On The Energy Optimization for Precedence
Constrained Applications Using Local Search
Algorithms

Johnatan E. Pecero*, Héctor Joaquin Fraire Huacujaf, Pascal Bouvry*, Aurelio Alejandro Santiago Pinedaf,
Mario César Lépez Locés', Juan Javier Gonzalez Barbosal
*Computer Science and Communication Research Unit, University of Luxembourg,
L-1359 Luxembourg-Kirchberg, Luxembourg
Email: {firstname.lastname} @uni.lu
Tnstituto Tecnoldgico de Ciudad Madero (ITCM),
Av. lo. de Mayo s/No esq. Sor Juana Inés de la Cruz, C.P. 89440, Cd. Madero, Tam. México
Email: automatas2002@yahoo.com.mx, alx.santiago@ gmail.com, mario.cesar@me.com, jjgonzalezbarbosa@hotmail.com

Abstract—We investigate the problem of scheduling prece-
dence constrained applications on a distributed heterogeneous
computing system with the aim of minimizing schedule length
and reducing energy consumption. We present a scheduling
algorithm based on the best-effort idea that promotes local
search algorithms and dynamic voltage scaling to reduce energy
consumption. The final goal is to maintain a given performance
while minimizing energy use. The proposed approach first uses
a list-based scheduling algorithm to find near-optimal solutions
for schedule length, then local search algorithms with dynamic
voltage scaling are applied to reduce energy consumption. How-
ever the algorithm it’s not allowed to deteriorate the schedule
length computed by the best-effort algorithm. We discuss simu-
lation results obtained with sets of real-world applications that
emphasize the interest of the approach.

Keywords—Energy conservation; scheduling; performance of
systems; optimization; greenlT; heterogenous distributed sys-
tems;

I. INTRODUCTION

Distributed computing systems composed of heterogeneous
resources are promising for fast processing of computation-
ally intensive applications with different computation needs.
However, energy consumption on these systems is becoming
the main operational expense and it is still growing. A recent
study by DatacenterDynamics Company [1] estimates that the
world’s data centers will consume 19% more energy in 2012
than they have in 2011. Heat dissipation has a severe impact
on the overall system worsening system reliability, eventually
resulting in hardware failure caused by excessive heat, hence in
poor system performance. Therefore, the reduction of energy
consumption is a basic consideration in the design of modern
computing systems.

In this paper, the goal is to minimize energy consumption
when scheduling precedence constrained applications on a
heterogeneous computing distributed system, while a given
scheduling performance is preserved. We consider the min-
imization of schedule length or makespan as a performance

978-1-4673-2362-8/12/$31.00 ©2012 IEEE

criterion. This problem with minimum makespan and energy
is a trade-off between schedule length and energy consump-
tion. The reduction in energy consumption is often made
by lowering supply voltage and this results in increasing
the task execution time, hence makespan. This is the princi-
ple of the Dynamic Voltage Scaling (DVS) technique. DVS
(equivalently, dynamic voltage frequency scaling, dynamic
speed scaling, dynamic frequency scaling) [2] enables pro-
cessors to dynamically adjust voltage supply levels aiming
to reduce power consumption at the expense of performance
deterioration. For heterogeneous distributed computing sys-
tems, variable voltage scheduling is more challenging because
the supply voltage of the executed tasks must be optimized
to maximize energy savings. This requires intelligent slack
allocation between tasks. The problem is further complicated
because slack allocation must consider variations in workload
and energy consumption among different tasks. Moreover, the
discrete voltage scaling problem is strongly NP-hard [3], the
proof is a reduction to the discrete time-cost trade-off problem
by restricting the dynamic voltage scaling problem to contain
only tasks that requires an execution of one clock cycle.

Variable voltage scheduling problem is commonly addressed
in two ways: by a simultaneous or independent approach. In
the simultaneous approach, the scheduling is computed in a
global cost function including performance and energy saving
to satisfy both makespan and energy constraints at the same
time. Different solutions produce trade-offs between the two
objectives, which means there is no single optimum solution.
In this case, the problem is modeled as a multi-objective multi-
constrained optimization problem and the objective becomes
finding Pareto optimal schedules (i.e., non-dominated sched-
ules), such that no schedule can be better and use less energy.

In the independent mode, which is considered as a two-
phases optimization technique, a best-effort scheduling algo-
rithm is combined with a slack reclamation technique [4]-
[6]. The slack reclamation algorithm is used as a second

133

pass to minimize the energy consumption of tasks in a
schedule generated by the best-effort scheduling algorithm.
The principle of slack reclamation is simply to exploit the
slack times during software execution to accommodate the
negative impacts on perfomance when applying DVS. The
challenge is to make appropriate decisions on processor speeds
to guarantee the timing requirements while also considering
the timing requirements of all tasks in a system. In this
mode, energy and time constraints are independent and new
scheduling algorithms or exiting algorithms can be adapted
to become energy efficient. This approach corresponds to the
lexicographic approach to solve multi-criteria problems.

In this work, we propose a scheduling algorithm based on
the best-effort idea that optimizes both makespan and energy
objectives. We consider the independent mode approach. That
is, the algorithm firstly looks for near-optimal solutions using a
list-based scheduling algorithm to find the minimum makespan
(best-effort). Then, we fix the makespan as a constraint and we
optimize energy. For that, we introduce two new local search
algorithms that promote DVS without allowing deterioration
on the fixed objective. However, makespan is optimized by
allocating a given task to different allocation (i.e., processor).
These algorithms are based on the best improvement iterative
local search process, however the main difference between
them is the way the neighborhood of a given solution is
generated changing the search space.

This paper is organized as follows. The system, scheduling
and energy models are presented in Section II. Section III
discusses related work. The proposed approach with the local
search algorithms are presented in Section IV. Experimental
results are given in Section V. Section VI concludes the paper.

II. PROBLEM DESCRIPTION

The target execution support considered in this work is
a distributed computing system made up of a set M of
m heterogeneous processors. The processors have different
processing speed providing different processing performance
(i.e. MIPS Million Instruction Per Second). Each processor
m; € M is DVS-enabled; it can be operated on a set DV'S;; of
voltage and relative speed pairs. Each pair is a supply voltage
v and its corresponding relative speed ms;. We consider
that processors consume energy while idling; that is, when
a processor is idling it is assumed that the lowest voltage is
supplied [8].

A precedence constrained parallel application is represented
by a Directed Acyclic Graph (DAG). The DAG is defined as
G = (T, E), where T is a finite set of nodes (vertices) and £
is a finite set of edges. The node ¢; € T is associated with one
task ¢; of the modeled parallel application. Each task ¢; € T'
has an associated basic execution time which is an independent
value for each processor. The basic execution time of task ¢;
on processor m; at maximum speed and voltage is denoted as

Dij-

Each edge (t;,,t;,) € E (with ¢;,,t;, € T) is a precedence
constraint between tasks and represents inter-task commu-
nications. The weight on any edge (¢;,,%;,) € E stands
for the communication time, denoted as ¢, ¢, . However,
a communication cost is only required when two tasks are
assigned to different processors. Therefore it is neglected when
they are assigned to the same processor. For a given DAG
the communication to computation ratio (CCR) is a measure
that indicates wether a task graph is communication intensive,
computation intensive or moderate. For a given task graph, it
is computed by the average communication cost divided by
the average computation cost on a target system.

The energy model is based on previous finding and derived
from the power consumption model in digital complementary
metal-oxide semiconductor (CMOS) logic circuitry. It is di-
rectly related to frequency and supply voltage, and it is defined
as [8]:

P. = AC;;V?f, (1

where A is the number of switches per clock cycle, Cgyy
denotes the effective charged capacitance, V' is the supply
voltage, and f denotes the operational frequency. The energy
consumption of any processors in this paper is defined as:

E.= Y AC.;sV2 FETCLi][M]i]), @)
i=1
where M i] represents a vector containing the processor m;
where task ¢; is allocated, V; is the supply voltage of the
processor m;. On the other hand, the energy consumption
during idle time is defined as:

PR EDS

j=1idle;,€IDLES,

AC. s Vmin3 Ly, 3)

where IDLES; is the set of idling slots on processor m;,
Vininj is the lowest supply voltage on mj, and [j; is the
amount of idling time for idle;;. Therefore, the total energy
consumption is defined as:

E,=E.+ E;. 4)

The scheduling problem is the process of allocating the set
T of t tasks to the set R of m DVS-enabled and unrelated pro-
cessors, and assigning a starting time for each task to minimize
the makespan and energy consumption. The makespan Ci,qx
of a schedule is its total execution time. The first task starts
its execution at time 0, so that the makespan of a schedule is
the maximum time at which one of the processors finishes its
computation.

III. RELATED WORK

A well known scheduling algorithm in heterogeneous dis-
tributed computing systems for DAGs applications is the
Heterogeneous Earliest Finish Time (HEFT) algorithm [9].
HEFT is founded on the list scheduling principle. It maintains

134

a list of all tasks of a given graph according to their priorities.
It consists in two phases. In the first phase of the algorithm
a ready task is selected from the priority list. The task with
the highest priority is chosen. Then, a suitable processor that
minimizes a predefined cost function is selected. HEFT is
competitive in that it generates a schedule length comparable
to other scheduling algorithms, with a low time complexity
(O(nlogn + (e +n)m)).

An important number of energy conscious scheduling algo-
rithms have been proposed in the literature [2], [S], [7], [8],
[10]-[15]. These algorithms mainly differ on the assumptions
they consider. However, the most common technique they
exploit is DVS. Some energy-aware scheduling algorithms are
based on the best-effort idea. Baskiyar and Palli [14] intro-
duces an algorithm that combines Decisive Path Scheduling
(DPS) with DVS to minimize both finish time and energy
consumption. However, energy consumption due to idle time
is not considered in the model. Wang et al. [4] proposed a
best-effort scheduling algorithm to optimize energy. DVS is
applied to no-critical tasks. A task is critical if it is in the
critical path of the schedule. The proposed algorithm also
considers reducing voltage during the communication phases
between parallel tasks. Nevertheless, a loss of performance
it’s tolerated based on quality of service agreement to reduce
more energy consumption. In this paper, we do not allow
performance deterioration. Pecero et al. [5] use HEFT as a
best-effort scheduling algorithm to compute schedules with
good makespan at maximum voltage. Hence, an iterative local
search algorithm is applied to reduce the energy consumption
by scaling down the processor voltages to a proper DVS level
without increasing makespan. This approach is close to the
proposed in this paper, however the model does not consider
energy consumption due to idle time. Rizvandi et al. report
in [6] a heuristic called maximum minimum frequency DVFS.
The proposed approach operates in two phases. The goal of the
first phase is to find a schedule that minimizes the makespan.
The second phase use a linear combination of the minimum
and maximum processor frequencies to optimize energy with-
out allowing makespan increase. Homogeneous processors
with different voltage and frequency were considered. In this
paper we consider heterogeneous systems. Lee and Zomaya
in [8] propose heuristics that are designed with relative supe-
riority as a novel objective function. The proposed algorithms
consist in two phases. In the first phase a linear combination
of both objectives is used by the heuristic algorithms as a best-
effort approach. Then, a local search algorithm called M CER,
which is a technique used to lowering energy consumption,
although the technique may not scape from local optima.
However, MCER is makespan conservative in that changes
it makes (to the schedules generated by scheduling phase) are
only validated if they do not increase schedule length. For
each task in an application, MCER considers all of the other
combinations of tasks, processors and voltage-speed pairs
to check whether any of these combinations reduces energy
consumption of the task without deteriorating the makespan.

IV. PROPOSED APPROACH

The solution provided in this work follows the independent
approach. For the first phase of the algorithm we look for
solutions with near-optimal makespan, for that we use HEFT
as a best-effort scheduling algorithm. We consider HEFT
because it is simple, well-known and competitive. Let us
remark that HEFT uses the maximum voltage to compute
the makespan. Once HEFT generates the schedule, we fix
the makespan as a constraint and we optimize the energy
consumption by a local search algorithm. Local search was
one of the early techniques for combinatorial optimization.
The principle is to refine a given initial solution point in the
solution space by searching through a neighborhood of the
solution point.

We introduce two new local search algorithms that adopt
DVS to minimize energy consumption, however makespan is
improved by allocating tasks to different current allocation
(i.e., processor). Algorithm 1 and Algorithm 2 show the al-
gorithm outline for the proposed local search. Both algorithms
are intensive search process that follow the same framework,
and are based on the best improvement iterative local search
process, however the main difference relies on the way the
neighbor of a given solution is defined and constructed. As
that, the search space is differently explored. The Algorithm
1 is called Best_RT_MYVk for best improvement, and the
notion of neighbor schedule is defined by picking a random
task from 7' then transferring that task from current processor
to another, for all processors in M and voltage - speed
pairs (V'k). Algorithm 2 is called Best_ RMVk_T for best
improvement, and the neighborhood is defined by randomly
choosing a processor and a voltage-speed pair that corresponds
to voltage level of the selected processor, then all tasks are
evaluated on this new selected allocation. Algorithm 1 starts
by computing makespan C, 4, (line 3) and energy E,’ (line 4)
of current schedule (Sygpr) generated by HEFT. Then,
Best_RT_MVEk performs the search on a set of randomly
chosen tasks t; (line 8). Current allocation is intensively
explored by moving task ¢; from its current allocation to all the
processors in M and for all pairs of voltage - speed (line 13 to
line 15). At each iteration of the search process we compute
a new schedule (line 16) and its energy (line 17) and current
makespan and energy are updated if the new schedule is locally
better than previous solution (line 18 to line 24). Line 25
indicates that t; is backward to its old position. After task
t; is evaluated on all the processors and voltage-speed pairs,
only the best movement is considered (line 28). This process
is repeated M AX_STFEPS, however it is restarted as long as
the current solution is improved (line 23). Algorithm 2 follows
the same search process with different local search direction.

V. EXPERIMENTS

We report experimental results to validate the new proposed
approach. We compare the proposed approach against with
Slack Reclamation. It is an extension of the work proposed

135

Algorithm 1 Local Search Function Best_RT_MVk.
1: function Best_ RT _MVK(Syerr)
2: S < Suygrr > Let S = current schedule
3 Compute current C, gz

4 Compute current E,’

5: searchstep < 0

6 while searchstep < MAX_STEPS do

7 searchstep + +

8 Choose a random task ¢;

9 Let m’ = the current allocation for task t;

10 Let v> = the current voltage for m’

11: best_m; < m/

12: best_uvy, +— v’

13: for Ym; € M do

14: for V(vi, msi) € DVS,,, do > Next

step explores a neighbor of current solution for possible
makespan and energy improvement

15: Allocate t; on m; with voltage v, and
relative speed msy,

16: Compute energy FE

17: Recompute C 40

18: if Chae <CJ,qp and Ey < E} then

19: Clow < Crmaz

20: E; + E;

21: best_m; < m;

22: best_vy, + v

23: searchstep < 0

24: end if > Next step reinitializes the search
process

25: Allocate t; on m’ with voltage v’ and its
relative speed

26: end for

27: end for> Next step assigns ¢; to the best m; with
best vy,

28: Allocate t; on best_m; with voltage best_uv;, and
its relative speed

29: end while

30: end function

in [4] and adapted to the heterogenous case in [7]. Wang
et al. [4] proposed a list scheduling algorithm with DVFS
to optimize energy, called HDVFS in this paper. We also
compare the proposed local search against MCER proposed
in [8]. We name the algorithm HMCER for HEFT+MCER.
We also implemented a random local search in which the local
search direction is randomly selected [5]. We call the algorithm
HRLS. In HRLS, if the initial solution point is improved, it
moves to the refined solution point. Otherwise, another search
direction is randomly selected. A simple neighborhood point
of a schedule in the solution space is another schedule which
is obtained by transferring a task from a processor to another
processor with another operating voltage level.

Algorithm 2 Local Search Function Best_ RMVk_T.
1: function Best RMVK_T(Syerr)

2: S < Sugrr > Let S = current schedule
3 Compute current C, gz

4 Compute current E,’

5: searchstep < 0

6 while searchstep < MAX_STEPS do

7 searchstep + +

8 Let m’ = the current allocation for task t;

9 Let v’ = the current voltage for m’

10 best_m; < m/

11: best_vy, + v’

12: Choose a random processor m;

13: Choose a random voltaje v, € DV .S,

14: for V¢, € T'do > Next step explores a neighbor
of current solution

15: Allocate ¢; on m; with voltage v, and relative
speed msy

16: Compute energy FE;

17: Recompute C,q0

18: if Chaw <C) .. and E; < E] then

19: C;mm — Cmaz

20: E; + E;

21: best_t; + t;

22: best_m; < m;

23: best_vy, + v

24: searchstep < 0

25: end if > Next step reinitializes the search
process

26: Allocate t; on m’ with voltage v’ and its
relative speed

27: end for> Next step assigns ¢; to the best m; with
best vy,

28: Allocate t; on best_m; with voltage best_v;, and
its relative speed

29: end while

30: end function

A. Experimental Settings

To evaluate performance of the proposed approach we have
considered the following scenario. processor environment is
heterogeneous in two aspects. First of them is generation of
execution time, which is done independently for each task
and processor. The second dimension concerns DVS: the DVS
types are allocated by round-robin rule to each processors
using six sets of DVS characteristics presented in Table I.

We have executed the algorithms on a set of structured real-
world parallel applications. The four applications used for our
experiments are the robot control application, a sparse matrix
solver, fpppp problem from the Standard Task Graph Set
(STG) [17], and the Laser Interferometer Gravitational-Wave
Observatory (LIGO) application [16]. Table II summarizes
the main characteristics for these applications: instances size,
edges amount and the ratio between tasks and edges (ETR).

136

TABLE I
VOLTAGE-RELATIVE SPEED PAIRS [6], [8]

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
Volt. | Rel. | Volt. | Rel. | Volt.| Rel. | Volt. | Rel. | Volt.| Rel. | Volt. | Rel.
Level | (vg) | Speed | (vg) | Speed | (vk) | Speed | (vg) | Speed | (v) | Speed | (v) | Speed
(%) (%) (%) (%) (%) (%)
0 1.50 | 100 |[2.20| 100 | 1.50| 100 |1.75| 100 | 1.20| 100 | 1.35| 100
1 120 80 [190| 8 |[140| 90 [1.40| 80 |[1.15] 90 |1.25] 85.7
2 [090] 50 [1.60| 65 [1.30| 80 |1.20| 60 |1.10| 80 |1.20| 71.5
3 130 50 |[1.20| 70 [090| 40 |[1.05| 70 |1.10| 57.1
4 1.00| 35 |[1.10| 60 1.00 | 60 0.9 | 322
5 1.00 | 50 090 | 50
6 090 | 40

ETR gives information on the degree of parallelism.

TABLE 11
INSTANCE TYPES: TASKS AND EDGES NUMBERS, AND EDGE TASK RATIO.

Type Tasks Edges ETR
LIGO 76 132 1.73
Robot 88 131 1.48
Sparse 96 67 0.69
Fpppp 334 1145 3.42

The STG set is composed of homogenous instances with
constant execution time among processors. Since we are
interested in heterogenous instances, we have only considered
the structure of these applications and we have implemented
the procedure described in [9] to consider heterogeneity. We
fixed the parameter 3 to 1. Parameter {3 is basically the hetero-
geneity factor for processor speeds. A high percentage value
(i.e., a percentage of 1) causes a significant difference in a
task’s computation cost among the processors. For each graph
we have varied the CCR ratio. A randomization procedure
which changes weight of edges was executed to assure the
needed CCR. We have generated five CCRs (0.1, 0.5, 1, 5,
10) for each graph. Tested system sizes were 8, 16 and 32
processors. We have executed each algorithm 15 times on each
instance. MAX_STEPS is fixed to 100 on the proposed
algorithms.

B. Results

We have first evaluated the algorithms by Friedman test
[18]. The Friedman test is a nonparametric statistical tool that
allows to compare a set of a non normalized population to
verify if exists significant statistical differences in the sample,
additionally, the ranking shows which algorithm has the higher
performance.

Tables III and IV depict the results obtained after applying
the Friedman test, the ranking shows the performance of the
algorithms, as this is a minimization problem, the higher the
value of the ranking, the better the algorithm performs in
finding a solution for the instance set.

Table III shows that the algorithm that outperforms related
approaches when taking the makespan as a parameter for
comparison is the Best_ RMV k_T algorithm, and the second
one is HRLS. On the other hand, when the parameter taken
into account is the energy consumption, the algorithm that

seems to have the highest performance is Best_RT_MVk
followed by Best_ RMVk_T, as shown in Table IV.

TABLE III
AVERAGE RANKINGS OF THE ALGORITHMS ON ALL THE SET OF
INSTANCES BASED ON MAKESPAN

Algorithm LIGO Robot Sparse | Fpppp
HDVFS 23066 | 2.1333 | 2.6800 | 2.1600
HMCER 3.6466 | 3.4400 | 3.4200 | 3.7400

HRLS 4.3533 | 4.55335 | 4.2266 | 4.5800
Best_RT_MVk | 3.7066 | 3.7733 | 3.7133 | 3.5133
Best_ RMVE_T | 4.6800 | 4.9666 | 4.2800 | 4.8466

TABLE IV

AVERAGE RANKINGS OF THE ALGORITHMS ON ALL THE SET OF
INSTANCES BASED ON ENERGY

Algorithm LIGO Robot | Sparse | Fpppp
HDVEFS 22933 | 3.1066 | 1.9733 | 1.9999
HMCER 4.0400 | 3.5466 | 4.1800 | 4.0133

HRLS 42133 | 44533 | 43266 | 4.1333
Best_RT_MVEk | 47600 | 4.8533 | 4.9000 | 4.4000
Best_RMVk_T | 4.6266 | 4.0266 | 4.5933 | 5.4533

Friedman statistic considering reduction performance (dis-
tributed according to x? with 5 degrees of freedom) is 151.596.
P-value computed by Friedman Test: 6.905198635109855E-
11.

As most of the evaluated algorithms are based on stochastic
methods, we perform a statistical hypothesis testing to verify
if the differences between the best algorithm are significant
if the null hypothesis is rejected, or otherwise, if due to the
random nature of the solutions, the obtained results may be
considered statistically equivalent.

Tables V and VI present the statistical tests that take
into account the p-value obtained between all the algorithms
with the best performing one, with a level of significance of
a = 0.05, if the the observed value is larger than the 1 — «
quantile of this distribution, the null hypothesis is rejected. As
mentioned, this indicates that at least the candidate algorithm
gives better performance than at least one of the others.

Table V depicts the statistical hypothesis testing. It shows
that Best_ RMV k_T outperforms almost all the algorithms,
but is statistically equivalent to algorithm H RLS, when the

137

parameter of comparison is Makespan. Meanwhile, when the
algorithms are compared by energy, Best_RT_MV k outper-
forms HDVES, and is statistically equivalent to HRLS and in
some sets of instances, to Best_ RMV'k_T and HMCER.

TABLE V
STATISTICAL HYPOTHESIS TESTING FOR THE BEST ALGORITHM BY
MAKESPAN WITH o = 0.05

Set Algorithm vs. p-value Hp Rejected
Best_RMVk_T

HDVFS 7.9385E-15 Yes

HMCER 7.1861E-4 Yes

LIGO | Best_RT_MVk 0.0014 Yes
HRLS 0.2849 No

HDVFS 1.7885E-20 Yes

HMCER 5.8171E-7 Yes

Robot | Best_RT_MVEk | 9.3797E-5 Yes
HRLS 0.1760 No

HDVFS 1.6300E-7 Yes

HMCER 0.0048 Yes

Sparse | Best_RT_MVk 0.06361 No
HRLS 0.8614 No

HDVFS 1.4409E-18 Yes

HMCER 2.9186E-4 Yes

Fpppp | Best_RT _MVk 1.2749E-5 Yes
HRLS 0.3827 No

TABLE VI

STATISTICAL HYPOTHESIS TESTING FOR THE BEST ALGORITHM BY
ENERGY WITH o = 0.05

Set Algorithm vs. p-value Hy Rejected

Best_RT_MVEk

HDVFS 6.7997E-16 Yes

Best_ RMVEk_T 0.6625 No

LIGO HMCER 0.0184 Yes

HRLS 0.0735 No

HDVFS 1.0822E-8 Yes

Best_ RMVEk_T 0.0068 Yes

Robot HMCER 1.8936E-5 Yes

HRLS 0.1904 No

HDVFS 9.7265E-22 Yes

Best_ RMVEk_T 0.3154 No

Sparse HMCER 0.0184 Yes

HRLS 0.0605 No

HDVFS 3.9708E-15 Yes

Best_ RMVEk_T | 5.6508E-4 Yes

Fpppp HMCER 0.2056 No

HRLS 0.3827 No

Tables VII, VIII, and IX display performance results for
the simulations. These tables respectively show the gain com-
puted by all the compared algorithms according to number
of processores, CCR and by application. All the algorithms
are compared against HDVES. These results show that the
new proposed local search algorithms improve on average
the results obtained by HDVFES in both objectives. The im-
provement in makespan by Best_ RMVE_T is 4.41% and
15.58% when energy minimization is considered. The gain
in the makespan objective by Best_RT_MVk is 1.25% and
13.3% on energy consumption. In both cases, the proposed
algorithms are able to reduce energy without degradation on
makespan. We can observe that the factor that impact the

most on the behavior of most of the compared algorithms
is the number of processors. We suspect that this behavior
is due to the idle time considered in the energy consumption
model. The solutions provided by the algorithms do not use
all the processors, hence energy consumption due to idle time
is important. In this case, we consider that a better approach
is switching-off the idle processors.

VI. CONCLUDING REMARKS

We have investigated the problem of scheduling applications
in heterogeneous distributed computing systems considering
energy issue. We have presented an approach based on the
best-effort idea and introduced two local search algorithms
(Best_RT_MVk and Best_RMVk_T). The local search
algorithms promote the use of DVS to optimize energy. The set
of simulation results shows that the proposed approach is able
to optimize makespan and has a good performance behavior
when optimizing energy. Interestingly, these results also reveal
that energy consumption due to idle time is important and a
better approach can be switching off idle processors, however
the latencies due to turning off should be considered. As a
future work, we plan to extend our model to consider switching
on-off model and DVS. We also consider virtualization to
maximize resource utilization for the used processors. Another
important prospect is to investigate multi-objective local search
algorithms.

ACKNOWLEDGMENT

This work is supported by the National Research
Fund (FNR) of Luxembourg through project Green-IT no.
C09/IS/05. We also would like to thank CONACyT supporting
researchers from ITCM.

REFERENCES

[1] DatacenterDynamics: Datacenterdynamics research report, 2012.
http://www.datacenterdynamics.com/research (Consulted Online 2012).

[2] G. Valentini, W. Lassonde, S. Khan, N. Min-Allah, S. Madani, J. Li, L.
Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A. Zomaya, C. Z. Xu, P.
Balaji, A. Vishnu, F. Pinel, J. Pecero, D. Kliazovich, and P. Bouvry, “An
overview of energy efficiency techniques in cluster computing systems,”
Cluster Computing, on-line first, DOI: 10.1007/s10586-011-0171-x, pp.
1-13.

[3] A. Andrei, P. Eles, Z. Peng, M. Schmitz, and B. Al-Hashimi, “Energy
Optimization of Multiprocessor Systems on Chip by Voltage Selection,”
IEEE Trans on Very Large Scale Integration Systems, Vol. 15, Issue 3,
March, 2007, pp. 262-275.

[4] L. Wang, G. von Laszewski, and J. Dayal, “Towards Energy Aware
Scheduling for Precedence Constrained Parallel Tasks in a Cluster with
DVEFS,” IEEE/ACM CCGRID’10, Australia, 2010, pp. 368-377.

[5] J. E. Pecero, P. Bouvry, C. J. Barrios Hernandez, “Low Energy and High
Performance Scheduling on Scalable Computing Systems,” CLCAR’10,
ISBN: 978-85-7727-252-5, Gramado, RS, Brazil, 2010, pp. 1-8.

[6] N. B. Rizvandi, J. Taheri, A. Y. Zomaya, “Some observations on optimal
frequency selection in dvfs-based energy consumption minimization,” J.
Parallel Distr Com, vol. 71 no. 8, 2011, pp. 1154-1164.

[7]1 J. E. Pecero, P. Bouvry, H. J. Fraire Huacuja, and S. U. Khan, “A Multi-
objective GRASP Algorithm for Joint Optimization of Energy Consump-
tion and Schedule Length of Precedence-Constrained Applications,” IEEE
Ninth International Conference on Dependable, Autonomic and Secure
Computing (DASC), 2011 DO: 10.1109/DASC.2011.97, pp. 510-517.

138

TABLE VII
COMPARATIVE RESULTS BY NUMBER OF PROCESSORS

No. of | HDVFS over HMCER (%) | HDVEFS over HRLS (%) | HDVEFS over Best_RT_MVk (%) | HDVFS over Best_ RMVk_T (%)
Procs Makespan Energy Makespan Energy Makespan Energy Makespan Energy
8 0 14 1 12 0 14 2 19
16 0 13 3 13 1 14 6 17
32 4 11 5 11 4 12 9 14
TABLE VIII

COMPARATIVE RESULTS BY CCR

CCR | HDVEFS over HMCER (%) | HDVEFS over HRLS (%) | HDVFS over Best_RT_MV k(%) | HDVES over Best_ RMV k_T (%)
Makespan Energy Makespan Energy Makespan Energy Makespan Energy

0.1 0 12 0 12 0 12 0 15

0.5 0 17 0 17 0 17 0 19

1 0 9 0 10 0 10 1 11

5 0 11 2 11 1 12 3 13

10 3 9 5 9 4 11 9 14

TABLE IX

COMPARATIVE RESULTS BY APPLICATIONS

Appl. HDVFS over HMCER (%) | HDVEFS over HRLS (%) | HDVES over Best_RT_MVk (%) | HDVES over Best_ RMVk_T (%)
Makespan Energy Makespan Energy Makespan Energy Makespan Energy

LIGO 4 9 6 11 5 11 7 13

Robot 0 0 2 1 1 2 3 2

Sparse 1 28 4 30 3 32 10 33

Fpppp 0 13 1 12 1 13 3 17

[8] Y.C. Lee, and A. Y. Zomaya, “Energy Conscious Scheduling for Dis-
tributed Computing Systems under Different Operating Conditions,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 8, Aug. 2011, pp. 1374-1381.

[9] H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-effective and Low
Complexity Task Scheduling for Heterogeneous Computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, Issue 3, 2002, pp. 260-274.

[10] P.Lindberg, J. Leingang, D. Lysaker, S. U. Khan, and J. Li, “Comparison
and analysis of eight scheduling heuristics for the optimization of energy
consumption and makespan in large-scale distributed systems,” The
Journal of Supercomputing, vol. 59, no. 1, 2012, pp. 323-360.

[11] S.U. Khan, and I. Ahmad, “A Cooperative Game Theoretical Technique
for Joint Optimization of Energy Consumption and Response Time in
Computational Grids,” IEEE Trans on Parallel and Dist Systems, vol. 20,
no. 3, 2009, pp. 346-360.

[12] J. K Kim, H. J. Siegel, A. A. Maciejewski, R. Eigenmann, “Dynamic
resource management in energy constrained heterogeneous computing
systems using voltage scaling,” IEEE Trans. on Parallel Distr. Syst.,
vol. 19, 2008, pp. 1445-1457.

[13] S. Albers, “Energy-efficient algorithms,” Commun. ACM, vol. 53, 2010,
pp. 86-96.

[14] S. Baskiyar, and R. Abdel-Kader, “Energy aware DAG scheduling on
heterogeneous systems,” Cluster Computing, vol. 13, 2010, pp. 373-383.

[15] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, and A. Y.
Zomaya, and D. Tuyttens, “A parallel bi-objective hybrid metaheuristic
for energy-aware scheduling for cloud computing systems,” J. Parallel
Distr Com, vol. 71, no. 11, 2011, pp. 1497-1508.

[16] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb,
A case study on the use of workflow technologies for scientific analysis:
Gravitational Wave Data Analysis, In Taylor, I., D. Gannon, and M.
Shields (eds.), Workflows for e-Science Scientific Workflows for Grids,
Springer, 2007, pp. 39-59.

[17] T. Tobita, and H. Kasahara, “A standard task graph set for fair evaluation
of multiprocessor scheduling algorithms”, J. Scheduling, vol. 5, Issue 5,
2002, pp. 379-394.

[18] P. H. Kvam and B. Vidakovic, Nonparametric Statistics with Appli-
cations to Science and Engineering, Wiley Series in Probability and
Statistics; Wiley-Interscience, 2007.

139

