
Using Data-Flow Analysis in MAS for Power-Aware
HPC Runs

Sébastien Varrette∗, Grégoire Danoy∗, Mateusz Guzek † and Pascal Bouvry∗
∗ Computer Science and Communications (CSC) Research Unit
† Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg, 16, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg, Luxembourg

Emails: {Firstname.Name@uni.lu}

EXTENDED ABSTRACT

Keywords—Multi-Agent System (MAS); DataFlow
Graph (DFG); Energy Efficiency

With a growing concern on the considerable energy
consumed by HPC platforms and data centers, research
efforts are targeting toward green approaches with higher
energy efficiency. Hence, the use of low power processors
coming from the mobile market (such as ARM or Intel
Atom) gains more and more interest [6]. In parallel, novel
software approaches are mandatory to effectively use such
cutting-edge technologies and dynamically adapt to the
execution being performed. This remains one of the biggest
challenges to make HPC applications able to take advan-
tage of Exascale platforms once they will be available. In
this context, the authors propose a dynamic and flexible
scheme based on a Multi-Agent System (MAS) to handle
parallel or distributed execution in an HPC environment.
The proposed approach uses a portable representation for
the distributed execution E of a parallel program on a
fixed input: a bipartite Direct Acyclic Graph (DAG) G =
(V, E) known as a macro DataFlow Graph (DFG). The first
class of vertices is associated to the tasks (in the sequential
scheduling sense) whereas the second one represents the
parameters of the tasks (either inputs or outputs according
to the direction of the edge). The total number of tasks Tj

in G is denoted by |G| = n. A DFG example is proposed
in Figure 1. In the following, we will adopt the notation
and assumptions of [7]. In particular, G>(T) denotes the
sub-graph induced by all successors of a task T ∈ G and
G≥(T) = G>(T) ∪ {T}. Tasks in G and therefore E are
computed on a distributed computing platform, typically
an HPC system. Modelling an execution by a data-flow
graph is part of many parallel programming languages
and some efficient execution engines such as Kaapi [3] or
Cilk [2] use the graph G to schedule and execute programs
on distributed architectures.

In this work we propose to use a MAS organizational
model, named ParaMoise [4], to model the HPC envi-
ronment structure and functioning. ParaMoise, has been

task

s1

f1

e1

f5

e2

f4

f3
f2

e3

e4

s2Outputs

Inputs

Figure 1. Instance of a data-flow graph associated to the
execution of five tasks {f1, ..., f5}. The input parameters of the
program are {e1, ..., e4} whereas the outputs (i.e the results of
the computation) are {s1, s2}.

specifically designed for such large-scale distributed sys-
tems and relies on three organizational specifications:
structural, functional and deontic. ParaMoise Functional
Specification (FS), responsible for describing how agents
achieve their goals, is based on the concept of Work-
flow Specification (WFS), instantiated as a workflow
(WF) as presented in Figure 2. A WF is defined as
〈G, E ,M,mo, nm, alt, fh〉, where G is the set of global
goals and E the set of precedence relations, which create
the structure of the DAG. Since ParaMoise allows to divide
the set of global goals into other subsets by introducing
the concepts of primitive and composed goals, in the
rest of the paper we relate WF to G. The WF also
provides additional useful conceptualization for modelling
the Kaapi execution, such as tracking the status of goals
(Kaapi tasks) or defining an explicit representation of
roles played by the agents (Kaapi threads). As proposed
in the Cloud Computing scenario of ParaMoise usage [4],
each functional element in a data center can be controlled
by and agent. Thus, we assume that each computing
resource runs an agent which is responsible of carrying

6

7 8

16 17 18 19

21 22

24 25

Alternative
edges
Active
Edge

Waiting
Goal

Possible
Goal

Executing
Goal

Achieved
Goal

Discarded
Goal

Discarded
Edge

m1

m1 m1

m2 m3 m4 m5

m2 m3

m4 m5

Suspended
Goal

Inactive
Edge

Figure 2. An example of WF during execution [4].

the local computations on the associated resource in a
fully distributed manner. In particular, upon reception
of a given task T to execute, the agent builds dynami-
cally the corresponding DFG. Assuming it would have to
perform locally the full execution of this task, it mean
that G≥(T) need to be scheduled and run locally. Yet in
general, the tasks in G≥(T) are scheduled using a work-
stealing algorithm [1]. Generally, a work-stealing operation
is purely random to ensure good performances and a
reasonable good load balancing. Here, we extend this
approach as a definition of a specific ParaMoise execution
design and implementation. Moreover, the algorithm of
dynamic building of DFG presents a way of building WF
in a MAS. In this work, a work stealing operation i.e.
the decision taken by an agent to delegate the execution
of part or all of the subgraph G≥(T) is driven by the
objective to dynamically react to the load and optimize
the global energy efficiency of the run. More precisely,
the DFG representation allows each agent to evaluate and
anticipate the incoming tasks to be executed. Coupled
with a holistic modelling of the HPC platform introduced
in a previous article [5] and adapted to the latest hardware
advances, work-stealing operations and local decisions as
regards the power state of the computing resources can
be taken by the agents in order to dynamically optimize
the power-efficiency of the execution, if possible without
degrading the computing performance.

Holistic Model for the Power Measure of HPC
Platforms

The holistic modelling of a virtualized High Perfor-
mance Computing (HPC) data centre from [5] refers to
a model which includes to the biggest extent all of the
important factors that impact the performance and energy

consumption of such a HPC facility. In this previous work,
a lightweight modelling based on multiple linear regression
concept was presented. We here extend the model with
cutting edge equipment modelling (ARM etc.) and better
measures of the platform performance.

This holistic model is based on the three main layers [5]:
(1) the Machine layer describes the physical characteristics
of the host. Modelling that layer assumes the derivation
of the energy model of a machine which is based on the
measured utilization of its components or environmental
factors and taking into account machines heterogeneity.
(2) The middle Configuration layer corresponds to the
overhead induced by the software that is used to process
tasks. The basic element of this layer is the Container
that represents the used OS, including a potential virtu-
alization technology. In case of virtualized systems there
can exist multiple, possibly heterogeneous, containers on
a single machine. (3) The top Task layer represents the
computation or work performed by applications. A Task
represents a workload processed by an application and
its corresponding data. Multiple tasks can be executed
simultaneously in a single Container, with the performance
depending on the availability of resources.
An interesting contribution of the model is the extension of
the classical definition of resources. Instead of representing
resources as discrete entities, the holistic model represents
each resource by a resource vector, further decomposed
into resource supplies. Resource supplies are representa-
tion of hardware components installed in the machine.
Each resource supply is described by its capacity and
architecture. The capacity corresponds to the measurable
performance or volume of the component. The architecture
has the impact on the power of the node and it can be
also used as a criterion for Task allocation. The resource
allocation in a holistic model is represented by resource
provisions and resource demands. A Resource provision
is the representation of the resource offered by a lower
layer to the higher layer. Resource providers are the re-
sources of machines and the resources offered by containers
to tasks. The Resource demand is the representation of
the resources consumed by higher layer entities and it
corresponds to the resources reserved by a container on
a machine, or the resources requested by a task from a
container.

Experimental Results

Our scheme has been implemented using Kaapi [3], a
C++ middleware library to build with a low overhead
the DFG (unfold at runtime) and schedule the tasks it
is composed of. The proposed power-aware scheme has
been validated on two typical applications (Fibonacci and
N-Queens). Version 2.4 of the Kaapi library has been
used. Experiments were conducted on the HPC platforms
of the (! ((!)UL) and demonstrated promising results,

n

Fibo

threshold

res

n

Fibo

threshold

res

n-1 threshold n-2 threshold

Fibo Fibo

res

Sum

res

n-1 threshold n-2 threshold

Fibo Fibo

res

Sum

resack

AgentChecking

ackack

AgentChecking AgentChecking

AgentChecking

Figure 3. DFG without (left) and with (right) the AgentCheking function responsible for coordinating the agents during the run.

competitive with the ones pre-computed offline by classi-
cal scheduling heuristics. As an illustration, the first set
of experiments of the folk recursive Fibonacci number
computation has been executed to lead to the formal
graph exhibited in the Figure 3. This benchmark program
demonstrates a configuration with massive task creation,
which is the worst configuration for our scheme as every
new task created will have to be concretely executed
The granularity of the program is fully controlled by the
threshold parameter: a small value increases drastically
the number of forked tasks, letting the sequential ”leaf”
functions of the data-flow graph (i.e. Fibosec tasks) with
little work to operate. On the contrary, bigger values for
the threshold limits the number of spawned tasks and
makes the sequential functions longer, i.e. able to cover the
task creation process or, in our case, the agent checking
operation.

Conclusion

In this paper we presented an implementation of
ParaMoise organizational model that successfully achieves
energy saving in an HPC system. The organizational
modelling enables to explicitly reason about the impact
of the used algorithm using a DFG representation of
the execution unfold dynamically at runtime. This works
proves the usefulness of division of a model from its exact
implementation.

The future work directions include: adding more intelli-
gent behaviours to the work-stealing agents (e.g. learning,
dynamic optimization by more advanced reorganization)
with the possibility to extend to other objectives than
performance and energy, experimentation with algorithms

that enable distributed computation other than work-
stealing, using other frameworks than Kaapi, and finally
designing novel frameworks tailored for the ParaMoise
model for other applications and usage areas.

References

[1] M. A. Bender and M. O. Rabin. Online Scheduling of Parallel
Programs on Heterogeneous Systems with Applications to Cilk.
Theory Comput. Syst., 35(3):289–304, 2002.

[2] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementa-
tion of the Cilk-5 multithreaded language. In ACM SIGPLAN
conference on Programming language design and implementation
PLDI ’98, pages 212–223. ACM, 1998.

[3] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: a Thread
Scheduling Runtime System for Data Flow Computations on
Cluster of Multi-Processors. In Workshop on Parallel Symbolic
Computation’07 (PASCO’07), London, Ontario, Canada, 2007.
ACM.

[4] M. Guzek, G. Danoy, and P. Bouvry. ParaMoise: Increasing
Capabilities of Parallel Execution and Reorganization in an Or-
ganizational Model. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems,
AAMAS’13, pages 1029–1036. IFAAMAS, May 2013.

[5] M. Guzek, S. Varrette, V. Plugaru, J. E. Sanchez, and P. Bouvry.
A Holistic Model of the Performance and the Energy-Efficiency
of Hypervisors in an HPC Environment. In Proc. of the Intl.
Conf. on Energy Efficiency in Large Scale Distributed Systems
(EE-LSDS’13), LNCS. Springer Verlag, Apr 2013.

[6] M. Jarus, S. Varrette, A. Oleksiak, and P. Bouvry. Performance
Evaluation and Energy Efficiency of High-Density HPC Plat-
forms Based on Intel, AMD and ARM Processors. In Proc. of
the Intl. Conf. on Energy Efficiency in Large Scale Distributed
Systems (EE-LSDS’13), LNCS. Springer Verlag, Apr 2013.

[7] J.-L. Roch and S. Varrette. Probabilistic Certification of Divide
& Conquer Algorithms on Global Computing Platforms. Appli-
cation to Fault-Tolerant Exact Matrix-Vector Product. In Proc.
of the ACM Intl. Workshop on Parallel Symbolic Computation’07
(PASCO’07), pages 88–92, London, Ontario, Canada, July 27–28
2007. ACM.

