuristics [6]. In the batch mode,
the applications are scheduled after predefined time inter-
vals.

As a part of this work, we compare the proposed algorithms
by analyzing the results of numerous simulations featuring
high heterogeneity of resources, and/or high heterogeneity
of applications. Simulations studies are performed to com-
pare these algorithms with the min-min algorithm [7,8]. We
used min-min as a basis of comparison because it is one of
the most used algorithm in the literature in the context of
HCS, and it has a good performance behavior [3, 8]. We
have considered the minimization of the makespan (i.e., the
maximum completion time) and energy as a basis of com-



parison. Most of related work consider only the makespan
as a performance criterion. The goal has been to find a fea-
sible schedule such that the total energy consumption over
the entire time horizon is as small as possible. It gives
insight into effective energy conservation, however, it ig-
nores the important aspect that users typically expect good
response times for their job [9]. In this context, we also
compare these heuristics based on the flowtime. The flow-
time of a task is the length of the time interval between the
release time and completion time of the task. Flowtime is
commonly used as a quality of service measure that allows
guaranting good response times. The large set of exper-
imental results shown that the investigated heuristics per-
form as efficiently as the related approach for most of the
studied instances although their low running time, showing
their applicability for the considered scheduling problem.

The remainder of this paper is organized as follows. The
system, energy and scheduling models are introduced in
Section 2. Section 3 briefly reviews some related ap-
proaches. We provide the resource allocation and schedul-
ing heuristics in Section 4. Experimental results are given
in Section 5. Section 6 concludes the paper.

2. MODELS

2.1. System and Application Models

We consider a HCS composed of a set of M =
{m1,...,m,} machines. We assume that the machines
are incorporated with an effective energy-saving mecha-
nism for idle time slots [10]. The energy consumption of
an idle resource at any given time is set using a minimum
voltage based on the processor’s architecture. In this pa-
per, we consider two voltage levels: maximum, when the
processor is performing work or it is in an active state and
idle level, when processor is in an idle state. We consider
a set of independent tasks T' = {t1,...,t,} to be executed
onto the system. The tasks are considered as an indivisible
unit of workload. Each task has to be processed completely
on a single machine. The computational model we con-
sider in this work is the ETC model. In this model, it is
assumed that we dispose of estimation or prediction of the
computational load of each task, the computing capacity of
each resource, and an estimation of the prior load of the re-
sources. Moreover, we assume that the £7°'C matrix of size
t x m is known. Each position ET'C[t;][m;] in the ma-
trix indicates the expected time to compute task ¢; on ma-
chine m ;. This model allows to represent the heterogeneity
among tasks and machines. Machine heterogeneity evalu-
ates the variation of execution times for a given task across

the computing resources. Low machine heterogeneity rep-
resents computing systems composed by similar comput-
ing resources (almost-homogeneous). On the contrary, high
machine heterogeneity represents computing systems inte-
grated by resources of different type and capacity power.
For the case of task heterogeneity, it represents the degree of
variation among the execution time of tasks for a given ma-
chine. Low task heterogeneity models the case when tasks
are quasi homogeneous (i.e., when the complexity, and the
computational requirement of tasks are quite similar), they
have similar execution times for a given machine. High
task heterogeneity describes those scenarios in which dif-
ferent types of applications are submitted to execute in the
heterogeneous computing system ranging from simple ap-
plications to complex programs which require large compu-
tational time to be performed. Additionally, the ETC model
also tries to reflect the characteristics of different scenarios
using different ETC matrix consistencies defined by the re-
lation between a task and how it is executed in the machines
according to heterogeneity of each one [8]. The scenarios
are consistent, semi-consistent and inconsistent. The con-
sistent scenario models the SPMD applications executing
with local input data, that is if a given machine m; exe-
cutes any task ¢; faster than machine my,, then machine m;
executes all tasks faster than machine my. The inconsis-
tent scenario represents the most generic scenario for a HCS
system that receives different tasks, from easy applications
to complex parallel programs. Finally, the semi-consistent
scenario models those inconsistent systems that include a
consistent subsystem.

2.2. Energy Model

The energy model used in this work is derived from the
power consumption model in digital complementary metal-
oxide semiconductor (CMOS) logic circuitry. The power
consumption of a CMOS-based microprocessor is defined
to be the summation of capacitive power, which is dissi-
pated whenever active computations are carried out, short-
circuit and leakage power (static power dissipation). The
capacitive power (P.) (dynamic power dissipation) is the
most significant factor of the power consumption. It is di-
rectly related to frequency and supply voltage, and it is de-
fined as [11]:

Pe = ACs V2, ey

where A is the number of switches per clock cycle, Cy¢
denotes the effective charged capacitance, V' is the supply
voltage, and f denotes the operational frequency. The en-
ergy consumption of any machines in this paper is defined
as:
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where M [i] represents a vector containing the machine m;
where task ¢; is allocated, V; is the supply voltage of the
machine m;. The energy consumption during idle time is
defined as:

j=14dle;, €IDLES;

ACepVmin; Ly, (3)

where IDLES); is the set of idling slots on machine m,
Vininj is the lowest supply voltage on my, and Iy is the
amount of idling time for idle;;. Then the total energy con-
sumption is defined as:

Ey=E.+ E; “4)

2.2. Scheduling Model

The scheduling problem is formulated as follows. Formally,
given the heterogeneous computing systems composed of
the set of m machines, and the set of n tasks. Any task
is scheduled without preemption from time o (¢;) on ma-
chine m;, with an execution time ETCt;][m;]. The task
t; completes at time C; equals to o(t;) + ETC|t;][m;].
The objective is to minimize the maximum completion time
(Craz = max(C;)) or makespan with minimum energy
FE, used to execute the tasks. Additionally, in this paper
we also aim to guarantee good response times. In this con-
text, response time is modeled as flowtime. As we already
mentioned, the flowtime of a task is the length of the time
interval between the completion time and release time. We
consider that the release time is O for all the tasks. Hence,
the flowtime represents the sum of completion time of jobs,
that is, >, C;, the aim is to minimize ), , C;. Let us
mention that the tasks considered in our study are not asso-
ciated with deadlines, which is the case for many computa-
tional systems.

3. RELATED WORK

The job scheduling problem in heterogeneous computing
systems without energy consideration has been shown to
be NP-complete [7]. Therefore, a large number of heuris-
tics have been developed. One of the most widely used
batch mode dynamic heuristic for scheduling independent
tasks in the heterogeneous computing system is the min-
min algorithm. It begins by considering that all tasks are
not mapped. It works in two phases. In the first phase, the
algorithm establishes the minimum completion time for ev-
ery unscheduled job. In the second phase, the task with the
overall minimum expected completion time is selected and
assigned to the corresponding machine. The task is then

removed from the set and the process is repeated until all
tasks are mapped. The run time of min-min is O(t*m).
Some strategies for energy optimization in HCS systems by
exploiting heterogeneity have been proposed and investi-
gated. In [12], the authors investigated the tradeoff between
energy and performance. The authors proposed a method
for finding the best match of the number of cluster nodes
and their uniform frequency. However, the authors did not
consider much about the effect of scheduling algorithms.
The authors in [5] introduced an online dynamic power
management strategy with multiple power-saving states.
Then, they proposed an energy-aware scheduling algorithm
to reduce energy consumption in heterogeneous comput-
ing systems. The proposed algorithm is based on min-min.
In [3] the authors considered the problem of scheduling
tasks with different priorities and deadline constrained in
an ad hoc grid environment with limited battery capacity
that used DVS for power management. In this context, the
resource manager needed to exploit the heterogeneity of the
tasks and resources while managing the energy. The authors
introduced several online and batch mode dynamic heuris-
tics and they showed by simulation that batch mode heuris-
tics performed the best. These heuristics were based on
min-min. However, they required significantly more time.

4. PROPOSED ALGORITHMS

In the scheduling problem on heterogeneous computing
systems, near-optimal solutions would suffice rather than
searching for optimality for most practical applications.
Therefore, we investigate low-cost heuristics with good
quality schedules and low energy consumption. These
heuristics are based on the min-min algorithm. However,
we took special care to decrease the computational com-
plexity. The main idea is to avoid the loop on all the pairs of
machines and tasks in the min-min algorithm corresponding
to the first phase of the heuristic. One alternative is to con-
sider one task at a time, the task that should be scheduled
next. For that we propose to order the tasks by a predefined
priority, so that they can be selected in constant time. Once
the order of tasks is determined, in the second phase that
we call the mapping event, we consider assigning the task
to the machine that minimizes its expected completion time
as well as its execution time. This modification lies essen-
tially with the calculation of a mapping event of an appli-
cation to a machine. We propose a weighted function, that
we named the score function SF(t;,m;) (see Eq. 5), that
tries to balances both objectives. The rational is to mini-
mize the workload of machines and intrinsically minimize
the energy used to carry out the work. This is the main
principle of the scheduling heuristics we are interested in
this work. However, the main difference among them is the



priority used to construct the list. To optimize the flowtime
we apply the classical shortest processing time rule on each
machine after the schedule is constructed.

4.1. Low-cost heuristics

Algorithm 1 depicts the general structure of the proposed
heuristics. It is based on classical list scheduling algorithms
for what well founded theoretical performance guarantees
have been proven [7]. The heuristics start by computing the
Priority of each task according to some objective (line 1).
Hence, we compute the sorted list of tasks (line 2). The or-
der of the list is not modified during the execution of the
heuristics. Next, the heuristics proceed to allocate the tasks
to the machines and determine the starting date for them
(main loop line 3). One task at a time is scheduled. The
heuristics always consider the task t; at the top of the list
(highest priority) and remove it from that (line 4). A score
function SF(t;, m;) for the selected task is evaluated on all
the machines (lines 5 and 6). Then each heuristic selects
the machine for which the value of the score function is op-
timized for task ¢; and we schedule the task on that machine
(line 8). It corresponds to the second phase of the min-min
heuristic, with a different evaluation function. In the case of
min-min, the evaluation function is only based on the com-
pletion time of the selected task on all the machines. Then,
the algorithm selects the machine that gives the minimum
completion time for that task and the task is assigned on
that machine. The list is updated (line 9) and we restart the
main loop. Once all task have been scheduled we apply the
shortest processing time rule on all machines to optimize
the flowtime (lines 11 and 12).

The score of each mapping event is calculated as in equa-
tion 5. For each machine m;,

SF(t:) C; (1= ETCti)[m;]

Algorithm 1 Pseudo-code for the low-cost heuristics

1: Compute Priority of each task ¢; € T according to some
predefined objective;
2: Build the list L of the tasks sorted in decreasing order of Pri-
ority;
: while L # @ do
Remove the first task ¢; from L;
for each machine m; do
Evaluate Score Function SF(%;);
end for
Assign t; to the machine m; that optimize the Score Func-
tion;
9:  Update the list L;
10: end while
11: for all machine m; do
12:  Sort the tasks ¢, on m; in increasing ETC[tx][m;];
13: end for

[95]
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sorted in decreasing order of its maximum completion time,
and scheduled based on the minimum completion time).
MinMax Min (Algorithm 3) (minimum completion time of
tasks, sorted in decreasing order of its minimum comple-
tion time, and scheduled based on the minimum completion
time). MinMean Min (Algorithm 4) (average completion
time of tasks, sorted in decreasing order of its average com-
pletion time, and scheduled based on the minimum comple-
tion time).

Algorithm 2 Pseudo-code for heuristic (MaxMax min)

1: for all task ¢; do
2:  for each machine m; do

3 Evaluate CompletionTime(t;, m;);
4:  end for
5

6:

Select the maximum completion time for each task ¢;;
end for

2k ETCt][ma)”
&)

where Y ;" | Cyj, is the sum of the completion time of the
task ¢; over all machines and ).;" | ETC|[t;][my] is the
sum of the expected time to complete of task ¢; over all
machines. The first term of equation 5 aims to minimize
the completion time of the tasks ¢;, while the second term
aims to assign the task to the fastest machine or the ma-
chine on which the task takes the minimum expected time
to complete. The heuristics differ on the objective used to
compute the priorities. For that, maximum (Algorithm 2),
minimum (Algorithm 3) and average (Algorithm 4) com-
pletion time of the task are used as if it was the only task
to be scheduled on the computing system. Let’s note that it
corresponds to the execution time (ET'C|[t;][m;]) of task t;
on machine m;. The name of the heuristics are MaxMax
Min (Algorithm 2) (maximum completion time of tasks,

=N ==
Zk:l Cik

Algorithm 3 Pseudo-code for heuristic (MinMax min)

1: for all task ¢; do

2:  for each machine m; do

3 Evaluate CompletionTime(t;, m;);
4:  end for
5
6:

Select the minimum completion time for each task ¢;;
end for

Algorithm 4 Pseudo-code for heuristic (MinMean min)

1: for all task ¢; do
2:  for each machine m; do

3 Evaluate CompletionTime(¢;, m;);
4:  end for
5

6:

Compute the average completion time for each task ¢;;
end for




4.2. Computational complexity of the heuris-
tics

The computational complexity of the algorithms is as fol-
lows: computing the value of the priorities for the tasks and
the construction of the sorted list have an overall cost of
O(tm log t). The execution of the main loop (line 3) in
Algorithm 1 has an overall cost of O(tm). Sorting the tasks
for all the machines takes O(km log k) (line 12), where
k < t. Therefore, the asymptotic overall cost of the heuris-
tics is O(tm log t), which is less than one order of magni-
tude to the related approaches.

5. EXPERIMENTAL EVALUATION

In this section, we compare by simulations the proposed
algorithms and min-min on a set of randomly built ETCs.
Table 1 shows the twelve combinations of heterogeneity
types (tasks and machines) and consistency classifications
in the ETC model that we use in this paper. The consis-
tency categories are named for the correspondent initial let-
ter (¢ stands for consistent, i for inconsistent, s for semi-
consistent, lo stands for low heterogeneity and hi for high
heterogeneity). Hence, a matrix named c_hihi corresponds
to a consistent scenario with hi task heterogeneity and hi
machine heterogeneity.

Table 1. Consistency and heterogeneity combinations in

the ETC model
Consistency
Consistent | Semi-consistent | Inconsistent
c_lolo s_lolo i_lolo
c_lohi s_lohi i_lohi
c_hilo s_hilo i_hilo
c_hihi s_hihi i_hihi

5.1. Experiments

For the generation of these ETC matrices we have used
the coefficient of variation based method (COV) introduced
in [13]. To simulate different heterogeneous computing en-
vironments we have changed the parameters sk, Viask
and Vi,qchine, Which represent the mean task execution
time, the task heterogeneity, and the machine heterogene-
ity, respectively. We have used the following parameters:
Viask and Viachine €qual to 0.1 for low case respectively
and 0.6 for high case, and pi;45;, = 100. The heterogeneous
ranges were chosen to reflect the fact that in real situations

there is more variability across the execution time for differ-
ent tasks on a given machine than that across the execution
time for a single task on different machines [14].

As we are considering batch mode algorithms, we assume
in both cases that all tasks have arrived to the system before
the scheduling event. Furthermore, we consider that all the
machines are idle or available at time zero, this can be possi-
ble by considering advance reservation. We have generated
1200 instances, 100 for each twelve cases to evaluate the
performance of the heuristics. We have generated instances
with 512 tasks in size to be scheduled on 16 machines. Ad-
ditionally, we have considered different voltages for the ma-
chines. We randomly assigned these voltages to machines
by choosing among three different set. The first set con-
siders 1.95 and 0.8 Volts for active state and idle state, re-
spectively. The second set is 1.75 Volts at maximum state
and 0.9 Volts at idle state. Finally, the last set considers 1.6
Volts for active level and 0.7 Volts at idle level.

5.2. Results

The results for the algorithms are depicted from Figure 1
to 3. We show normalized values of makespan, flowtime
and energy for each heuristic against min-min for A-values
in the interval [0, 1]. The normalized data were gener-
ated by dividing the results for each heuristic by the max-
imum result computed by these heuristics. We only show
the curves for the high task and high machine heterogeneity
for the three different scenarios which are the most signifi-
cant results. The legends m-m n_mksp, m-m n_flow and m-m
n_energy in the figures stand for makespan, flowtime and
energy of min-min.

We can observe from these figures that the proposed heuris-
tics follow the same performance behavior according to the
scenarios. Relative values range are biggest for the consis-
tent instances than semi-consistent and inconsistent. The
results clearly demonstrate that energy efficiency is the best
for the consistent instances. It may be related to the fact,
that the makespan has worse results. However, for value of
A = 0.8 the proposed heuristics can perform as well as min-
min for all the three considered metrics. We can also ob-
serve that the proposed algorithms can improve makespan
and flowtime results for lambda for semi-consistent and in-
consistent instances. Interestingly, if the instance is more
inconsistent, the new algorithms performs better. The ben-
efit of exploiting the heterogeneity of the applications and
resources to maximize the performance of the system and
energy is more apparent. This is mainly because these in-
stances are the ones presenting the highest inconsistency
and heterogeneity. In terms of flowtime, all the heuristics
are as efficient as min-min, however, the proposed heuris-
tics have lower complexity.
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6. CONCLUSIONS

This paper investgated three batch mode scheduling algo-
rithms in the context of performance and energy efficiency
in heterogeneous computing systems. These algorithms
are based on the well-known list scheduling approaches.
The set of experimental results showed that the investigated
heuristics perform as efficiently as the related approaches
although featuring lower complexity, lower running time,
showing their applicability for the considered scheduling
problem and their good efficiency.

As part of future work, we intend to implement the pro-
posed heuristics in a packet-level simulator of energy-aware
cloud computing data center, GreenCloud [15] and we plan
to extend these heuristics to include thermal aspects. Ad-
ditionally, we consider using dynamic frequency and volt-
age scaling techniques. We have considered that the es-
timated time to compute each task on every machine is
known. However in most of modern computing systems
performance perturbation should be considered. For that,
we plan to investigate these heuristics in the context of ro-
bust scheduling.
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